2012年中考数学一轮考点复习训练:实数的有关概念及运算
- 格式:doc
- 大小:114.00 KB
- 文档页数:2
2012年中考数学第一轮总复习讲义第1-10课时 数与代数(一)考点整理:1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数实数与数轴上的点是一一对应的。
数轴上即有有理数点,又有无理数点。
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 注:2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-.5.实数比大小:(1)利用数轴:数轴上的两个数,右边的数总比左边的数大;(2)利用绝对值:正数>0>负数,正数>负数,两个负数,绝对值大的反而小;(5)平方法:先平方再作差(6)倒数法{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数 负无理数0,0,0a b a b a b a b a b a b a b ->⇔>-=⇔=-<⇔<(3)作差比较法:设、是两个任意实数,则41,11m m m m n m n m n n n n >⇔>=⇔=<⇔<()作商比较法:设m 、n 是两个正实数,则6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1; a 1也可表示为a -1,若ab=1⇔ a 、b 互为倒数;若ab =-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:同号为正,异号为负,并把绝对值相除。
⎧⎨⎩第1章 数与式第1课 实数的有关概念目的:复习实数有关概念,相反数、绝对值、倒数、数轴、非负数性质、•科学记数法、近似数与有效数字. 中考基础知识1.实数的分类2.相反数:只有_______不同的两个数,叫做互为相反数,a 的相反数为______,a-b 的相反数是_______,x+y 的相反数是________,0的相反数为_______,若a ,b 互为相反数,则a+b=________.3.绝对值:几何意义:数a 的绝对值是数a 在数轴上表示的点到_______的距离. 正数的绝对值等于它________. 代数意义 零的绝对值等于________.负数的绝对值等于它的________.│a │=(0)(0)a a a a ≥⎧⎨-<⎩ 4.数轴:3-3-1021________与数轴上的点是一一对应的,•数轴上的点表示的数左边的总比右边的_________,数轴是沟通几何与代数的桥梁.5.倒数:a (a ≠0)的倒数为________,0_______•倒数,•若a ,•b•互为倒数,•则ab=_____,若a ,b 互为负倒数,则ab=________.6.非负数:│a│≥0,a2≥0≥0.若│a+1│+(c+3)2=0,则a=_______,b=_______,c=________.7.科学记数法:把一个数记作a×10n形式(其中a是具有一位整数的小数,n为自然数).8.近似数与有效数字:一个经过________而得到的近似数,最后一个数在哪一位,就说这个近似数是精确到哪一位的近似数,对于一个近似数,•从左边第一个______数字开始,到最末一位数字止,都是这个近似数的有效数字.备考例题指导例1.填空题(1的倒数为_______,绝对值为________,相反数为_______.(2)若│x-1│=1-x,则x的取值范围是_______,若3x+1有倒数,则x的取值范围是_________.(3)在实数18,π,3,0+1,0.303003……中,无理数有________个.(4)绝对值不大于3的非负整数有________.(5=0,则3x-2y=________.(6)用科学记数法表示-168000=_______,0.0002004=_________.(7)0.0304精确到千分位等于_______,有_______个有效数字,它们是_______.(8)2060000保留两个有效数字得到的近似数为________.答案:(1).-2,,(2)x≤1,x≠-13.(3)5.(4)0,1,2,3.(5)7.(6)-1.68×105,2.004×10-4.(7)0.030;2;3,0 (8)2.1×106.例2.已知1<x<4,化简│x-4│解:∵1<x<4,∴x-4<0,1-x<0.原式=│x-4│-│1-x│=4-x+1-x=5-2x.例3.化简│x-2│+│x+3│.解:令x-2=0得x=2,令x+3=0得x=-3.(1)当x<-3时,原式=2-x-x-3=-2x-1;(2)当-3≤x<2时,原式=2-x+x+3=5;(3)当x≥2时,原式=x-2x+x+3=2x+1.分类讨论思想,零点分段法,一般等号取在大于符号中.备考巩固练习1.(2005,北京)一个数的相反数是3,则这个数是________.2.气温比a℃低3℃记作________.3-a)2与│b-1│互为相反数,则2a b-的值为_______.4.若a2│c-2003│=0,则a b+c=________.5.计算|47-25|+|35-79|-|29-37|=______________.(注意方法)6.计算│1-a│+│2a+1│+│a│,其中a<-2.7.如果表示a、b两个实数的点在数轴上的位置如图,那么化简│a+b│果是多少?b a8.按要求取下列各数的近似数:(1)6.286(精确到0.1);(2)1764000(保留三个有效数字);(3)278160(•精确到万位).9.近似数7.60×105精确到_______位,有______个有效数字,近似数7.6×105精确到_______位,有________个有效数字.10.已知a、b、c为实数,且a2+b2+c2=ab+bc+ac,求证a=b=c.答案:1.-3 2.(a-3)℃ 3+1 4.20045.原式=47-25+79-35+29-37=17-1+1=17(先去绝对值符号)6.∵a<-2,∴1-a>0,2a+1<0,a<0∴原式=1-a-2a-1-a=-4a7.-2a8.(1)6.286≈6.3 (2)1764000≈1.76×106(3)278160≈28万9.∵7.60×105=760000 ∴近似数7.60×105精确到千位,有三个有效数字7,6,•0;7.6×105精确到万位,有两个有效数字7,610.用配方法和非负数性质,将一个方程转化为三个方程,a2+b2+c2-ab-bc+ac=0 2a2+2b2+2c2-2ab-2bc-2ac=0 (a-b)2+(b-c)2+(a-c)2=0∴a-b=0,b-c=0,a-c=0 ∴a=b=c沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。
第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类,7等;(1)开方开不尽的数,如32π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等(这类在初三会出现)是有理数,而不是无判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16理数。
3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
如果,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
如果,那么x叫做a的立方根。
2、运算名称(1)求一个正数a 的平方根的运算,叫做开平方。
平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。
开立方和立方互为逆运算。
3、运算符号(1)正数a 的算术平方根,记作“a ”。
(2)a(a ≥0)的平方根的符号表达为。
(3)一个数a 的立方根,用表示,其中a 是被开方数,3是根指数。
4、运算公式4、开方规律小结(1)若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。
实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。
2012年中考数学一轮复习考点2:实数考点1:实数的概念和分类相关知识:1、实数的概念有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.无理数:无限不环循小数叫做无理数如:π,0.1010010001…(两个1之间依次多1个0).实数:有理数和无理数统称为实数.2、实数的分类3、在理解无理数时,要抓住“无限不循环”这一实质,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:,7等;(1)开方开不尽的数,如32+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:“神似”或“形似”都不能作为判断的标准.相关试题1. (2011广东广州市,1,3分)四个数-5,-0.1,12,3中为无理数的是( ).A. -5B. -0.1C. 12D. 3【答案】D2. (2011山东滨州,1,3分)在实数π、13、sin30°,无理数的个数为( ) A.1 B.2 C.3 D.4 【答案】B3. (2011湖北襄阳,6,3分)下列说法正确的是 A.0)2(π是无理数B.33是有理数 C.4是无理数 D.38-是有理数【答案】D4.(20011江苏镇江,1,2分)在下列实数中,无理数是( )D.13【答案】 C5. (2011贵州贵阳,6,3分)如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )(A )2.5 (B )2 2 (C ) 3 (D ) 5 【答案】D6.(2011台湾全区,11)如图,数轴上有O 、A 、B 、C 、D 五点,根据图中各点所表示的数,判断18在数在线的位置会落在下列哪一线段上?A .OAB .ABC .BCD .CD 【答案】C考点2:实数大小的比较 相关知识:比较大小的几种常用方法(1)数轴比较法:在数轴上表示的两个数,右边的数总比左边的数大。
第1——2课时实数的有关概念【知识梳理】1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.【思想方法】数形结合,分类讨论【例题精讲】例1.下列运算正确的是()A. B.C.D.例2.的相反数是()A. B. C. D.例3.2的平方根是()A.4 B. C. D.例4.《广东省重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是()A.元B.元C.元D.元例5.实数在数轴上对应点的位置如图所示,则必有()a0 例5图A .B .C .D .例6.(改编题)有一个运算程序,可以使:⊕= (为常数)时,得(+1)⊕= +2,⊕(+1)= -3现在已知1⊕1= 4,那么2009⊕2009=.【当堂检测】1.计算的结果是()A .B .C .D .2.的倒数是()A .B .C .D .3.下列各式中,正确的是()A .B .C .D .4.已知实数在数轴上的位置如图所示,则化简的结果为() A.1 B .C .D .5.的相反数是()A .B .C .D .6.-5的相反数是____,-的绝对值是____,=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数.8.如果,则“”内应填的实数是()A.B.C .D .第4题图。
第1讲实数概念与运算一、知识梳理实数的概念1、实数、有理数、无理数、绝对值、相反数、倒数的概念。
(1)_____________叫有理数,_____________________叫无理数;______________叫做实数。
(2)相反数:①定义:只有_____的两个数互为相反数。
实数a的相反数是______0的相反数是________②性质:若a+b=0 则a与b互为______, 反之,若a与b 互为相反数,则a+b= _______(3)倒数:①定义:1除以________________________叫做这个数的倒数。
②a 的倒数是________(a≠0)(4)绝对值:①定义:一般地数轴上表示数a的点到原点的_______, 叫数a的绝对值。
②2、平方根、算术平方根、立方根(1)平方根:一般地,如果_________________________,这个数叫a的平方根,a的平方根表示为_________.(a≥0)(2)算术平方根:正数a的____的平方根叫做a的算术平方根,数a的算术平方根表示为为_____(a≥0)(3)立方根:一般地,如果_________,这个数叫a的立方根,数a的立方根表示为______。
注意:负数_________平方根。
实数的运算1、有效数字、科学记数法(1)有效数字:从一个数的_____边第一个_____起到末位数字止,所有的数字都是这个数的有效数字。
(2)科学记数法:一个数M 可表示为a ⨯10n 或a ⨯10-n形式,其中1//10a ≤∠,n 为正整数,当/M/≥10时,可表示为__________形式,当/M/<1时,可表示为____________形式。
2、实数的运算:(1)运算顺序:在进行混合运算时,先算______,再算_______,在最后算_________;有括号时,先算括号里面的。
(2)零指数:0a =__________(a≠0),负指数:p a -=________(a≠0,p 是正整数)。
一.实数知识过关1.实数有关的概念1. 有理数:__________________2. 无理数:无限不循环小数叫做无理数.3. 实数:有理数和_______统称为实数.4. 实数的分类:(1) 按定义分: (2)按性质分:5. 数轴:(1)规定了______、_______、_______的直线叫做数轴;(2)______和实数是一一对应的关系.6. 相反数、绝对值、倒数考点分类考点1 相反数、倒数和绝对值 例1:2023-的相反数是( )A.1B.-1C.2023D.20231已知点M 、N 、P 、Q 在数轴上的位置如图所示,则其中对应的绝对值最大的点是( )A. NB.MC.PD.Q考点2 无理数的识别例2 在实数389722,,,π-中,是无理数的是( ) A. 722- B.9 C.π D.38考点3 科学记数法例3 (1) 一天时间为86400秒,用科学记数法表示这一数字是( )A. 210864⨯B. 3104.86⨯C. 41064.8⨯D.510864.0⨯(2) 目前世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为( )A. 8104⨯B. 8104-⨯C.8104.0⨯D.8104⨯-考点4 非负数的性质例4 已知x,y 为实数,且0|2|31=-+-y x 则x -y 的值为( ) A.3 B.-3 C.1 D.-1考点5 绝对值的化简例5 已知有理数a,b 在数轴上如图所示,且||||b a =,则可化简为( )A.a -bB.a+bC.2aD.2b真题演练1.两千多年前,中国人就开始使用负数,如果收入100元记作+100元,那么支出60元应记作( ) A .﹣60元B .﹣40元C .+40元D .+60元2.下列各数不是有理数的是( ) A .1.21B .﹣2C .2πD .123.下列各数:−74,1.010010001,833,0,﹣π,﹣2.626626662…,0.1⋅2⋅,其中有理数的个数是( ) A .2B .3C .4D .54.在−13,227,0,﹣1,0.12,14,﹣2,﹣1.5这些数中,正有理数有m 个,非负整数有n 个,分数有k 个,则m ﹣n +k 的值为( ) A .3B .4C .6D .55.有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣2B .|a |>bC .a >﹣bD .|b |>|a |6.已知数a ,b ,c 在数轴上的位置如图所示,化简|a +b |﹣|a ﹣b |+|a ﹣c |的结果为( )A .﹣a ﹣2b ﹣cB .﹣a ﹣b ﹣cC .﹣a ﹣cD .﹣a ﹣2b +c7.﹣2022的相反数是( ) A .﹣2022B .2022C .﹣2021D .20218.−43的相反数是( ) A .34B .43C .−34D .−439.新的一年到来了,中考也临近了,你是否准备好了?请选出2023的相反数是( ) A .12023 B .−12023C .2023D .﹣202310.下列各数中,属于分数的是()A.﹣0.2B.π2C.234D.|a|a11.已知:(a﹣2)2+|b+3|+|c+4|=0,请求出:5a﹣b+3c的值是()A.0B.﹣1C.1D.无法确定12.数据2060000000用科学记数法表示为()A.206×107B.2.06×10C.2.06×109D.20.6×108 13.2022年11月27日,宁波舟山港累计完成集装箱吞吐量超过3108万标准箱,提前34天达到去年全年总水平.将3108万用科学记数法表示应为()A.3.108×106B.3.108×107C.31.08×106D.0.3108×108 14.新型冠状病毒是承载在飞沬上传播的,而飞沬的直径是5um(提示:1m=1000000um),只要能够过滤小于5um的颗粒的空气净化器都有用,我们常用的医用口罩等都是有用的,飞沬直径用科学记数法可表示为()A.5×106m B.5×10﹣6m C.50×10﹣6m D.0.5×10﹣5m 15.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣4C.0.7×10﹣9D.0.7×10﹣8课后练习1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.在一部中国古代数学著作中,涉及用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数,这部著作是()A.《几何原本》B.《九章算术》C.《孙子算经》D.《四元玉鉴》2.有理数a、b、c、d在数轴上的对应点如图所示,这四个数中绝对值最小的是()A.a B.b C.c D.d3.下列各数中最小的负整数是()A.﹣2021B.﹣2022C.﹣2023D.﹣14.2022年11月13日,第十四届中国国际航空航天博览会在珠海圆满落幕,本届航展参展规模远超预期、参展展品全领域覆盖、商贸交流活动成效显著.航展6天,共签订总值超过398亿美元的合作协议书,39800000000用科学记数法表示为()A.3.98×1011B.0.398×1010C.3.98×1010D.0.398×1011 5.已知|3a+1|+(b﹣3)2=0,则(ab)2022的值是()A.1B.﹣1C.0D.36.若(a+1)2+|b﹣2|=0,则(b+a)2021的值是()A.1B.﹣2021C.﹣1D.2021填空题(共21小题)7.2022年全国粮食达到13731亿斤,数据13731用四舍五入法精确到1000,并用科学记数法表示是.8.某头非洲大象的体重大约3880千克,则将3880千克精确到100千克用科学记数法表示记为千克.9.观察下面式子:21=2,22=4,23=8,24=16,25=32,26=64…,那么22023的结果的个位上的数字是.10.如图,周长为6个单位长度的圆上的六等分点分别为A,B,C,D,E,F,点A落在2的位置,将圆在数轴上沿负方向滚动,那么落在数轴上﹣2023的点是.11.数轴上,点B在点A的右边,已知点A表示的数是﹣1,且AB=2023,那么点B表示的数是.12.若a的相反数等于它本身,b是最小的正整数,c是最大的负整数,则代数式a﹣b+c =.13.若a.b互为相反数,c的倒数是−35,则a+b﹣6c的值是.冲击A+如图1所示,△ABC是以AB为底的等腰三角形,AC=BC=6,延长CB至P,使得BP=BC,连接AP,AP=4.(1)求证:直线AP为圆O的切线;(2)如图2所示,将△ABC沿着AC翻折至△ACQ处,QC边与圆交于点D,连接AD,求△ACD的面积.。
实数考点1 实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数. 例1 比较3-2与2-1的大小.分析:比较3-2与2-1的大小,可先将各数的近似值求出来, 即3-2≈1.732-1.414=0.318,2-1≈1.414-1=0.414,再比较大小例2 在-6,0,3,8这四个数中,最小的数是( )A.-6B.0C.3D.8 答:2-1,A 利用数轴考点2 无理数常见的无理数类型(1) 一般的无限不循环小数,如:1.41421356¨··· (2) 看似循环而实际不循环的小数,如0.1010010001···(相邻两个1之间0的个数逐次加1)。
(3) 有特定意义的数,如:π=3.14159265···(4).开方开不尽的数。
如:35,3注意:(1)无理数应满足:①是小数;②是无限小数;③不循环;(2)无理数不是都带根号的数(例如π就是无理数),反之,带根号的数也不一定都是无理数(例如4,327就是有理数).例3 下列是无理数的是( )A.-5/2B.πC. 0D.7.131412例4在实数中-23 ,0 3.14 )A .1个B .2个C .3个D .4个答:B ,A考点3 实数有关的概念实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数(2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数例5若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例6实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例7 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( )A. 5-2B. 2-5C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例8已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b的值为 分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。
a = ⎨(a = 0)⎩ a ≤ 0x a第一章数与式1.1 实数的有关概念及运算●知识网络若 a, b 互为倒数,则有 .(5)有效数字:一个近似数从左边第一个 数字起,到 止所有的数字,叫做这个近似数的有 效数字.如 0.02030 有 个有效数字.(6)科学记数法:将一个数记为 的形式,实 数●要点梳理1.实数的分类实数的分类实数的有 关概念数轴 相反数 绝对值 倒数有效数字 科学记数法(其中 a ),这种记数法叫做科学记数法.●考点解读知识与技能目标知识要点 了 理 掌 灵活解 解 握 运用求相反数与绝对值 √无理数和实数的概念,近似数与有效数字的概念 √实数2.实数的相关概念⑴有理数: . ⑵无理数: . ⑶实数: . 3.实数中的重要概念⑴ 数轴:规定了 的直线叫数轴.实数与数轴上的点建立了 的关系. ⑵相反数:只有 不同的两个数叫做互为相反 数,数 a 的相反数为 ,-y 的相反数为 ; 若 a 与 b 互为相反数,则 ;互为相反数的 两个数在数轴上到原点的距离 .(3)绝对值:一个数 a 的绝对值就是数轴上表示数 a 的点到 . 数 a 的绝对值记为 . 绝对值的代数意义:⎧ (a ≤ 0)⎪ ⎪若 x = 2 则 x =,若 = -a ,则 a =.绝对值的结果是数,记为.(4)倒数:数 a (a ≠ 0)的倒数表示为.估计无理数的大小范围 √科学记数法 √●典例精析1【例 1】(2009.肇庆)实数 - 2,0.3, , 2,-π 中,无理数的7个数是 ( )A.2B.3C.4D.5解析 :无限不循环小数叫做无理数 , 2,-π 是无理数 ,所以选 A.【例 2】(2009.济南)2009 年 10 月 1 日,第十一届全运会 在美丽的泉城济南召开.奥体中心由体育场、,体育馆、游 泳馆、网球馆,综合服务楼三组建筑组成,呈“三足鼎立”、 “东荷西柳”布局.建筑面积约为 359 800 平方米,用科学 记数法表示建筑面积是 ( 保留 3 个有效数字 ) ( )A. 35.9 ⨯ 105 平方米B. 3.60 ⨯ 105 平方米C. 3.59 ⨯ 105 平方米D. 35.9 ⨯ 10 4 平方米解析:本题不仅考查科学记数法 ,同时也考查近似数中的 有效数字 .首先用科学记数法把 359 800 平方米表示为3.598 ⨯ 105 平方米,然后对 3.598 取保留 3 个有效数字取近似数得 3.598 ≈ 3.60 ,因此正确的答案是 3.60 ⨯ 105 平方米,选 B .【例 3】(2009.长沙)已知实数 a 在数轴上的位置如右图所示,则化简 1 - a + a 2 的结果为 ( )-1 0 a 12的倒数的绝对值3D.-13D.3A.-4B.-1A.1B.-1C.1-2aD.2a-1解析:由数轴可知0<a<1,∴1-a>0,∴1-a=1-a a2=a=a故原式=1-a+a=1,选A.点评:本题综合考查了绝对值和算术平方根的意义,在求a2的算术平方根时,应先将其化为绝对值的形式,再进行化简.【例4】(2009.本溪)估算17+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间A.大于0B.小于0C.小.于a D.大于b6.近似数0.056070的有效数字有()个A.7B.6C.5D.47.(2010.鄂尔多斯)如图,数轴上的点P表示的数可能是()A.5B.-5C.-3.8D.-108.(2009.泸洲)甲型H1N1流感病毒的直径大约是0.000000081米,用科学记数法可表示为()A.8.1⨯10-9米B.8.1⨯10-8米C.81⨯10-9米D.0.81⨯10-7米解析:首先估算17的值,因为16<17<25,所以4<17<5,所以5<17+1<6,故选D.二、填空题:9.(2010.巴中)-310.(2010.长沙)-3的相反数是..点评:本题主要考查学生的估算能力,估计无理数的大小,先选取离它最近的两个整数,再进行估计.●能力训练A基础巩固一、选择题:1.(2010.丽水)下面四个数中,负数是() A.-3B.0C.0.2D.3 2.(2010.日照)-3的相反数是()A.3B.3C.1313.(2010.莱芜)-的倒数是()3A.-3B.-1 3C.14.(2010.株洲)-4的绝对值是()11.(2010.盐城)实数a、b在数轴上对应点的位置如图所示,则a b(填“<”、“>”或“=”).12.(2010.昭通)如图4,上海世博会的中国馆建筑外观以“东方之冠,鼎盛中华,天下粮仓,富庶百姓”为构思主题,建筑面积4.6457万平方米,保留两个有效数字是__________万平方米.三、解答题:13.若a,b互为相反数,c,d互为倒数,x的绝对值等2,求:a+b-cd+2x-3的值.14C.4D.4 5.(2010.宿迁)有理数a、b在数轴上的位置如图所示,则a+b的值是()-1a01bb = (.2 , -14.若实数 a, b 满足 a - 3 + (b + 2)2 = 0 .21. 已 知 有 理 数 a, b , c 在 数 轴 上 的 位 置 如 图 所 示 , 且求: (a + 2b )2011的值.a =b .c b 0 a(1)求: a 5 + b 5 的值.=0(2)化简: a - a + b - c - a + c - b + ac - - 2bB 能力提升15.(2010.莱芜)如图,数轴上 A 、B 两点分别对应实数 a 、b ,则下列结论正确的是 ( ) A . ab > 0 B . a - b > 0C . a + b > 0D . | a | - | b |> 0ABa -10 b 116.(2010.义乌)28 c m 接近于 ( )A .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度 17. 2010.南昌)按照下图所示的操作步骤,若输入 x 的 值为-2,则给出的值为 .输入 x平方 乘以 3 减去 5 输出 x18 (2010.河北)如图,矩形 ABCD 的顶点 A , B 在数轴上, D CCD = 6,点 A 对应的数为 - 1 ,则点 B 所对应的数AB22.若 a = 3 , b = 2 且 aab ,求: 3a - 2b 的值.为 . 23.观察下面一列数,探究其规律:19 . 已 知 a = 25 , b = -3 , 则 a 99 + b 100 的 末 位 数 字- 1, 1 1 1 1 13 ,4 , -5 ,6 ......是 .20.(2009.嵊州)将自然数按以下规律排列,则位于第六行第四十五列的数是 .第一列 第二列 第三列 第四列 …第一行 1 2 9 10 … 第二行 4 3 8 11 … 第三行 5 6 7 12 … 第四行 16 15 14 13 … 第五行 17 … …(1)填出第 7,8,9 三个数 , , ,(2)第 2008 个数是什么?如果这一列数无限排列下去, 与哪个数越来越接近?。
中考数学一轮复习第六章 实数知识归纳总结及解析一、选择题1.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个B .2个C .3个D .4个2.下列说法正确的个数有( )①过一点有且只有一条直线与已知直线平行; ②垂线段最短;③坐标平面内的点与有序实数对是一一对应的; ④算术平方根和立方根都等于它本身的数是0和1; ⑤5的小数部分是51-. A .1B .2C .3D .43.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒4.在实数227,042中,是无理数的是( ) A .227B .0C 4D 25.估计65的立方根大小在( ) A .8与9之间B .3与4之间C .4与5之间D .5与6之间6.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)232;(47是7的平方根. A .1B .2C .3D .47.下列命题是假命题的是( )A .0的平方根是0B .无限小数都是无理数C .算术平方根最小的数是0D .最大的负整数是﹣18.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B.线段BO 上 C .线段OC 上 D .线段CD 上 9.某数的立方根是它本身,这样的数有( ) A .1 个B .2 个C .3 个D .4 个10.在数轴上表示7和6-的两点间的距离是( ) A .76-B .67-C .76+D .(76)-+二、填空题11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=.例如:(-3)☆2=32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 12.若已知()21230a b c -+++-=,则a b c -+=_____. 13.m 的平方根是n +1和n ﹣5;那么m +n =_____.14.已知,x 、y 是有理数,且y =2x -+ 2x -﹣4,则2x +3y 的立方根为_____. 15.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___16.a※b 是新规定的这样一种运算法则:a※b=a+2b,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,则x 的值是_____. 17.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 18.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是52)⊕3=___.19.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.20.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b b .例如89914*=,那么*(*16)m m =__________.三、解答题21.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1 (x -1)(x 3+x 2+x+1)=x 4-1 ……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________. (2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________. (3)根据以上规律求1+3+32+…+349+350的结果. 22.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D 1 2 3 4 5 6 7 8 9 10 11 12 13 F G H J K L Z X C V B N M 14151617181920212223242526给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 23.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”. (初步探究)(1)直接写出计算结果:2③= ,(﹣12)⑤= ; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④= ;5⑥= ;(﹣12)⑩= . (2)想一想:将一个非零有理数a 的圈n 次方写成乘方的形式等于 ; 24.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式 1a b ab -=+成立的一对有理数,a b 为“共生有理数对”,记为(),a b ,如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫⎪⎝⎭,都是“共生有理数对”. (1)判断下列数对是不是“共生有理数对”,(直接填“是”或“不是”).(2,1)- ,(13,2) .(2)若 5,2a ⎛⎫-⎪⎝⎭是“共生有理数对”,求a 的值; (3)若(),m n 是“共生有理数对”,则(),n m --必是“共生有理数对”.请说明理由; (4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复). 25.规律探究计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯=计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++26.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而121的小数部分.请解答下列问题:(1_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y +-的平方根。
中考复习实数知识点总结1. 实数的定义实数是可以用小数表示的数,包括有理数和无理数。
有理数是可以写成两个整数的比值的数,无理数是不能写成两个整数的比值的数。
实数包括整数、分数和无限小数。
2. 实数的分类实数分为有理数和无理数。
有理数包括整数、分数和有限小数,无理数包括无限不循环小数。
3. 实数的性质(1)实数的四则运算实数的加减乘除满足交换律、结合律和分配律。
(2)实数的大小比较实数之间可以进行大小比较,根据大小关系可以定义出实数的大小顺序。
(3)实数的绝对值实数a的绝对值,记作|a|,是a到原点的距离。
如果a≥0,则|a|=a;如果a<0,则|a|=-a。
4. 有理数的加减乘除(1)有理数的加减法同号两数相加,取绝对值相加,正负号和原数相同;异号两数相加,取绝对值相减,正负号取绝对值大的数的符号。
(2)有理数的乘法同号两数相乘,结果为正;异号两数相乘,结果为负。
(3)有理数的除法两个非零有理数相除,可以化为乘法,即a÷b=a乘以1/b。
5. 无理数的性质无理数是不能写成两个整数的比值的数,无理数的小数形式为无限不循环小数。
无理数的加减乘除运算同样也满足交换律、结合法和分配律。
6. 实数的小数表示实数可以用小数表示,根据小数的循环性质,可以分为有限小数和无限循环小数。
有限小数是指小数部分有限位数,无限循环小数是指小数部分无限循环。
7. 实数的应用实数在日常生活中有着广泛的应用,比如在金融、科学、工程等领域,实数都有着重要的应用。
比如在金融中,实数用来表示货币的价值;在科学中,实数用来表示物理量的大小等等。
8. 实数的练习(1)计算:(-5)×(-3)、(-4)+5、(-3)-7;(2)判断:-2/3与2/3的大小关系;(3)简化:(-6)÷(-3);(4)解方程:x-12=20。
9. 实数的注意点(1)在计算实数的加减乘除时,要注意正负数的加减乘除规则;(2)对于无理数的计算,要注意小数的无限循环性质;(3)实数在应用中要注意单位的转换,比如货币的转换等。
无理数(无限不循环小数)有理数正分数 负分数正整数: 0负整数 (有限或无限循环小数)正无理数负无理数第一讲 实数知识梳理知识点1:实数的分类重点:无理数的概念以及实数的分类,培养学生的分类归纳的思想 难点:实数的分类 1、 按实数的定义来分2、 按实数的正负分类例1.在实数0,1,0.1235,0..123.7 ,1.010010001…,3064.0 , 3π,722中,无理数的个数为( ) A.0个 B.1个 C.2个 D.3个解题思路:本题主要考查对无理数概念的理解和应用,无理数分成三类:①开方开不尽的数,如5,32等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…1.010010001…,3π是无理数. 答案:D练习1. 下列四个实数中是无理数的是 ( ).A.2.5B.103C.πD.1.414实数实数2. 在实数中 ,-25 ,0, 3 ,-3.14, 4 无理数有( )。
A.1 个 B.2个 C.3个 D.4个 练习答案:1.C 2.B 知识点2、实数的概念重点:掌握数轴、相反数、绝对值、倒数、平方根、算术平方根、立方根、近似数、有效数字、科学记数法的概念。
难点:概念的理解及其运用 1. 数轴①定义(“三要素”):具有原点、正方向、单位长度的直线叫数轴.②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.所有的有理数可以在数轴上表都可以在数轴上表示出来,故数轴上的点有的表示有理数,有的表示无理数,数轴上的点与实数是一一对应关系。
2. 相反数①定义:如果两个数的和为0.那么这两个数互为相反数. ②求相反数的公式: a 的相反数为-a.③性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置关于原点对称;C.两个相反数的和为0,商为-1。
3. 倒数:①定义:如果两个数的乘积为1.那么这两个数互为倒数.②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
卜人入州八九几市潮王学校第1讲实数的有关概念和计算☞【根底知识归纳】☜☞归纳⑴数轴的三要素为、和数轴上的点与构成一一对应.⑵实数a 的相反数为.假设a ,b 互为相反数,那么b a +=⑶非零实数a 的倒数为.假设a ,b 互为倒数,那么ab = ⑷绝对值⎪⎪⎩⎪⎪⎨⎧<=>=)0()0()0(a a a a ⑸科学记数法:把一个数表示成的形式,其中1≤a <10的数,n 是整数 ☞归纳2.数的开方⑴任何正数a 都有个平方根,它们互为 其中正的平方根a 叫没有平方根,0的算术平方根为⑵任何一个实数a 都有立方根,记为 ⑶=2a ⎩⎨⎧<-≥=)0( )0( a a a a a ☞归纳3.实数的分类和统称☞归纳4.数的乘方=n a ,其中a 叫做,n 叫做=0a 〔其中a 0〕=-p a 〔其中a 0〕☞归纳5.实数运算先算,再算,最后算;假设有括号,先算里面的,同一级运算按照从到的顺序依次进展.☞归纳⑴数轴上两个点表示的数,的点表示的数总比的点表示的数大⑵正数0,负数0,正数负数两个负数比较大小,绝对值大的绝对值小的☞【常考题型剖析】☜☺题型一相反数、绝对值、倒数的概念【例1】〔2021〕12016-的相反数的倒数是〔〕 A .1B .﹣1C .2021D .﹣2021【举一反三】 1.(2021)13-的相反数是〔〕 A.13- B.13C.-3 D.32.以下各数中,绝对值最大的数是〔〕A.-3B.-2C.0D.1 3.(2021)21的倒数是〔〕 A.12B.2C.-2D.12- ☺题型二实数的分类【例2】(2021)以下各数中为无理数的是〔〕A .﹣1B .4C .πD .0【举一反三】4.以下四个实数中,是无理数的为〔〕A.0B.-3 D.3115.〔2021〕在实数0、π、722、2、 A.1个B.2个C.3个D.4个☺题型三科学记数法【例3】(2021)人类的遗传物质是DNA ,DNA 是一个很长的链,最短的22号染色体与长达30000000个核苷酸,30000000用科学记数法表示为〔〕A .3×107B .30×104C .0.3×107D .0.3×108【举一反三】6.古生物学家发现350000000年前,地球上每年大约是400天,用科学记数法表示350000000=7.〔2021〕地球的平均半径约为6371000米,该数字用科学记数法可表示为〔〕A.7106371.0⨯B.610371.6⨯C.710371.6⨯D.310371.6⨯☺题型四比较实数的大小【例4】〔2021〕以下四个数中,最大的数是〔〕 A .﹣2 B .13 C .0 D .6【举一反三】 8.〔2021〕以下各数中最小的是〔〕A .0B .﹣3 C. D .19.〔2021〕在:0,﹣2,1,12这四个数中,最小的数是〔〕 A .0 B .﹣2 C .1 D .12 10.〔2021〕实数,a b 在数轴上的对应点的位置如下列图,那么正确的结论是〔〕A.2a >-B.3a <-C.a b >-D.a b <-☺题型五数的平方根及立方根【例5】〔2021〕916的算术平方根是. 【举一反三】 11.〔2021〕实数-27的立方根是12.〔2021〕8的立方根为_______13.〔2021〕计算:0(2)_________-= 14.〔2021〕2a 的算术平方根一定是〔〕A.aB.||aC.aD.a -☺题型六实数的运算【例6】〔2021〕计算:(203π+--+【举一反三】15.〔202120160(1)4cos 60--16.〔2021〕计算:00(3)4sin 451π-+-17.〔2021〕计算:010(2016)122sin 45π--++-☞【稳固提升自我】☜1.〔2021〕-2的绝对值是〔〕 A.2B.-2C.12D.12-2.〔2021〕如图1所示,a 和b 的大小关系是〔〕A.a <bB.a >bC.a=bD.b =2a3.〔2021〕据旅游局统计显示,2021年4月全旅游住宿设施接待过夜旅客约27700000人,将27700000用科学计数法表示为〔〕A.70.27710⨯B.80.27710⨯C.72.7710⨯D.82.7710⨯4.〔2021〕中国人很早开场使用负数,中国古代数学著作九章算术的“方程〞一章,在世界数学史上首次正式引入负数.假设收入100元记作+100元.那么﹣80元表示〔〕A .支出20元B .收入20元C .支出80元D .收入80元5.〔2021〕计算〔﹣3〕+4的结果是〔〕A.﹣7B.﹣1C.1D.76.〔2021〕2=-〔〕A.2B.2-C.12D.12- 7.〔2021〕据国家统计局网站2014年12月4日发布消息,2021年粮食总产量约为13573000吨,将13573000用科学记数法表示为〔〕A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯ 8.〔2021〕在0,2,0(3)-,5-这四个数中,最大的数是〔〕A.0B.2C.0(3)-D.5-9.〔2021〕比较大小:﹣2______﹣310.〔2021〕9的算术平方根为11.〔2021〕计算:()100132016sin 302-⎛⎫--+-- ⎪⎝⎭12.〔2021〕计算:011(5)453()2π--+︒--+ 13.〔2021〕计算:()02016(1) 3.14π--14.〔2021〕计算:(100122cos606π-⎛⎫--+- ⎪⎝⎭ 【根底知识归纳】1.有理数的意义⑴数轴的三要素为原点、正方向和单位长度.数轴上的点与实数构成一一对应.⑵实数a 的相反数为—a.假设a ,b 互为相反数,那么b a +=0.⑶非零实数a 的倒数为a1.假设a ,b 互为倒数,那么ab =1. ⑷绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a .⑸科学记数法:把一个数表示成a×10n 的形式,其中1≤a <10的数,n 是整数. 2.数的开方⑴任何正数a 都有两个平方根,它们互为相反数.其中正的平方根a 叫a 的算术平方根.负数没有平方根,0的算术平方根为0.⑵任何一个实数a 都有立方根,记为3a . ⑶=2a ⎩⎨⎧<-≥=)0( )0( a a a a a 3.实数的分类有理数和无理数统称实数.4.数的乘方=n aan a a a a 个⋅⋅,其中a 叫做底数,n 叫做指数. =0a 1〔其中a ≠0〕=-p a p a 1〔其中a ≠0〕5.实数运算先算乘方,再算乘除,最后算加减;假设有括号,先算括号里面的,同一级运算按照从左到右的顺序依次进展.6.实数大小的比较⑴数轴上两个点表示的数,右边的点表示的数总比左边的点表示的数大.⑵正数>0,负数<0,正数>负数;两个负数比较大小,绝对值大的<绝对值小的.。
中考数学复习资料 第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a2;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。