同济六版高数练习册答案 第九章 重积分
- 格式:doc
- 大小:1.99 MB
- 文档页数:31
(完整版)§-9-重积分习题与答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)§-9-重积分习题与答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)§-9-重积分习题与答案的全部内容。
第九章 重积分A1、 填空题1)交换下列二次积分的积分次序 (1)()=⎰⎰-dx y x f dy y y102,______________________________________________(2)()=⎰⎰dx y x f dy yy222,______________________________________________ (3)()=⎰⎰dx y x f dy y10,_______________________________________________(4)()=⎰⎰---dx y x f dy y y 11122,___________________________________________(5)()=⎰⎰dy y x f dx e x1ln 0,______________________________________________(6)()()=⎰⎰---dx y x f dy y y44214,________________________________________2)积分dy e dx xy ⎰⎰-2022的值等于__________________________________3)设(){}10,10,≤≤≤≤=y x y x D ,试利用二重积分的性质估计()σd y x xy I D⎰⎰+=的值则 。
习题9-21 计算下列二重积分:(1)⎰⎰+Dd y x σ)(22, 其中D {(xy )| |x |1 |y |1};解 积分区域可表示为D1x 1 1y 1 于是⎰⎰+Dd y x σ)(22y d y x dx ⎰⎰--+=111122)(x d y y x ⎰--+=111132]31[ x d x ⎰-+=112)312(113]3232[-+=x x 38=(2)⎰⎰+Dd y x σ)23(, 其中D 是由两坐标轴及直线x +y =2所围成的闭区域:解 积分区域可表示为D 0x 2 0y 2x 于是⎰⎰+Dd y x σ)23(y d y x dx x⎰⎰-+=2020)23(dx y xy x ⎰-+=2022]3[ dx x x ⎰-+=202)224(0232]324[x x x -+=320=(3)⎰⎰++Dd y y x x σ)3(223, 其中D {(x y )| 0x 1, 0y 1}解 ⎰⎰++Dd y y x x σ)3(323⎰⎰++=1032310)3(dx y y x x dy ⎰++=1001334]4[dy x y y x x ⎰++=103)41(dy y y 0142]424[y y y ++=1412141=++=(4)⎰⎰+Dd y x x σ)cos(, 其中D 是顶点分别为(0, 0), (p , 0), 和(p , p )的三角形闭区域.解 积分区域可表示为Dx 0y x 于是,⎰⎰+Dd y x x σ)cos(⎰⎰+=x dy y x xdx 0)cos(π⎰+=π)][sin(dx y x x x⎰-=π0)sin 2(sin dx x x x ⎰--=π0)cos 2cos 21(x x xd+--=0|)cos 2cos 21(πx x x dx x x ⎰-π0)cos 2cos 21(π23-=2. 画出积分区域, 并计算下列二重积分:(1)⎰⎰Dd y x σ, 其中D 是由两条抛物线xy = 2x y =所围成的闭区域;解 积分区域图如并且D{(xy )| 0x 1 x y x ≤≤2} 于是⎰⎰Dd y x σ⎰⎰=102dy y x dx xx⎰=10223]32[dx y x x x 556)3232(10447=-=⎰dx x x(2)⎰⎰Dd xy σ2, 其中D 是由圆周x 2+y 2=4及y 轴所围成的右半闭区域;解 积分区域图如 并且D{(xy )| 2y 2 240y x -≤≤} 于是⎰⎰⎰⎰⎰----=22402240222222]21[dy y x dx xy dy d xy y y Dσ1564]10132[)212(22225342=-=-=--⎰y y dy y y (3)⎰⎰+Dy x d e σ, 其中D {(x y )| |x ||y |1}解 积分区域图如 并且 D {(x y )| 1x 0 x 1y x 1}{(x y )| 0x 1x 1y x 1} 于是 ⎰⎰⎰⎰⎰⎰+--+---++=111111x x y xx x yxDyx dy e dx e dy e dx e d eσ⎰⎰+---+--+=1110111][][dy e e dx e e x x y x x x y x ⎰⎰---+-+-=11201112)()(dx e e dx e ex x 101201112]21[]21[---+-+-=x x e ex x e e =e -e -1(4)⎰⎰-+Dd x y x σ)(22, 其中D 是由直线y =2, y =x 及y =2x 轴所围成的闭区域解 积分区域图如并且D{(xy )| 0y 2 y x y ≤≤21} 于是⎰⎰⎰⎰⎰-+=-+=-+2022232222022]2131[)()(dy x x y x dx x y x dy d x y x y y y y Dσ613)832419(2023=-=⎰dy y y3. 如果二重积分⎰⎰Ddxdy y x f ),(的被积函数f (x , y )是两个函数f 1(x )及f 2(y )的乘积, 即f (x , y )= f 1(x )f 2(y ), 积分区域D {(x y )| a x b , c y d },证明这个二重积分等于两个单积分的乘积, 即])([])([)()(2121dy y f dx x f dxdy y f x f dcbaD⎰⎰⎰⎰⋅=⋅证明 dxdy y f x f dy y f x f dx dxdy y f x f dcb a d cb aD⎰⎰⎰⎰⎰⎰⋅=⋅=⋅])()([)()()()(212121而 ⎰⎰=⋅dcd cdyy f x f dy y f x f )()()()(2121故 dxdy y f x f dxdy y f x f b adcD⎰⎰⎰⎰=⋅])()([)()(2121由于⎰dcdy y f )(2的值是一常数因而可提到积分号的外面于是得])([])([)()(2121dy y f dx x f dxdy y f x f dcbaD⎰⎰⎰⎰⋅=⋅4. 化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分), 其中积分区域D 是:(1)由直线y =x 及抛物线y 2=4x 所围成的闭区域; 解积分区域如图所示并且D {(x y )|x y x x 2 ,40≤≤≤≤} 或D {(x y )| y x y y ≤≤≤≤241 ,40}所以 ⎰⎰=xxdy y x f dx I 240),(或⎰⎰=yy dxy x f dy I 4402),((2)由x 轴及半圆周x 2+y 2=r 2(y 0)所围成的闭区域;解积分区域如图所示并且D {(x y )|220 ,x r y r x r -≤≤≤≤-} 或D{(xy )| 2222 ,0y r x y r r y -≤≤--≤≤}所以 ⎰⎰--=220),(x r r rdyy x f dx I 或⎰⎰---=2222),(0y r y r r dx y x f dy I(3)由直线y =x , x =2及双曲线x y 1=(x >0)所围成的闭区域;解积分区域如图所示并且D {(x y )|x y x x ≤≤≤≤1 ,21}或D{(xy )| 21 ,121≤≤-≤≤x yy }{(x y )|2 ,21≤≤≤≤x y y }所以 ⎰⎰=xxdyy x f dx I 1),(21或⎰⎰⎰⎰+=22121121),(),(yydxy x f dy dx y x f dy I(4)环形闭区域{(x , y )| 1x 2+y 24}.解 如图所示 用直线x =-1和x =1可将积分区域D 分成四部分, 分别记做D 1, D 2, D 3, D 4 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ⎰⎰⎰⎰--------+=222244411112),(),(x x x x dy y x f dx dy y x f dx⎰⎰⎰⎰--------++222214442111),(),(x x x x dy y x f dx dy y x f dx用直线y =1, 和y =-1可将积分区域D 分成四部分, 分别记做D 1, D 2, D 3, D 4,如图所示. 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ⎰⎰⎰⎰--------+=222244141121),(),(y y y y dx y x f dy dx y x f dy⎰⎰⎰⎰--------++222241441211),(),(y y y y dx y x f dy dx y x f dy5 设f (x , y )在D 上连续, 其中D 是由直线y =x 、y =a 及x =b (b >a )围成的闭区域,证明:⎰⎰⎰⎰=bybaxabadx y x f dy dy y x f dx ),(),(.证明 积分区域如图所示 并且积分区域可表示为D {(x y )|a x b a y x } 或D {(x y )|a y by x b } 于是 ⎰⎰Dd y x f σ),(⎰⎰=xab adyy x f dx ),( 或⎰⎰Dd y x f σ),(⎰⎰=byb a dxy x f dy ),(因此 ⎰⎰⎰⎰=byb ax ab adx y x f dy dy y x f dx ),(),(.6 改换下列二次积分的积分次序(1)⎰⎰ydx y x f dy 01),(;解 由根据积分限可得积分区域D {(x y )|0y 1 0x y } 如图因为积分区域还可以表示为D {(x y )|0x 1 x y 1} 所以 ⎰⎰⎰⎰=111),(),(xydyy x f dx dx y x f dy(2)⎰⎰yydx y x f dy 2202),(;解由根据积分限可得积分区域D{(x y)|0y2y2x2y}如图图.(5)⎰⎰exdy y x f dx 1ln 0),(;解 由根据积分限可得积分区域D ={(x , y )|1£x £e , 0£y £ln x }, 如图. 因为积分区域还可以表示为D ={(x , y )|0£y £1, e y £x £ e }, 所以 ⎰⎰ex dy y x f dx 1ln 0),(⎰⎰=10),(eey dx y x f dy}arcsin 2 ,01|),{(π≤≤-≤≤-=x y y y x D}arcsin arcsin ,10|),{(y x y y y x -≤≤≤≤⋃π,7. 设平面薄片所占的闭区域D 由直线x +y =2, y =x 和x 轴所围成, 它的面密度为m (x , y )=x 2+y 2, 求该薄片的质量. 解 如图, 该薄片的质量为⎰⎰=Dd y x M σμ),(⎰⎰+=Dd y x σ)(22⎰⎰-+=10222)(yydx y x dy⎰⎰--=Ddxdy y x V )326(⎰⎰--=110)326(dy y x dx10. 求由曲面z =x 2+2y 2及z =6-2x 2-y 2所围成的立体的体积.解 由⎩⎨⎧--=+=2222262y x z y x z 消去z , 得x 2+2y 2=6-2x 2-y 2, 即x 2+y 2=2, 故立体在x O y 面上的投影区域为x 2+y 2£2, 因为积分区域关于x 及y 轴均对称, 并且被积函数关于x , y 都是偶函数, 所以⎰⎰+---=Dd y x y x V σ)]2()26[(2222⎰⎰--=Dd y x σ)336(22⎰⎰---=2202220)2(12x dy y x dx π6)2(8232=-=⎰dx x .11 画出积分区域把积分⎰⎰Ddxdy y x f ),(表示为极坐标形式的二次积分,其中积分区域D 是:(1){(x , y )| x 2+y 2a 2}(a >0); 解积分区域D 如图 因为D {( )|02 0a } 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ20)sin ,cos (d f d a(2){(x , y )|x 2+y 22x };解 积分区域D 如图因为}cos 20 ,22|),{(θρπθπθρ≤≤≤≤-=D 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰-=22cos 20)sin ,cos (ππθρρθρθρθd f d(3){(x , y )| a 2x 2+y 2b 2}, 其中0a <b 解 积分区域D 如图 因为D {( )|02 a b } 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ20)sin ,cos (bad f d(4){(x , y )| 0y 1-x , 0x 1}.解 积分区域D 如图因为}sin cos 10 ,20|),{(θθρπθθρ+≤≤≤≤=D 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰+=θθρρθρθρθπsin cos 1020)sin ,cos (d f d12 化下列二次积分为极坐标形式的二次积分:(1)⎰⎰11),(dy y x f dx ;解 积分区域D 如图所示 因为}csc 0 ,24|),{(}sec 0 ,40|),{(θρπθπθρθρπθθρ≤≤≤≤⋃≤≤≤≤=D所以 ⎰⎰⎰⎰⎰⎰==DDd d f d y x f dy y x f dx θρρθρθρσ)sin ,cos (),(),(101⎰⎰=40sec 0)sin ,cos (πθρρθρθρθd f d ⎰⎰+24csc 0)sin ,cos (ππθρρθρθρθd f d(2)⎰⎰+xxdy y x f dx 32220)(;解 积分区域D 如图所示并且}sec 20 ,34|),{(θρπθπθρ≤≤≤≤=D所示 ⎰⎰⎰⎰⎰⎰=+=+x xDDd d f d y x f dy y x f dx 3222220)()()(θρρρσ⎰⎰=34sec 20)(ππθρρρθd f d(3)⎰⎰--21110),(x xdy y x f dx ;解 积分区域D 如图所示并且}1sin cos 1 ,20|),{(≤≤+≤≤=ρθθπθθρD所以 ⎰⎰⎰⎰⎰⎰--==10112)sin ,cos (),(),(x xDDd d f d y x f dy y x f dx θρρθρθρσ⎰⎰+=2sin cos 101)sin ,cos (πθθρρθρθρθd f d(4)⎰⎰21),(x dy y x f dx .解 积分区域D 如图所示 并且}sec tan sec ,40|),{(θρθθπθθρ≤≤≤≤=D所以 ⎰⎰2010),(x dy y x f dx ⎰⎰⎰⎰==DDd d f d y x f θρρθρθρσ)sin ,cos (),(⎰⎰=40sec tan sec )sin ,cos (πθθθρρθρθρθd f d13 把下列积分化为极坐标形式, 并计算积分值: (1)⎰⎰-+2202220)(x ax ady y x dx ;解 积分区域D 如图所示 因为}cos 20 ,20|),{(θρπθθρa D ≤≤≤≤= 所以⎰⎰-+2202220)(x ax ady y x dx ⎰⎰⋅=Dd d θρρρ2⎰⎰⋅=20cos 202πθρρρθa d d ⎰=2044cos 4πθθd a 443a π=(2)⎰⎰+xa dy y x dx 0220;解 积分区域D 如图所示 因为}sec 0 ,40|),{(θρπθθρa D ≤≤≤≤= 所以⎰⎰⎰⎰⋅=+Dxad d dy y x dx θρρρ0220⎰⎰⋅=40sec 0πθρρρθa d d ⎰=4033sec 3πθθd a )]12ln(2[63++=a(3)⎰⎰-+xxdy y xdx 221221)(;解 积分区域D 如图所示 因为}tan sec 0 ,40|),{(θθρπθθρ≤≤≤≤=D 所以⎰⎰⎰⎰⋅=+--Dxx d d dy y xdx θρρρ21212212)(12tan sec 40tan sec 02140-==⋅=⎰⎰⎰-πθθπθθθρρρθd d d(4)⎰⎰-+220220)(y a a dx y x dy .解 积分区域D 如图所示因为}0 ,20|),{(a D ≤≤≤≤=ρπθθρ 所以⎰⎰⎰⎰⋅=+-Dy a a d d dx y x dy θρρρ22222)(420028a d d aπρρρθπ=⋅=⎰⎰14. 利用极坐标计算下列各题: (1)⎰⎰+Dy xd e σ22,其中D 是由圆周x 2+y 2=4所围成的闭区域;解 在极坐标下D ={(r , q )|0£q £2p , 0£r £2}, 所以⎰⎰⎰⎰=+DDy x d d e d e θρρσρ222)1()1(2124420202-=-⋅==⎰⎰e e d e d ππρρθπρ.(2)⎰⎰++Dd y x σ)1ln(22,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰+=++DDd d d y x θρρρσ)1ln()1ln(222)12ln 2(41)12ln 2(212)1ln(20102-=-⋅=+=⎰⎰πρρρθπd d .(3)σd xy Darctan⎰⎰, 其中D 是由圆周x 2+y 2=4, x 2+y 2=1及直线y =0, y =x 所围成的第一象限内的闭区域.解 在极坐标下}21 ,40|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⎰⎰⋅=⋅=DDDd d d d d xyθρρθθρρθσ)arctan(tan arctan⎰⎰⋅=4021πρρθθd d ⎰⎰==40321643ππρρθθd d . 15 选用适当的坐标计算下列各题: (1)dxdy y x D22⎰⎰,其中D 是由直线x =2,y =x 及曲线xy =1所围成的闭区域解 因为积分区域可表示为}1 ,21|),{(x y x x y x D ≤≤≤≤=, 所以dxdy y x D22⎰⎰dy ydx x x x ⎰⎰=211221⎰-=213)(dx x x 49=(2)⎰⎰++--Dd y x y x σ222211, 其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⋅+-=++--DDd d d y x y x θρρρρσ2222221111)2(811102220-=+-=⎰⎰ππρρρρθπd d(3)⎰⎰+Dd y x σ)(22 其中D 是由直线y =x , y =x +a , y =a , y =3a (a >0)所围成的闭区域;解 因为积分区域可表示为D {(x y )|ay 3a y a x y }, 所以⎰⎰+Dd y x σ)(22⎰⎰-+=aaya y dx y x dy 322)(4332214)312(a dy a y a ay aa =+-=⎰(4)σd y x D22+⎰⎰ 其中D 是圆环形闭区域{(x , y )| a 2x 2+y 2b 2}解 在极坐标下D{()|02 a b }, 所以σd y x D 22+⎰⎰)(3233202a b dr r d ba -==⎰⎰πθπ16 设平面薄片所占的闭区域D 由螺线2上一段弧(20πθ≤≤)与直线2πθ=所围成, 它的面密度为(x , y )=x 2+y 2. 求这薄片的质量.解 区域如图所示 在极坐标下}20 ,20|),{(θρπθθρ≤≤≤≤=D 所以所求质量⎰⎰⎰⎰⋅==Dd d d y x M 20202),(πθρρρθσμ⎰==254404ππθθd17 求由平面y =0 y =kx (k >0) z =0以及球心在原点、半径为R 的上半球面所围成的在第一卦限内的立体的体积解 此立体在xOy 面上的投影区域D {(x y )|0arctan k0R } ⎰⎰--=Ddxdy y x R V 222kR d R d kRarctan 313arctan 022=-=⎰⎰ρρρθ18 计算以xOy 平面上圆域x 2+y 2=ax 围成的闭区域为底 而以曲面z =x 2+y 2为顶的曲顶柱体的体积解 曲顶柱体在xOy 面上的投影区域为D {(x y )|x 2y 2ax } 在极坐标下}cos 0 ,22|),{(θρπθπθρa D ≤≤≤≤-= 所以⎰⎰≤++=axy x dxdy y xV 22)(22πθθρρρθππθππ422cos 022442323cos 4a d a d d a ==⋅=⎰⎰⎰--(注:可编辑下载,若有不当之处,请指正,谢谢!)。
第六版高数----课后习题答案习题9-11. 设有一平面薄板(不计其厚度), 占有xOy 面上的闭区域D , 薄板上分布有密度为μ =μ(x , y )的电荷, 且μ(x , y )在D 上连续, 试用二重积分表达该板上全部电荷Q .解 板上的全部电荷应等于电荷的面密度μ(x , y )在该板所占闭区域D 上的二重积分⎰⎰=Dd y x Q σμ),(.2. 设⎰⎰+=13221)(D d y x I σ, 其中D 1={(x , y )|-1≤x ≤1, -2≤y ≤2};又⎰⎰+=23222)(D d y x I σ, 其中D 2={(x , y )|0≤x ≤1, 0≤y ≤2}.试利用二重积分的几何意义说明I 1与I 2的关系.解 I 1表示由曲面z =(x 2+y 2)3与平面x =±1, y =±2以及z =0围成的立体V 的体积.I 2表示由曲面z =(x 2+y 2)3与平面x =0, x =1, y =0, y =2以及z =0围成的立体V 1的体积.显然立体V 关于yOz 面、xOz 面对称, 因此V 1是V 位于第一卦限中的部分, 故V =4V 1, 即I 1=4I 2.3. 利用二重积分的定义证明: (1)⎰⎰=Dd σσ (其中σ为D 的面积);证明 由二重积分的定义可知,⎰⎰∑=→∆=Dni iiif d y x f 1),(lim ),(σηξσλ其中∆σi 表示第i 个小闭区域的面积. 此处f (x , y )=1, 因而f (ξ, η)=1, 所以,σσσσλλ==∆=→=→⎰⎰∑01lim lim Dni id .(2)⎰⎰⎰⎰=DDd y x f k d y x kf σσ),(),( (其中k 为常数);证明∑⎰⎰∑=→=→∆=∆=ni i i i Dni iiif k kf d y x kf 11),(lim ),(lim ),(σηξσηξσλλ⎰⎰∑=∆==→Dn i i i i d y x f k f k σσηξλ),(),(lim10. (3)⎰⎰⎰⎰⎰⎰+=21),(),(),(D DD d y x f d y x f d y x f σσσ,其中D =D 1⋃D 2, D 1、D 2为两个无公共内点的闭区域.证明 将D 1和D 2分别任意分为n 1和n 2个小闭区域1i σ∆和2i σ∆, n 1+n 2=n , 作和∑∑∑===∆+∆=∆2222211111111),(),(),(n i i i i n i i i i ni iiif f f σηξσηξσηξ.令各1i σ∆和2i σ∆的直径中最大值分别为λ1和λ2, 又λ=ma x (λ1λ2), 则有∑=→∆ni i i i f 10),(lim σηξλ∑∑=→=→∆+∆=22222211111111),(lim ),(lim n i i i i n i i i i f f σηξσηξλλ, 即⎰⎰⎰⎰⎰⎰+=21),(),(),(D D Dd y x f d y x f d y x f σσσ.4. 根据二重积分的性质, 比较下列积分大小:(1)⎰⎰+Dd y x σ2)(与⎰⎰+Dd y x σ3)(, 其中积分区域D 是由x 轴, y 轴与直线x +y =1所围成;解 区域D 为: D ={(x , y )|0≤x , 0≤y , x +y ≤1}, 因此当(x , y )∈D 时, 有(x +y )3≤(x +y )2, 从而⎰⎰+Dd y x σ3)(≤⎰⎰+Dd y x σ2)(. (2)⎰⎰+Dd y x σ2)(与⎰⎰+Dd y x σ3)(, 其中积分区域D 是由圆周(x -2)2+(y -1)2=2所围成;解 区域D 如图所示, 由于D 位于直线x +y =1的上方, 所以当(x , y )∈D 时, x +y ≥1, 从而(x +y )3≥(x +y )2, 因而⎰⎰⎰⎰+≤+DDd y x d y x σσ32)()(. (3)⎰⎰+Dd y x σ)ln(与⎰⎰+Dd y x σ3)(, 其中D 是三角形闭区域, 三角顶点分别为(1, 0), (1, 1), (2, 0);解 区域D 如图所示, 显然当(x , y )∈D 时, 1≤x +y ≤2, 从而0≤ln(x +y )≤1, 故有[ln(x +y )]2≤ ln(x +y ), 因而⎰⎰⎰⎰+≥+DDd y x d y x σσ)ln()][ln(2. (4)⎰⎰+Dd y x σ)ln(与⎰⎰+Dd y x σ3)(, 其中D ={(x , y )|3≤x ≤5. 0≤y ≤1}.解 区域D 如图所示, 显然D 位于直线x +y =e 的上方, 故当(x ,y )∈D 时, x +y ≥e , 从而 ln(x +y )≥1, 因而 [ln(x +y )]2≥ln(x +y ), 故⎰⎰⎰⎰+≤+DDd y x d y x σσ2)][ln()ln(. 5. 利用二重积分的性质估计下列积分的值: (1)⎰⎰+=Dd y x xy I σ)(, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤1};解 因为在区域D 上0≤x ≤1, 0≤y ≤1, 所以 0≤xy ≤1, 0≤x +y ≤2, 进一步可得0≤xy (x +y )≤2, 于是⎰⎰⎰⎰⎰⎰≤+≤DDDd d y x xy d σσσ2)(0,即 ⎰⎰≤+≤Dd y x xy 2)(0σ.(2)⎰⎰=Dyd x I σ22sin sin , 其中D ={(x , y )| 0≤x ≤π, 0≤y ≤π};解 因为0≤sin 2x ≤1, 0≤sin 2y ≤1, 所以0≤sin 2x sin 2y ≤1. 于是⎰⎰⎰⎰⎰⎰≤≤DDDd yd x d σσσ1sin sin 022, 即 ⎰⎰≤≤Dyd x 222sin sin 0πσ.(3)⎰⎰++=Dd y x I σ)1(, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤2};解 因为在区域D 上, 0≤x ≤1, 0≤y ≤2, 所以1≤x +y +1≤4, 于是⎰⎰⎰⎰⎰⎰≤++≤DDDd d y x d σσσ4)1(,即 ⎰⎰≤++≤Dd y x 8)1(2σ.(4)⎰⎰++=Dd y x I σ)94(22, 其中D ={(x , y )| x 2+y 2 ≤4}.解 在D 上, 因为0≤x 2+y 2≤4, 所以 9≤x 2+4y 2+9≤4(x 2+y 2)+9≤25. 于是⎰⎰⎰⎰⎰⎰≤++≤DDDd d y x d σσσ25)94(922, ⎰⎰⋅⋅≤++≤Dd y x 2222225)94(29πσπ,即 ⎰⎰≤++≤Dd y x πσπ100)94(3622.习题9-21. 计算下列二重积分:(1)⎰⎰+Dd y x σ)(22, 其中D ={(x , y )| |x |≤1, |y |≤1};解 积分区域可表示为D : -1≤x ≤1, -1≤y ≤1. 于是⎰⎰+Dd y x σ)(22y d y x dx ⎰⎰--+=111122)(x d y y x ⎰--+=111132]31[ x d x ⎰-+=112)312(113]3232[-+=x x 38=. (2)⎰⎰+Dd y x σ)23(, 其中D 是由两坐标轴及直线x +y =2所围成的闭区域:解 积分区域可表示为D : 0≤x ≤2, 0≤y ≤2-x . 于是⎰⎰+Dd y x σ)23(y d y x dx x⎰⎰-+=2020)23(dx y xy x ⎰-+=222]3[ dx x x ⎰-+=202)224(0232]324[x x x -+=320=. (3)⎰⎰++Dd y y x x σ)3(223, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤1};解⎰⎰++Dd y y x x σ)3(323⎰⎰++=132310)3(dx y y x x dy ⎰++=1001334]4[dy x y y x x⎰++=103)41(dy y y 0142]424[y y y ++=1412141=++=.(4)⎰⎰+Dd y x x σ)cos(, 其中D 是顶点分别为(0, 0), (π, 0), 和(π, π)的三角形闭区域.解 积分区域可表示为D : 0≤x ≤π, 0≤y ≤x . 于是,⎰⎰+Dd y x x σ)cos(⎰⎰+=x dy y x xdx 00)cos(π⎰+=π0)][sin(dx y x x x⎰-=π0)s i n 2(s i n dx x x x ⎰--=π0)c o s 2c o s 21(x x xd+--=0|)c o s 2c o s 21(πx x x dx x x ⎰-π0)cos 2cos 21(π23-=. .2. 画出积分区域, 并计算下列二重积分:(1)⎰⎰Dd y x σ, 其中D 是由两条抛物线x y =, 2x y =所围成的闭区域;解 积分区域图如, 并且D ={(x , y )| 0≤x ≤1, x y x ≤≤2}. 于是⎰⎰D d y xσ⎰⎰=102dy y x dx xx⎰=10223]32[dx y x x x 556)3232(1047=-=⎰dx x x .(2)⎰⎰Dd xy σ2, 其中D 是由圆周x 2+y 2=4及y 轴所围成的右半闭区域; 解 积分区域图如, 并且D ={(x , y )| -2≤y ≤2, 240y x -≤≤}. 于是⎰⎰⎰⎰⎰----=22402240222222]21[dy y x dx xy dy d xy y y Dσ1564]10132[)212(22225342=-=-=--⎰y y dy y y . (3)⎰⎰+Dy x d e σ, 其中D ={(x , y )| |x |+|y |≤1};解 积分区域图如, 并且D ={(x , y )| -1≤x ≤0, -x -1≤y ≤x +1}⋃{(x , y )| 0≤x ≤1, x -1≤y ≤-x +1}. 于是⎰⎰⎰⎰⎰⎰+--+---++=1110111x x y x x x y x Dy x dy e dx e dy e dx e d e σ⎰⎰+---+--+=10110111][][dy e e dx e e x x y x x x y x ⎰⎰---+-+-=11201112)()(dx e e dx e ex x 101201112]21[]21[---+-+-=x x e ex x e e =e -e -1. (4)⎰⎰-+Dd x y x σ)(22, 其中D 是由直线y =2, y =x 及y =2x 轴所围成的闭区域.解 积分区域图如, 并且D ={(x , y )| 0≤y ≤2, y x y ≤≤21}. 于是⎰⎰⎰⎰⎰-+=-+=-+2022232222022]2131[)()(dy x x y x dx x y x dy d x y x y y y y Dσ613)832419(2023=-=⎰dy y y .3. 如果二重积分⎰⎰Ddxdy y x f ),(的被积函数f (x , y )是两个函数f 1(x )及f 2(y )的乘积,即f (x , y )= f 1(x )⋅f 2(y ), 积分区域D ={(x , y )| a ≤x ≤b , c ≤ y ≤d }, 证明这个二重积分等于两个单积分的乘积, 即 ])([])([)()(2121dy y f dx x f dxdy y f x f dcb aD⎰⎰⎰⎰⋅=⋅证明dx dy y f x f dy y f x f dx dxdy y f x f dcb a d cb aD⎰⎰⎰⎰⎰⎰⋅=⋅=⋅])()([)()()()(212121,而⎰⎰=⋅dcdc dy y f x f dy y f x f )()()()(2121,故 dx dy y f x f dxdy y f x f b a dcD⎰⎰⎰⎰=⋅])()([)()(2121.由于⎰dcdy y f )(2的值是一常数, 因而可提到积分号的外面, 于是得])([])([)()(2121dy y f dx x f dxdy y f x f dcb a D⎰⎰⎰⎰⋅=⋅4. 化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分), 其中积分区域D 是:(1)由直线y =x 及抛物线y 2=4x 所围成的闭区域; 解积分区域如图所示, 并且D ={(x , y )|x y x x 2 ,40≤≤≤≤}, 或D ={(x , y )| y x y y ≤≤≤≤241 ,40},所以 ⎰⎰=xxdy y x f dx I 240),(或⎰⎰=yy dx y x f dy I 4402),(.(2)由x 轴及半圆周x 2+y 2=r 2(y ≥0)所围成的闭区域; 解积分区域如图所示, 并且D ={(x , y )|220 ,x r y r x r -≤≤≤≤-},或D ={(x , y )| 2222 ,0y r x y r r y -≤≤--≤≤}, 所以 ⎰⎰--=220),(x r rr dy y x f dx I , 或⎰⎰---=2222),(0y r y r r dx y x f dy I .(3)由直线y =x , x =2及双曲线x y 1=(x >0)所围成的闭区域;解积分区域如图所示, 并且 D ={(x , y )|x y xx ≤≤≤≤1 ,21},或D ={(x , y )| 21 ,121≤≤-≤≤x y y }⋃{(x , y )|2 ,21≤≤≤≤x y y },所以 ⎰⎰=x xdy y x f dx I 1),(21, 或⎰⎰⎰⎰+=22121121),(),(yydx y x f dy dx y x f dy I .(4)环形闭区域{(x , y )| 1≤x 2+y 2≤4}.解 如图所示, 用直线x =-1和x =1可将积分区域D 分成四部分, 分别记做D 1, D 2,D 3, D 4. 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ⎰⎰⎰⎰--------+=222244411112),(),(x x x x dy y x f dx dy y x f dx ⎰⎰⎰⎰--------++222214442111),(),(x x x x dy y x f dx dy y x f dx用直线y =1, 和y =-1可将积分区域D 分成四部分, 分别记做D 1, D 2, D 3, D 4, 如图所示. 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ⎰⎰⎰⎰--------+=222244141121),(),(y y y y dx y x f dy dx y x f dy⎰⎰⎰⎰--------++222241441211),(),(y y y y dx y x f dy dx y x f dy5. 设f (x , y )在D 上连续, 其中D 是由直线y =x 、y =a 及x =b (b >a )围成的闭区域, 证明:⎰⎰⎰⎰=bybaxabadx y x f dy dy y x f dx ),(),(.证明 积分区域如图所示, 并且积分区域可表示为 D ={(x , y )|a ≤x ≤b , a ≤y ≤x }, 或D ={(x , y )|a ≤y ≤b , y ≤x ≤b }. 于是⎰⎰Dd y x f σ),(⎰⎰=x a b a dy y x f dx ),(, 或⎰⎰Dd y x f σ),(⎰⎰=by b a dx y x f dy ),(.因此⎰⎰⎰⎰=byb ax abadx y x f dy dy y x f dx ),(),(.6. 改换下列二次积分的积分次序: (1)⎰⎰ydx y x f dy 01),(;解 由根据积分限可得积分区域D ={(x , y )|0≤y ≤1, 0≤x ≤y }, 如图. 因为积分区域还可以表示为D ={(x , y )|0≤x ≤1, x ≤y ≤1}, 所以⎰⎰⎰⎰=11010),(),(xy dy y x f dx dx y x f dy .(2)⎰⎰yydx y x f dy 222),(;解 由根据积分限可得积分区域D ={(x , y )|0≤y ≤2, y 2≤x ≤2y }, 如图. 因为积分区域还可以表示为D ={(x , y )|0≤x ≤4, x y x ≤≤2}, 所以⎰⎰y ydx y x f dy 222),(⎰⎰=402),(xx dy y x f dx .(3)⎰⎰---221110),(y y dx y x f dy ;解 由根据积分限可得积分区域}11 ,10|),{(22y x y y y x D -≤≤--≤≤=, 如图. 因为积分区域还可以表示为}10 ,11|),{(2x y x y x D -≤≤≤≤-=, 所以⎰⎰⎰⎰-----=22210111110),(),(x y ydy y x f dx dx y x f dy(4)⎰⎰--21222),(x x xdy y x f dx ;解 由根据积分限可得积分区域}22 ,21|),{(2x x y x x y x D -≤≤-≤≤=, 如图. 因为积分区域还可以表示为}112 ,10|),{(2y x y y y x D -+≤≤-≤≤=, 所以⎰⎰--21222),(x x xdy y x f dx ⎰⎰-+-=11122),(y ydx y x f dy .(5)⎰⎰e xdy y x f dx 1ln 0),(;解 由根据积分限可得积分区域D ={(x , y )|1≤x ≤e , 0≤y ≤ln x }, 如图. 因为积分区域还可以表示为D ={(x , y )|0≤y ≤1, e y ≤x ≤ e }, 所以⎰⎰exdy y x f dx 1ln 0),(⎰⎰=10),(ee y dx y xf dy(6)⎰⎰-xx dy y x f dx sin 2sin0),(π(其中a ≥0).解 由根据积分限可得积分区域}sin 2sin ,0|),{(x y x x y x D ≤≤-≤≤=π, 如图.因为积分区域还可以表示为}a r c s i n 2 ,01|),{(π≤≤-≤≤-=x y y y x D }a r c s i n a r c s i n ,10|),{(y x y y y x -≤≤≤≤⋃π, 所以⎰⎰⎰⎰⎰⎰----+=yyyxxdx y x f dy dx y x f dy dy y x f dx arcsin arcsin 10arcsin 201sin 2sin 0),(),(),(πππ.7. 设平面薄片所占的闭区域D 由直线x +y =2, y =x 和x 轴所围成, 它的面密度为μ(x , y )=x 2+y 2, 求该薄片的质量. 解 如图, 该薄片的质量为⎰⎰=Dd y x M σμ),(⎰⎰+=Dd y x σ)(22⎰⎰-+=10222)(yydx y x dy⎰-+-=10323]372)2(31[dy y y y 34=.8. 计算由四个平面x =0, y =0, x =1, y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体的体积.解 四个平面所围成的立体如图, 所求体积为⎰⎰--=Ddxdy y x V )326(⎰⎰--=110)326(dy y x dx⎰--=10102]2326[dx y xy y ⎰=-=1027)229(dx x .9. 求由平面x =0, y =0, x +y =1所围成的柱体被平面z =0及抛物面x 2+y 2=6-z 截得的立体的体积.解 立体在xOy 面上的投影区域为D ={(x , y )|0≤x ≤1, 0≤y ≤1-x }, 所求立体的体积为以曲面z =6-x 2-y 2为顶, 以区域D 为底的曲顶柱体的体积, 即⎰⎰--=Dd y x V σ)6(22⎰⎰---=101022)6(xdy y x dx 617=.10. 求由曲面z =x 2+2y 2及z =6-2x 2-y 2所围成的立体的体积.解 由⎩⎨⎧--=+=2222262y x z y x z 消去z , 得x 2+2y 2=6-2x 2-y 2, 即x 2+y 2=2, 故立体在x O y 面上的投影区域为x 2+y 2≤2, 因为积分区域关于x 及y 轴均对称, 并且被积函数关于x , y都是偶函数, 所以⎰⎰+---=Dd y x y x V σ)]2()26[(2222⎰⎰--=Dd y x σ)336(22⎰⎰---=2202220)2(12x dy y x dx π6)2(8232=-=⎰dx x .11. 画出积分区域, 把积分⎰⎰Ddxdy y x f ),(表示为极坐标形式的二次积分, 其中积分区域D 是:(1){(x , y )| x 2+y 2≤a 2}(a >0);解积分区域D 如图. 因为D ={(ρ, θ)|0≤θ≤2π, 0≤ρ≤a }, 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ200)s i n ,c o s (d f d a. (2){(x , y )|x 2+y 2≤2x };解 积分区域D 如图. 因为}cos 20 ,22|),{(θρπθπθρ≤≤≤≤-=D , 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰-=22c o s20)s i n ,co s (ππθρρθρθρθd f d .(3){(x , y )| a 2≤x 2+y 2≤b 2}, 其中0<a <b ;解 积分区域D 如图. 因为D ={(ρ, θ)|0≤θ≤2π, a ≤ρ≤b }, 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ20)s i n ,c o s (bad f d .(4){(x , y )| 0≤y ≤1-x , 0≤x ≤1}.解 积分区域D 如图. 因为}sin cos 10 ,20|),{(θθρπθθρ+≤≤≤≤=D , 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰+=θθρρθρθρθπs i nc o s 1020)s i n ,c o s (d f d .12. 化下列二次积分为极坐标形式的二次积分: (1)⎰⎰101),(dy y x f dx ;解 积分区域D 如图所示. 因为}c s c 0 ,24|),{(}sec 0 ,40|),{(θρπθπθρθρπθθρ≤≤≤≤⋃≤≤≤≤=D ,所以⎰⎰⎰⎰⎰⎰==DDd d f d y x f dy y x f dx θρρθρθρσ)sin ,cos (),(),(0⎰⎰=4s e c)s i n ,c o s (πθρρθρθρθd f d ⎰⎰+24c s c)s i n ,c o s (ππθρρθρθρθd f d .(2)⎰⎰+xxdy y x f dx 32220)(;解 积分区域D 如图所示, 并且 }s e c 20 ,34|),{(θρπθπθρ≤≤≤≤=D ,所示⎰⎰⎰⎰⎰⎰=+=+xxDDd d f d y x f dy y x f dx 3222220)()()(θρρρσ⎰⎰=34sec 20)(ππθρρρθd f d .(3)⎰⎰--2111),(x xdy y x f dx ;解 积分区域D 如图所示, 并且}1s i n c o s 1 ,20|),{(≤≤+≤≤=ρθθπθθρD ,所以⎰⎰⎰⎰⎰⎰--==10112)sin ,cos (),(),(x xDDd d f d y x f dy y x f dx θρρθρθρσ⎰⎰+=2s i nc o s 11)s i n ,c o s (πθθρρθρθρθd f d(4)⎰⎰210),(x dy y x f dx .解 积分区域D 如图所示, 并且}s e c t a n s e c ,40|),{(θρθθπθθρ≤≤≤≤=D ,所以⎰⎰210),(x dy y x f dx ⎰⎰⎰⎰==DDd d f d y x f θρρθρθρσ)sin ,cos (),(⎰⎰=0s e ct a ns e c )s i n ,c o s (πθθθρρθρθρθd f d13. 把下列积分化为极坐标形式, 并计算积分值: (1)⎰⎰-+2202220)(x ax ady y x dx ;解 积分区域D 如图所示. 因为}cos 20 ,20|),{(θρπθθρa D ≤≤≤≤=, 所以⎰⎰-+2202220)(x ax ady y x dx ⎰⎰⋅=Dd d θρρρ2⎰⎰⋅=20c o s202πθρρρθa d d ⎰=2044c o s 4πθθd a 443a π=.(2)⎰⎰+dy y x dx 0220;解 积分区域D 如图所示. 因为}sec 0 ,40|),{(θρπθθρa D ≤≤≤≤=, 所以⎰⎰⎰⎰⋅=+Dxad d dy y x dx θρρρ0220⎰⎰⋅=40s e c 0πθρρρθa d d ⎰=4033s e c 3πθθd a )]12ln(2[63++=a .(3)⎰⎰-+xx dyy xdx 221221)(;解 积分区域D 如图所示. 因为}tan sec 0 ,40|),{(θθρπθθρ≤≤≤≤=D , 所以⎰⎰⎰⎰⋅=+--Dxx d d dy y xdx θρρρ212122102)(12t a n s e c 40t a ns e c 02140-==⋅=⎰⎰⎰-πθθπθθθρρρθd d d .(4)⎰⎰-+220220)(y a a dx y x dy .解 积分区域D 如图所示. 因为}0 ,20|),{(a D ≤≤≤≤=ρπθθρ, 所以⎰⎰⎰⎰⋅=+-Dy a ad d dx y x dy θρρρ2022022)(40028a d d aπρρρθπ=⋅=⎰⎰.14. 利用极坐标计算下列各题: (1)⎰⎰+Dy xd e σ22,其中D 是由圆周x 2+y 2=4所围成的闭区域;解 在极坐标下D ={(ρ, θ)|0≤θ≤2π, 0≤ρ≤2}, 所以⎰⎰⎰⎰=+DDy x d d e d e θρρσρ222)1()1(2124420202-=-⋅==⎰⎰e e d e d ππρρθπρ. (2)⎰⎰++Dd y x σ)1ln(22,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰+=++DDd d d y x θρρρσ)1ln()1ln(222)12l n 2(41)12l n 2(212)1l n (2012-=-⋅=+=⎰⎰πρρρθπd d .(3)σd x yDarctan ⎰⎰, 其中D 是由圆周x 2+y 2=4, x 2+y 2=1及直线y =0, y =x 所围成的第一象限内的闭区域.解 在极坐标下}21 ,40|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⎰⎰⋅=⋅=DDDd d d d d xyθρρθθρρθσ)arctan(tan arctan⎰⎰⋅=021πρρθθd d ⎰⎰==40321643ππρρθθd d . 15. 选用适当的坐标计算下列各题:(1)dxdy yx D 22⎰⎰,其中D 是由直线x =2,y =x 及曲线xy =1所围成的闭区域.解 因为积分区域可表示为}1 ,21|),{(x y xx y x D ≤≤≤≤=, 所以d x d y yx D 22⎰⎰dy y dx x x x ⎰⎰=211221⎰-=213)(dx x x 49=.(2)⎰⎰++--Dd yx y x σ222211, 其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⋅+-=++--DD d d d y x y x θρρρρσ2222221111)2(811102220-=+-=⎰⎰ππρρρρθπd d .(3)⎰⎰+Dd y x σ)(22, 其中D 是由直线y =x , y =x +a , y =a , y =3a (a >0)所围成的闭区域;解 因为积分区域可表示为D ={(x , y )|a ≤y ≤3a , y -a ≤x ≤y }, 所以⎰⎰+D d y x σ)(22⎰⎰-+=a a ya y dx y x dy 322)(4332214)312(a dy a y a ay a a =+-=⎰.(4)σd y x D22+⎰⎰, 其中D 是圆环形闭区域{(x , y )| a 2≤x 2+y 2≤b 2}.解 在极坐标下D ={(ρ, θ)|0≤θ≤2π, a ≤ρ≤b }, 所以 σd y x D22+⎰⎰)(3233202a b dr r d b a -==⎰⎰πθπ.16. 设平面薄片所占的闭区域D 由螺线ρ=2θ上一段弧(20πθ≤≤)与直线2πθ=所围成, 它的面密度为μ(x , y )=x 2+y 2. 求这薄片的质量.解 区域如图所示. 在极坐标下}20 ,20|),{(θρπθθρ≤≤≤≤=D , 所以所求质量⎰⎰⎰⎰⋅==Dd d d y x M 20202),(πθρρρθσμ⎰==254404ππθθd .17. 求由平面y =0, y =kx (k >0), z =0以及球心在原点、半径为R 的上半球面所围成的在第一卦限内的立体的体积.解 此立体在xOy 面上的投影区域D ={(x , y )|0≤θ≤arctan k , 0≤ρ≤R }.⎰⎰--=D dxdy y x R V 222k R d R d k Ra r c t a n313a r c t a n 0022=-=⎰⎰ρρρθ. 18. 计算以xOy 平面上圆域x 2+y 2=ax 围成的闭区域为底, 而以曲面z =x 2+y 2为顶的曲顶柱体的体积.解 曲顶柱体在xOy 面上的投影区域为D ={(x , y )|x 2+y 2≤ax }. 在极坐标下}cos 0 ,22|),{(θρπθπθρa D ≤≤≤≤-=, 所以⎰⎰≤++=axy x dxdy y xV 22)(22πθθρρρθππθππ422c o s22442323cos 4a d a d d a ==⋅=⎰⎰⎰--. 习题9-31. 化三重积分dxdydz z y x f I ),,(Ω⎰⎰⎰=为三次积分, 其中积分区域Ω分别是:(1)由双曲抛物面xy =z 及平面x +y -1=0, z =0所围成的闭区域; 解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤xy , 0≤y ≤1-x , 0≤x ≤1}, 于是 ⎰⎰⎰-=xyx dz z y x f dy dx I 01010),,(.(2)由曲面z =x 2+y 2及平面z =1所围成的闭区域; 解 积分区域可表示为}11 ,11 ,1|),,{(2222≤≤--≤≤--≤≤+=Ωx x y x z y x z y x , 于是 ⎰⎰⎰+----=111112222),,(y x x x dz z y x f dy dx I .(3)由曲面z =x 2+2y 2及z =2-x 2所围成的闭区域;解 曲积分区域可表示为}11 ,11 ,22|),,{(22222≤≤--≤≤---≤≤+=Ωx x y x x z y x z y x , 于是 ⎰⎰⎰-+----=22222221111),,(x y x x x dz z y x f dy dx I .提示: 曲面z =x 2+2y 2与z =2-x 2的交线在xOy 面上的投影曲线为x 2+y 2=1.(4)由曲面cz =xy (c >0), 12222=+by a x , z =0所围成的在第一卦限内的闭区域.解 曲积分区域可表示为}0 ,0 ,0|),,{(22a x x a a b y c xyz z y x ≤≤-≤≤≤≤=Ω,于是 ⎰⎰⎰-=xy abdz z y x f dy dx I x a a0),,(22.提示: 区域Ω的上边界曲面为曲面c z =xy , 下边界曲面为平面z =0.2. 设有一物体, 占有空间闭区域Ω={(x , y , z )|0≤x ≤1, 0≤y ≤1, 0≤z ≤1}, 在点(x , y , z )处的密度为ρ(x , y , z )=x +y +z , 计算该物体的质量.解 ⎰⎰⎰⎰⎰⎰++==Ω101010)(dz z y x dy dx dxdydz M ρ⎰⎰++=1010)21(dy y x dx⎰⎰+=++=1010102)1(]2121[dx x dx y y xy 23)1(21102=+=x .3. 如果三重积分dxdydz z y x f ),,(Ω⎰⎰⎰的被积函数f (x , y , z )是三个函数f 1(x )、f 2(y )、f 3(z )的乘积, 即f (x , y , z )= f 1(x )⋅f 2(y )⋅f 3(z ), 积分区域Ω={(x , y , z )|a ≤x ≤b , c ≤y ≤d , l ≤z ≤m }, 证明这个三重积分等于三个单积分的乘积, 即⎰⎰⎰⎰⎰⎰=Ωmldcb a dz z f dy y f dx x f dxdydz z f y f x f )()()()()()(321321.证明dxdydz z f y f x f )()()(321Ω⎰⎰⎰dx dy dz z f y f x f b a d c ml]))()()(([321⎰⎰⎰=dx dy dz z f y f x f b a d c ml ]))()()(([321⎰⎰⎰=⎰⎰⎰=mldcbadx dy y f dz z f x f )])()()()([(231 dx x f dy y f dz z f b a mldc)]())()()([(123⎰⎰⎰=⎰⎰⎰=dcbamldx x f dy y f dz z f )())()()((123 ⎰⎰⎰=dcmlbadz z f dy y f dx x f )()()(321.4. 计算dxdydz z xy 32Ω⎰⎰⎰, 其中Ω是由曲面z =xy , 与平面y =x , x =1和z =0所围成的闭区域.解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤xy , 0≤y ≤x , 0≤x ≤1}, 于是d x d y d z z xy 32Ω⎰⎰⎰⎰⎰⎰=xy x dz z dy y xdx 030210⎰⎰=xxy dy z y xdx 004210]4[ ⎰⎰=x dy y dx x 051054136412811012==⎰dx x .5. 计算3)1(z y x dxdydz+++Ω⎰⎰⎰, 其中Ω为平面x =0, y =0, z =0, x +y +z =1所围成的四面体. 解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤1-x -y , 0≤y ≤1-x , 0≤x ≤1},于是 3)1(z y x d x d y d z +++Ω⎰⎰⎰⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰--++=x dy y x dx 10210]81)1(21[dx x x ⎰+-+=10]8183)1(21[)852(l n 21-=.提示: ⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰---+++-=xyx dy z y x dx 1010210])1(21[⎰⎰--++=x dy y x dx 10210]81)1(21[ dx y y x x-⎰-++-=1010]81)1(21[dx x x ⎰+-+=10]8183)1(21[ 102]16183)1ln(21[x x x +-+= )852(ln 21-=.6. 计算xyzdxdydz Ω⎰⎰⎰, 其中Ω为球面x 2+y 2+z 2=1及三个坐标面所围成的在第一卦限内的闭区域.解 积分区域可表示为}10 ,10 ,10|),,{(222≤≤-≤≤--≤≤=Ωx x y y x z z y x 于是x y z d x d y d Ω⎰⎰⎰⎰⎰⎰---=222101010x y x x y z d zdy dx ⎰⎰---=210221)1(21x dy y x xy dx ⎰-=1022)1(81dx x x 481=.7. 计算xzdxdydz Ω⎰⎰⎰, 其中Ω是由平面z =0, z =y , y =1以及抛物柱面y =x 2所围成的闭区域.解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤y , x 2≤y ≤1, -1≤x ≤1}, 于是x z d x d y d z Ω⎰⎰⎰⎰⎰⎰-=yx z d z dy xdx 01112⎰⎰-=1211221x dy y xdx0)1(61116=-=⎰-dx x x .8. 计算zdxdydz Ω⎰⎰⎰, 其中Ω是由锥面22y x R h z +=与平面z =h (R >0, h >0)所围成的闭区域.解 当0≤z ≤h 时, 过(0, 0, z )作平行于xOy 面的平面, 截得立体Ω的截面为圆D z :222)(z hR y x =+, 故D z的半径为z h R , 面积为222z h R π, 于是 z d x d y d z Ω⎰⎰⎰=dxdy zdz zD h ⎰⎰⎰0⎰==h h R dz z h R 0223224ππ. 9. 利用柱面坐标计算下列三重积分:(1)zdv Ω⎰⎰⎰, 其中Ω是由曲面222y x z --=及z =x 2+y 2所围成的闭区域;解 在柱面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ρ≤1, 222ρρ-≤≤z , 于是z d v Ω⎰⎰⎰⎰⎰⎰-=122022ρρπρρθz d z d d⎰--=1042)2(212ρρρρπdπρρρρπ127)2(1053=--=⎰d .(2)dv y x )(22+Ω⎰⎰⎰, 其中Ω是由曲面x 2+y 2=2z 及平面z =2所围成的闭区域.解 在柱面坐标下积分区域Ω可表示为0≤θ≤2π, 0≤ρ≤2, 222≤≤z ρ, 于是dv y x)(22+Ω⎰⎰⎰dz d d θρρρ⋅=Ω⎰⎰⎰2⎰⎰⎰=2123202ρπρρθdz d d ⎰⎰-=205320)212(ρρρθπd d ⎰==ππθ2031638d .10. 利用球面坐标计算下列三重积分:(1)dv z y x )(222++Ω⎰⎰⎰, 其中Ω是由球面x 2+y 2+z 2=1所围成的闭区域.解 在球面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ϕ≤π, 0≤r ≤1,于是 dv z y x )(222++Ω⎰⎰⎰θϕϕd d r d r s i n 4⋅=Ω⎰⎰⎰⎰⎰⎰=104020s i n dr r d d ππϕϕθπ54=.(2)zdv Ω⎰⎰⎰, 其中闭区域Ω由不等式x 2+y 2+(z -a )2≤a 2, x 2+y 2≤z 2 所确定.解 在球面坐标下积分区域Ω可表示为 ϕπϕπθc o s 20 ,40 ,20a r ≤≤≤≤≤≤,于是 zdv Ω⎰⎰⎰θϕϕϕd drd r r sin cos 2⋅=Ω⎰⎰⎰⎰⋅=404)c o s 2(41c o s s i n 2πϕϕϕϕπd a4405467c o s si n 8a d a πϕϕϕππ==⎰.11. 选用适当的坐标计算下列三重积分:(1)xydv Ω⎰⎰⎰, 其中Ω为柱面x 2+y 2=1及平面z =1, z =0, x =0, y =0所围成的在第一卦限内的闭区域;解 在柱面坐标下积分区域Ω可表示为 10 ,10 ,20≤≤≤≤≤≤z ρπθ,于是 x y d v Ω⎰⎰⎰dz d d θρρθρθρ⋅⋅=Ω⎰⎰⎰sin cos⎰⎰⎰==101032081c o s s i n dz d d ρρθθθπ.别解: 用直角坐标计算⎰⎰⎰Ωx y d v ⎰⎰⎰-=1010102dz ydy xdx x ⎰⎰-=21010x y d yx d x⎰-=103)22(dx x x 81]84[1042=-=x x . (2)dv z y x 222++Ω⎰⎰⎰, 其中Ω是由球面x 2+y 2+z 2=z 所围成的闭区域;解 在球面坐标下积分区域Ω可表示为 ϕπϕπθc o s 0 ,20 ,20≤≤≤≤≤≤r ,于是dv z y x 222++Ω⎰⎰⎰⎰⎰⎰⋅=ϕππϕϕθc o s22020s i n dr r r d d10cos 41sin 2204πϕϕϕππ=⋅=⎰d .(3)dv y x )(22+Ω⎰⎰⎰, 其中Ω是由曲面4z 2=25(x 2+y 2)及平面z =5所围成的闭区域;解 在柱面坐标下积分区域Ω可表示为 525 ,20 ,20≤≤≤≤≤≤z ρρπθ,于是dv y x )(22+Ω⎰⎰⎰⎰⎰⎰=5252320ρπρρθdz d d πρρρπ8)255(2203=-=⎰d . (4)dv y x )(22+Ω⎰⎰⎰, 其中闭区域Ω由不等式A z y x a ≤++≤<2220, z ≥0所确定.解 在球面坐标下积分区域Ω可表示为A r a ≤≤≤≤≤≤ ,20 ,20πϕπθ,于是 dv y x )(22+Ω⎰⎰⎰θϕϕθϕϕϕd d r d r r r s i n )s i n s i n c o s s i n(2222222+=Ω⎰⎰⎰)(154sin 55420320a A dr r d d Aa -==⎰⎰⎰πϕϕθππ.12. 利用三重积分计算下列由曲面所围成的立体的体积: (1)z =6-x 2-y 2及22y x z +=;解 在柱面坐标下积分区域Ω可表示为 0≤θ≤2 π, 0≤ρ≤2, ρ≤z ≤6-ρ2,于是 dz d d dv V θρρΩΩ⎰⎰⎰⎰⎰⎰==⎰⎰⎰-=262020ρρπρρθdz d d⎰=--=2032332)6(2πρρρρπd .(2)x 2+y 2+z 2=2az (a >0)及x 2+y 2=z 2(含有z 轴的部分); 解 在球面坐标下积分区域Ω可表示为ϕπϕπθc o s 20 ,40 ,20a r ≤≤≤≤≤≤,于是 θϕϕd d r d r dv V sin 2ΩΩ⎰⎰⎰⎰⎰⎰==⎰⎰⎰=ϕππϕϕθc o s2024020si n a dr r d d3033s i n c o s 382a d a πϕϕϕππ==⎰. (3)22y x z +=及z =x 2+y 2;解 在柱面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ρ≤1, ρ2≤z ≤ρ,于是 6)(2103210202πρρρπρρθρρπ=-===⎰⎰⎰⎰⎰⎰⎰Ωd dz d d dv V .(4)225y x z --=及x 2+y 2=4z .解 在柱面坐标下积分区域Ω可表示为 22541 ,20 ,20ρρρπθ-≤≤≤≤≤≤z ,于是 ⎰⎰⎰-=225412020ρρπρρθdz d d V)455(32)45(22022-=--=⎰πρρρρπd .13. 球心在原点、半径为R 的球体, 在其上任意一点的密度的大小与这点到球心的距离成正比, 求这球体的质量.解 密度函数为222),,(z y x k z y x ++=ρ. 在球面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ϕ≤π, 0≤r ≤R ,于是 dv z y x k M 222++=Ω⎰⎰⎰400220s i n R k dr r kr d d Rπϕϕθππ=⋅=⎰⎰⎰.习题9-41. 求球面x 2+y 2+z 2=a 2含在圆柱面x 2+y 2=ax 内部的那部分面积. 解 位于柱面内的部分球面有两块, 其面积是相同的.由曲面方程z =222y x a --得222y x a x x z ---=∂∂, 222y x a y y z ---=∂∂,于是 dxdy yz x z A axy x ⎰⎰≤+∂∂+∂∂+=2222)()(12dxdy yx a a axy x ⎰⎰≤+--=222222⎰⎰-=20c o s2214πθρρρθa d a d a )2(2)s i n(4220-=-=⎰πθθπa d a a a . 2. 求锥面z =22y x +被柱面z 2=2x 所割下的部分的曲面的面积.解 由z =22y x +和z 2=2x 两式消z 得x 2+y 2=2x , 于是所求曲面在xOy 面上的投影区域D 为x 2+y 2≤2x .由曲面方程22y x +得22y x x x z +=∂∂, 22y x y y z +=∂∂,于是 dxdy yz x z A y x ⎰⎰≤+-∂∂+∂∂+=1)1(2222)()(1π221)1(22==⎰⎰≤+-dxdy y x .3. 求底面半径相同的两个直交柱面x 2+y 2=R 2及x 2+z 2=R 2所围立体的表面积. 解 设A 1为曲面22x R z -=相应于区域D : x 2+y 2≤R 2上的面积. 则所求表面积为A =4A 1.d x d y y z x z A D⎰⎰∂∂+∂∂+=22)()(14d x d yx R x D⎰⎰+--+=22220)(14 d x d y x R R D⎰⎰-=2242221681422R dx R dy x R dx R R R R R x R x R ==-=⎰⎰⎰-------. 4. 设薄片所占的闭区域D 如下, 求均匀薄片的质心:(1)D 由px y 2=, x =x 0, y =0所围成;解 令密度为μ=1.因为区域D 可表示为px y x x 20 ,00≤≤≤≤, 所以 3002023220px dx px dy dx dxdy A x x px D====⎰⎰⎰⎰⎰, 0002053211100x dx px x A xdy dx A xdxdy A x x x px D====⎰⎰⎰⎰⎰,000208311100y p x d x A y d y dx A ydxdy A y x x px D====⎰⎰⎰⎰⎰,所求质心为)83 ,53(00y x(2)D 是半椭圆形闭区域}0 ,1 |),{(2222≥≤+y by a x y x ; 解 令密度为μ=1. 因为闭区域D 对称于y 轴, 所以0=x . ab dxdy A Dπ21==⎰⎰(椭圆的面积),π34)(21112222022b dx x a a b A ydy dx A ydxdy A y aa aa x a Dab=-⋅===⎰⎰⎰⎰⎰---, 所求质心为)34 ,0(πb .(3)D 是介于两个圆r =a cos θ, r =b cos θ(0<a <b )之间的闭区域. 解 令密度为μ=1. 由对称性可知0=y . )(4)2()2(2222a b a b d x d y A D-=-==⎰⎰πππ(两圆面积的差),)(2c o s 21220c o s c o s b a ab b a dr r r d A xdxdy A x b a D+++=⋅⋅==⎰⎰⎰⎰πθθθθ, 所求质心是)0 ,)(2(22b a ab b a +++. 5. 设平面薄片所占的闭区域D 由抛物线y =x 2及直线y =x 所围成, 它在点(x , y )处的面密度μ(x , y )=x 2y , 求该薄片的质心.解 351)(21),(10641022=-===⎰⎰⎰⎰⎰dx x x ydy x dx dxdy y x M x x Dμ4835)(2111),(110751032=-===⎰⎰⎰⎰⎰dx x x M ydy x dx M dxdy y x x M x x x Dμ,5435)(3111),(1108510222=-===⎰⎰⎰⎰⎰dx x x M dy y x dx M dxdy y x y M y x x Dμ,质心坐标为)5435 ,4835(. 6. 设有一等腰直角三角形薄片, 腰长为a , 各点处的面密度等于该点到直角顶点的距离的平方, 求这薄片的质心.解 建立坐标系, 使薄片在第一象限, 且直角边在坐标轴上. 薄片上点(x , y )处的函数为μ=x 2+y 2. 由对称性可知y x =.4022061)(),(a dy y x dx dxdy y x M xa a D=+==⎰⎰⎰⎰-μ,a dy y x xdx M dxdy y x x M y x xa a D52)(1),(10220=+===⎰⎰⎰⎰-μ,薄片的质心坐标为)52 ,52(a a .7. 利用三重积分计算下列由曲面所围成立体的质心(设密度ρ=1): (1)z 2=x 2+y 2, z =1;解 由对称性可知, 重心在z 轴上, 故0==y x . π31==⎰⎰⎰Ωdv V (圆锥的体积),431120101===⎰⎰⎰⎰⎰⎰Ωπθr zdz rdr d V zdv V z ,所求立体的质心为)43 ,0 ,0(. (2)222y x A z --=, 222y x a z --=(A >a >0), z =0; 解 由对称性可知, 重心在z 轴上, 故0==y x .)(3232323333a A a A dv V -=-==⎰⎰⎰Ωπππ(两个半球体体积的差),)(8)(3c o s s i n 1c o s s i n 133442000332a A a A dr r d d V d drd r V z A --===⎰⎰⎰⎰⎰⎰Ωππϕϕϕθθϕϕϕ, 所求立体的质心为))(8)(3 ,0 ,0(3344a A a A --.(3)z =x 2+y 2, x +y =a , x =0, y =0, z =0.解 ⎰⎰⎰-+=a xa y x dz dy dx V 0022⎰⎰-+=a xa dy y x dx 022)(⎰-+-=adx x a x a x 032])(31)([461a =,⎰⎰⎰Ω=x d v V x 1a a a dz dy xdx V axa y x 52611511450022===⎰⎰⎰-+,a x y 52==,⎰⎰⎰Ω=z d v V z 1⎰⎰⎰-+=a x a y x z d zdy dx V 0002212307a =, 所以立体的重心为)307,52,52(2a a a .8. 设球体占有闭区域Ω={(x , y , z )|x 2+y 2+z 2≤2Rz }, 它在内部各点的密度的大小等于该点到坐标原点的距离的平方, 试求这球体的质心.解 球体密度为ρ=x 2+y 2+z 2. 由对称性可知质心在z 轴上, 即0==y x . 在球面坐标下Ω可表示为: ϕπϕπθcos 20 ,20 ,20R r ≤≤≤≤≤≤, 于是⎰⎰⎰⎰⎰⎰⋅==Ωππϕϕϕθρ2020cos 2022sin R dr r r d d dv M⎰=2055c o s s i n 5322πϕϕϕπd R 51532R π=,⎰⎰⎰⎰⎰⎰Ω==ππϕϕϕϕθρ2020cos 205cos sin 11R dr r d d M zdv Mz R r R d R M 45153238cos sin 6642562076===⎰ππϕϕϕππ,故球体的质心为)45 ,0 ,0(R .9. 设均匀薄片(面密度为常数1)所占闭区域D 如下, 求指定的转动惯量:(1)}1 |),{(2222≤+=by a x y x D , 求I y ; 解 积分区域D 可表示为22 ,x a ab y x a a b a x a -≤≤--≤≤-,于是 ⎰⎰⎰⎰⎰------===aa x a a bx a ab aaDy dx x a x a b dy dx x dxdy x I 2222222222b a 341π=.提示: 4202422282sin 2 sina tdt a t a x dx x a x aa ππ==-⎰⎰-. (2)D 由抛物线x y 292=与直线x =2所围成, 求I x 和I y ;解 积分区域可表示为2/32/3 ,20x y x x ≤≤-≤≤,于是 57222273220232/32/32202====⎰⎰⎰⎰⎰-dx x dy y dx dxdy y I Dx x x , 796262252/32/32022====⎰⎰⎰⎰⎰-dx x dy dx x dxdy x I Dx x y . (3)D 为矩形闭区域{(x , y )|0≤x ≤a , 0≤y ≤b }, 求I x 和I y .解 331330202ab b a dy y dx dxdy y I Db a x =⋅===⎰⎰⎰⎰,331330022b a b a dy dx x dxdy x I Dba y =⋅===⎰⎰⎰⎰.10. 已知均匀矩形板(面密度为常量μ)的长和宽分别为b 和h , 计算此矩形板对于通过其形心且分别与一边平行的两轴的转动惯量.。
高等数学第六版(同济版)第九章复习资料LT第九章 多元函数微分法及其应用引入:在上册书中,我们学习了一元函数微积分学,所讨论的对象都只有一个自变量的函数,而在实际应用中,研究的问题往往要涉及多方面的因素,反映在数量上就是一个变量要依赖几个自变量,即数学上的多元函数,从这节课开始,我们进入多元函数微积分学的学习阶段.先来学习多元函数微分学.由于从一元函数到二元函数,单与多的差异已能充分体现,我们由二元函数入手来研究多元函数微分学,然后把相关概念及性质推广到三元、四元直至n 元函数上去.第一节 多元函数的基本概念一、平面点集的相关概念1. 平面点集:),|}(),{(y x y x E =具有性质}P},|}),{(2R y R x y x R R R E ∈∈=⨯=⊂例如:}|||{}|}),{(222r OP P r y x y x C <=<+=,其中点P 表示点),(y x . 2. 邻域:2000),(R y x P ∈.(1). 邻域:})()()(),{(}||{),(20202000δδδ<-+-+-=<=z z y y x x y x P P P P U (2). 去心邻域:)(}||0{),(000P U P P P P U oo∧=<<=δδ 3. 坐标面上的点P 与平面点集E 的关系:22,R E R P ⊂∈ (1). 内点:若0>∃δ,使E P U ⊂),(δ,则称P 为E 的内点. (2). 外点:若0>∃δ,使Φδ=⋂E P U ),(,则称P 为E 的外点.(3). 边界点:若0>∀δ,Φδ≠⋂E P U ),(,且E P U ⊄),(δ,则称P 为E 的边界点.边界:E 的边界点的全体称为它的边界,记作E ∂. (4). 聚点:若0>∀δ,Φδ≠⋂E P U o),(,则称P 为E 的聚点.导集:E 的聚点的全体称为它的导集.注:1°. 若P 为E 的聚点,则P 可以属于E ,也可以不属于E .2°. 内点一定是聚点;外点一定不是聚点;边界点也不总是聚点,如孤立的边界点. 例如:}21),{(221≤+<=y x y x E ;)}0,0{(}21),{(222⋃≤+<=y x y x E . 4. 一些常用的平面点集:(1). 开集:若点集E 的点都是其内点,则称E 为开集.(2). 闭集:若点集E 的边界E E ⊂∂,则称E 为闭集. (开集加边界)(3). 连通集:若E 中任何两点都可用属于E 的折线连接,则称E 为连通集. (4). 开区域:连通的开集称为开区域,也称为区域. (5). 闭区域:开区域加上其边界称为闭区域.例如:}21),{(221≤+<=y x y x E 为区域. }21),{(222≤+≤=y x y x E 为闭区域. (6). 有界集:若0>∃r ,使),(r O U E ⊂,则称E 为有界集. (7). 无界集:若0>∀r ,使),(r O U E ⊄,则称E 为无界集.二、n 维空间:对取定的自然数n ,称n 元数组),,,(21n x x x 的全体为n 维空间,记为n R . 注:前述的邻域、区域等相关概念可推广到n 维空间. 三、多元函数的概念 1. 定义:.y x f z ↓↓↓=),(,或)(P f z =,其中D y x P ∈),(.因 映 自 变 变 量 射 量定义域:D .值 域:R D y x y x f z z D f ⊂∈==}),(),,({)(.注:可推广:n 元函数:),,,(21n x x x f u =,n n R D x x x ⊂∈),,,(21 . 例: 1.)arcsin(22y x z +=,}1),{(22≤+=y x y x D .2.)ln(y x z +=,}0),{(>+=y x y x D .2. 几何表示:函数),(y x f z =对应空间直角坐标系中的一张曲面:0),(),,(=-=y x f z z y x F . 四、二元函数的极限1.定义:设函数),(y x f 的定义域为D ,点),(000y x P 为D 的聚点,若R A ∈∃,0>∀ε,0>∃δ,),(),(0δP U D y x P o⋂∈∀,满足ε<-|),(|A y x f ,则称A 为),(y x f 当),(),(000y x P y x P →时的极限,记作A y x f y x y x =→),(lim ),(),(00,称之为),(y x f 的二重极限.例1. 设22221sin )(),(y x y x y x f ++=,求证0),(lim )0,0(),(=→y x f y x .证明:0>∀ε,要使不等式第二节 偏导数引入:在一元函数微分学中,我们研究了一元函数的变化率—导数,并利用导数研究了函数的性态.对于多元函数,我们也要讨论它的变化率,但由于多元函数的自变量不止一个,所以多元函数的变化率要比一元函数的变化率复杂得多.我们还是以二元函数为例来研究多元函数的变化率,先把二元函数中某一自变量暂时固定,再讨论二元函数关于另一个自变量的变化率,这就是数学上的偏导数. 一、偏导数的相关概念1. 偏导数:设函数),(y x f z =在点),(000y x P 的某邻域内有定义,把y 暂时固定在0y ,而x 在0x 处有增量x ∆时,z 相应地有增量),(),(0000y x f y x x f -+∆.若极限xy x f y x x f x ∆∆∆),(),(lim00000-+→存在,则称此极限值为函数),(y x f z =在点),(000y x P 处对x 的偏导数,记为00y y x x xz ==∂∂;0y y x x xf ==∂∂;00y y x x xz ==或),(00y x f x .注: 1°. 0),(),(),(lim),(00000000x x x x y x f x d dx y x f y x x f y x f =→=-+=∆∆∆.2°. 0),(),(),(lim),(00000000y y y y y x f yd dy y x f y y x f y x f =→=-+=∆∆∆.2. 偏导函数:若函数),(y x f z =在区域D 内每一点),(y x 处对x 或y 偏导数存在,则该偏导数称为偏导函数,也简称为偏导数,记为x z x f x z ,,∂∂∂∂或),(y x f x ;y z yfy z ,,∂∂∂∂或),(y x f y .注:可推广:三元函数),,(z y x f u =在点),,(z y x 处对x 的偏导数定义为xz y x f z y x x f z y x f x x ∆∆∆),,(),,(lim),,(0-+=→.例1. 求223y xy x z ++=在)2,1(处的偏导数. 解:先求偏导函数:y x x z 32+=∂∂,y x yz 23+=∂∂. 再求偏导数:821=∂∂==y x xz ,721=∂∂==y x yz .例2. 求y x z 2sin 2=的偏导数. 解:y x x z 2sin 2=∂∂,y x yz 2cos 22=∂∂. 例3. 求222z y x r ++=的偏导数. 解:rxz y x x x r =++=∂∂22222.由轮换对称性可知r y y r =∂∂,r z z r =∂∂. 3. 偏导数的几何意义(1). 偏导数),(00y x f x 是曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(00000y x f y x M 处的切线关于x 轴的斜率.(2). 偏导数),(00y x f y 是曲线⎩⎨⎧==0),(x x y x f z 在点)),(,,(00000y x f y x M 处的切线关于y 轴的斜率.4. 函数偏导数存在与函数连续的关系:函数偏导数存在与函数连续之间无必然的蕴含关系. (1). 函数),(y x f z =在点),(000y x P 处偏导数存在,但它在点),(000y x P 却未必连续.例如:函数⎪⎩⎪⎨⎧=+≠++==0,00,),(222222y x y x y x xy y x f z 在点)0,0(的两个偏导数都存在,即00lim )0,0()0,0(lim)0,0(00==-+=→→x x x x f x f f ∆∆∆∆, 00lim )0,0()0,0(lim)0,0(00==-+=→→y y y yf y f f ∆∆∆∆. 但二重极限),(lim )0,0(),(y x f y x →不存在,故),(y x f z =在点)0,0(不连续.(2). 函数),(y x f z =在点),(000y x P 连续,但它在点),(000y x P 处却未必存在偏导数.例如:函数22),(y x y x f z +==在点)0,0(连续,但它在点)0,0(对x 及y 的偏导数都不存在,这是因为:⎩⎨⎧<->==-+→→0,10,1||lim )0,0()0,0(lim00x x x x x f x f x x ∆∆∆∆∆∆∆∆, ⎩⎨⎧<->==-+→→0,10,1||lim )0,0()0,0(lim00y y y y y f y f x y ∆∆∆∆∆∆∆∆, 即),(y x f z =在点)0,0(对x 及y 的偏导数都不存在. 二、高阶导数1.二阶偏导数:若函数),(y x f z =对x 及y 的偏导数),(y x f x 及),(y x f y 对x 及y 的偏导数也存在,则称它们是函数),(y x f z =的二阶偏导数.记作:),(22y x f x z x z x xx =∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂; ),(22y x f y zy z y yy =∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂ ;(二阶纯偏导数) ),(2y x f y x z x z y xy =∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂;),(2y x f x y z y z x yx =∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂. (二阶混合偏导数) (二阶纯偏导数)注:1°. 一般地,二元函数),(y x f z =的1-n 阶偏导数的偏导数称为它的n 阶偏导数.2°. 二阶以及二阶以上的偏导数统称为高阶导数. 3°. 二元函数),(y x f z =的n 阶偏导数至多有n 2个. 例4. 设13323+--=xy xy y x z ,求它的二阶偏导数. 解:y y y x x z --=∂∂32233;x xy y x yz --=∂∂2392; 2226xy x z =∂∂;xy x yz 182322-=∂∂;196222--=∂∂∂y y x yx z;196222--=∂∂∂y y x xy z.总结:从这一例题,我们看到:x y zy x z ∂∂∂=∂∂∂22,即两个二阶混合偏导数相等,与求导顺序无关.那是不是每个二元函数都有这样的相等的二阶混合偏导数呢?我们说不是的,例如:⎪⎩⎪⎨⎧=+≠++-==0,00,),(22222222y x y x y x y x xy y x f z ,在点)0,0(,有)0,0()0,0(yx xy f f ≠,事实上,yf y f f x x y xy ∆∆∆)0,0()0,0(lim)0,0(0-+=→;xf x f f y y x yx ∆∆∆)0,0()0,0(lim)0,0(0-+=→.而0)0,0()0,0(lim)0,0(0=-+=→xf x f f x x ∆∆∆,0)0,0()0,0(lim)0,0(0=-+=→y f y f f y y ∆∆∆, y xy x y x yx x y f y x f y f x x x -=+-⋅=-+=→→∆∆∆∆∆∆∆∆222200)()(lim ),0(),0(lim ),0(,x y y x y x x y y x f y x f x f y y y =+-⋅=-+=→→∆∆∆∆∆∆∆∆222200)()(lim )0,()0,(lim )0,(.于是,1lim )0,0()0,0(lim)0,0(00-=-=-+=→→yyy f y f f y x x y xy ∆∆∆∆∆∆, 1lim)0,0()0,0(lim)0,0(00==-+=→→xxxf x f f x y y x yx ∆∆∆∆∆∆,即)0,0()0,0(yx xy f f ≠.那么满足什么条件得二元函数的两个二阶混合偏导数与求导顺序无关呢?有下面的定理: 2. 二阶混合偏导数的性质定理:若函数),(y x f z =的两个二阶混合偏导数),(y x f xy 与),(y x f yx 在区域D 内连续,则它们在D 内必相等,即),(),(y x f y x f yx xy =.注:1°. 可推广:高阶混合偏导数在连续的条件下与求导顺序无关.2°. 一般地,若二元函数),(y x f z =的高阶混合偏导数都连续,则),(y x f z =的n 阶偏导数只有1+n 个.第三节 全微分一、全微分的相关概念1. 偏增量:称),(),(y x f y x x f z x -+=∆∆为函数),(y x f z =对x 的偏增量;称),(),(y x f y y x f z y -+=∆∆为函数),(y x f z =对y 的偏增量.2. 偏微分:称x y x f x ∆),(与y y x f y ∆),(为),(y x f z =对x 及y 的偏微分. 注:x y x f y x f y x x f x ∆∆),(),(),(≈-+,y y x f y x f y y x f y ∆∆),(),(),(≈-+.但在实际应用中,往往要知道函数的全面的变化情况,即当自变量有微小增量x ∆、y ∆时,相应的函数增量z ∆与自变量的增量x ∆、y ∆之间的依赖关系,这涉及到函数的全增量. 3. 全增量:称),(),(y x f y y x x f z -++=∆∆∆为函数),(y x f z =在点),(y x P 对应于自变量增量x ∆、y ∆的全增量.一般来讲,计算全增量z ∆是比较困难的,我们总希望像一元函数那样,利用x ∆、y ∆的线性函数来近似代替函数的全增量z ∆,为此,引入了全微分.4. 全微分:若函数),(y x f z =在点),(y x P 的某领域内有定义,且在),(y x P 的全增量),(),(y x f y y x x f z -++=∆∆∆可表示为)(ρ∆∆∆o y B x A z ++=,其中A 、B 不依赖于x ∆、y ∆,而仅与x 、y 有关,22)()(y x ∆∆ρ+=,则称),(y x f z =在点),(y x P 可微分,而称y B x A ∆∆+ 为),(y x f z =在点),(y x P 的全微分,记作dz ,即y B x A dz ∆∆+=.若),(y x f z =在区域D 内每一点都可微分,则称),(y x f z =在D 内可微分. 注:)(ρ∆o z dz -=.我们知道,当一元函数)(x f y =在点x 的微分x A dy ∆=存在时,)('x f A =,那么,当二元函数),(y x f z =在点),(y x P 的全微分y B x A dz ∆∆+=存在时,A 、B 又为何值呢?下面讨论二元函数可微分与连续、可微分与偏导数存在的关系,从中得到A 、B 的值.二、二元函数可微分与偏导数存在、可微分与连续的关系 1.函数可微分的必要条件定理1.若函数),(y x f z =在点),(y x P 可微分,则它在点),(y x P 的两个偏导数),(y x f x 及),(y x f y 必定存在,且),(y x f z =在点),(y x P 的全微分dy y x f dx y x f dz y x ),(),(+=.证明:由于),(y x f z =在点),(y x P 可微分,则有)(ρ∆∆∆o y B x A z ++=,其中22)()(y x ∆∆ρ+=,当0=y ∆时,有|)(|),(),(x o x A y x f y x x f z x ∆∆∆∆+=-+=,从而A xx o x A x y x f y x x f x x =+=-+→→∆∆∆∆∆∆∆|)(|lim ),(),(lim00, 即),(y x f A x =,同理可得),(y x f B y =,于是y y x f x y x f dz y x ∆∆),(),(+=.特殊地,令x y x f =),(,有1),(=y x f x ,0),(=y x f y ,从而有x dx ∆=,同理令y y x f =),(,有0),(=y x f x ,1),(=y x f y ,从而有y dy ∆=.于是有dy y x f dx y x f dz y x ),(),(+=,也称之为二元函数微分学的叠加原理.注:定理说明:函数),(y x f z =可微分,),(y x f z =一定可偏导,且全微分可用偏导数表示. 但反之未必,即偏导数存在,函数),(y x f z =未必可微分.例如:⎪⎩⎪⎨⎧=+≠++==0,00,),(222222y x y x y x xy y x f z 在点)0,0(处两个偏导数都存在,且)0,0()0,0(y x f f =,但),(y x f z =在点)0,0(却不可微分.事实上,假设),(y x f z =在点)0,0(可微分,则y y x f x y x f dz y x ∆∆),(),(+=,又)(ρ∆o dz z +=,从而0→-ρ∆dzz ,当0→ρ时. 而22)()(0)0,0()0,0(y x yx f y x f dz z ∆∆∆∆∆∆∆+⋅=-+++=-,有222)0,0(),(0))()((lim),(),(limy x yx x y x f y x x f y x x ∆∆∆∆∆∆∆∆∆+⋅=-+→→不存在,更谈不上等于0,从而假设不成立,即),(y x f z =在点)0,0(不可微分. 2. 函数可微分的必要条件定理2若函数),(y x f z =在点),(y x P 可微分,则它在点),(y x P 连续.证明:由于),(y x f z =在点),(y x P 可微分,有)(ρ∆∆∆o y B x A z ++=,其中22)()(y x ∆∆ρ+=,于是有,0lim 0=→z ∆ρ.又),(y x f z =的全增量为),(),(y x f y y x x f z -++=∆∆∆,从而0),(),(lim )0,0(),(=-++→y x f y y x x f y x ∆∆∆∆,即),(),(lim)0,0(),(y x f y y x x f y x =++→∆∆∆∆,这说明),(y x f z =在点),(y x P 连续.注:函数连续,未必可微分.例如:函数22),(y x y x f z +==在点)0,0(连续,但由于偏导数不存在,从而不可微分. 3. 函数可微分的充分条件定理3若函数),(y x f z =的偏导数),(y x f x 与),(y x f y 在点),(y x 都连续,则),(y x f z =在点),(y x 可微分.注:反之未必.例如:⎪⎩⎪⎨⎧=+≠+++==0,00,1sin )(),(22222222y x y x y x y x y x f z 在点)0,0(可微分,但),(y x f x 与),(y x f y 在点)0,0(都不连续.(1).先说明),(y x f z =在点)0,0(可微分. 设0)0,0()0,0(),(=+=y f x f y x y x ∆∆∆∆ϕ,因为01sin lim )0,0()0,(lim)0,0(2200==-=→→xx x xf x f f x x x ,01sinlim )0,0(),0(lim)0,0(2200==-=→→yy y yf y f f y y y , 令2222)()(1sin])()[()0,0()0,0(y x y x f y x f u ∆∆∆∆∆∆∆++=-++=,由于01sinlim ),(lim2200==-→→ρρρρ∆∆ϕ∆ρρy x u ,其中22)()(y x ∆∆ρ+=,于是)()0,0()0,0()(),(ρ∆∆ρ∆∆ϕ∆o y f x f o y x u y x ++=+=,由全微分的定义知),(y x f z =在)0,0(可微分.(2). 再说明偏导数),(y x f x 及),(y x f y 在点)0,0(不连续. 易知 0,1cos 21sin2),(22222222≠+++-+=y x yx y x x y x x y x f x , 由于⎪⎭⎫ ⎝⎛-==→→=→2200)0,0(),(21cos 121sin 2lim ),(lim ),(limx x x x x x f y x f x x x x xy y x 不存在,从而),(y x f x 在点)0,0(不连续.同理可知)0(1cos 21sin2),(22222222≠+++-+=y x yx y x y y x y y x f y 在点)0,0(也不连续. 例1. 计算函数22y y x z +=的全微分. 解:dy y x xydx dy yzdx x z dz )2(22++=∂∂+∂∂=. 例2. 计算函数xy e z =在点)1,2(处的全微分. 解:由于xy xy xe y z ye x z =∂∂=∂∂,,有2122122,e yz e xz y x y x =∂∂=∂∂====,所以dy e dx e dz y x 22122+===.例3. 计算yz e yx u ++=2sin 的全微分. 解: dz ye dy ze y dx dz z u dy y u dx x u du yz yz +⎪⎭⎫ ⎝⎛++=∂∂+∂∂+∂∂=2cos 21.第四节 多元复合函数的求导法则一、一元函数与多元函数复合的情形定理1.若函数)(t u ϕ=及)(t v ψ=在点t 都可导,函数),(v u f z =在对应点),(v u 具有连续偏导数,则复合函数)](),([t t f z ψϕ=在点t 可导,且dtdv v z dt du u z dt dz ⋅∂∂+⋅∂∂=.(全导数公式) 注:可推广:),,(ωv u f z =,)(t u ϕ=,)(t v ψ=,)(t ωω=复合而成的函数)](),(),([t t t f z ωψϕ=在点t 可导,且dtd z dt dv v z dt du u z dt dz ωω⋅∂∂+⋅∂∂+⋅∂∂=. 二、多元函数与多元函数复合的情形定理2. 若函数),(y x u ϕ=及),(y x v ψ=在点),(y x 具有对x 及y 的偏导数,函数),(v u f z =在对应点),(v u 具有连续偏导数,则复合函数)],(),,([y x y x f z ψϕ=在点),(y x 的两个偏导数都存在,且xvv z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂;y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 注:可推广:由),,(ωv u f z =,),(y x u ϕ=,),(y x v ψ=,),(y x ωω=复合而成的函数)],(),,(),,([y x y x y x f z ωψϕ=在点),(y x 两个偏导数都存在,且xz x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂ωω;y z y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂ωω. 三、其它情形1. 函数),(y x u ϕ=在点),(y x 对x 及y 的偏导数都存在,函数及)(y v ψ=在点t 可导,),(v u f z =在点),(v u 具有连续偏导数,则复合函数]),,([y y x f z ϕ=在点),(y x 的两个偏导数都存在,且xuu z v z x u u z dx dv v z x u u z x z ∂∂⋅∂∂=⋅∂∂+∂∂⋅∂∂=⋅∂∂+∂∂⋅∂∂=∂∂0; dydvv z y u u z y z ⋅∂∂+∂∂⋅∂∂=∂∂. 2. 函数),(y x u ϕ=在点),(y x 具有对x 及y 的偏导数,),,(y x u f z =在点),,(y x u 具有连续偏导数,则复合函数],),,([y x y x f z ϕ=在点),(y x 的两个偏导数都存在,且1⋅∂∂+∂∂⋅∂∂=⋅∂∂+⋅∂∂+∂∂⋅∂∂=∂∂xf x u u f dx dy y f dx dx x f x u u f x z ; 1⋅∂∂+∂∂⋅∂∂=⋅∂∂+⋅∂∂+∂∂⋅∂∂=∂∂yf y u u f dy dy y f dy dx x f y u u f y z . 例1. 设v e z u sin =,而xy u =,y x v +=,求xz∂∂及y z ∂∂.解:)]cos()sin([1cos sin y x y x y e v e y v e xv v z x u u z x z xy u u +++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂; )]cos()sin([1cos sin y x y x x e v e x v e yv v z y u u z y z xy u u +++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 例2.设222),,(z y xe z y xf u ++==,而y x z sin 2=,求xu ∂∂及y u ∂∂. 解:xzz f dx dy y f dx dx x f x u ∂∂⋅∂∂+⋅∂∂+⋅∂∂=∂∂ yx y xz y xz y xe y x x y x ze xe 2422222222sin 22)sin 21(2sin 222+++++++=⋅+=;yz z f dy dx x f dx dy y f y u ∂∂⋅∂∂+⋅∂∂+⋅∂∂=∂∂ yx y xz y xz y xe y y x y y x ze ye 2422222222sin 42)cos sin (2cos 22+++++++=⋅+=.例3. 设t uv z sin +=,而t e u =,t v cos =,求求导数dtdz . 解:t t u ve dtdt t z dt dv v z dt du u z dt dz t cos sin +-=⋅∂∂+⋅∂∂+⋅∂∂= tt t e t t e t e t t t cos )sin (cos cos sin cos +-=+-=.四、全微分形式不变性:若函数),(v u f z =具有连续偏导数,则有全微分dv vz du u z dt dz ∂∂+∂∂=.若函数),(y x u ϕ=及),(y x v ψ=也具有连续偏导数,则复合函数)],(),,([y x y x f z ψϕ=的全微分为dy y z dx x z dt dz ∂∂+∂∂=,有dy yzdx x z dv v z du u z dt dz ∂∂+∂∂=∂∂+∂∂=,称此性质为全微分形式不变性. 事实上:dy y z dx x z dt dz ∂∂+∂∂=dy y v v z y u u z dx x v v z x u u z ⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂+⎪⎭⎫⎝⎛∂∂⋅∂∂+∂∂⋅∂∂= ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=dy y v dx x u v z dy y u dx x u u z dv v z du uz∂∂+∂∂=. 例4. 利用全微分形式不变性求xu∂∂与y u ∂∂,其中v e z u sin =,xy u =,y x v +=. 解:由于vdv e vdu e v e d dz u u u cos sin )sin (+==, 而 xdy ydx xy d du +==)(,dy dx y x d dv +=+=)(, 于是dy v e x v e dx v e y v e dz u u u u )cos sin ()cos sin (+⋅++⋅=,即dy y x y x x e dx y x y x y e dy yzdx x z xy xy )]cos()sin([)]cos()sin([+++++++=∂∂+∂∂, 比较两端dx 、dy 的系数得:)]cos()sin([y x y x y e xzxy +++=∂∂,)]cos()sin([y x y x x e xzxy +++=∂∂.第五节 隐函数的求导公式一、隐函数:称对应关系不明显,而是隐含在方程(方程组)中的函数(函数组)为由方程(方程组)确定的隐函数(隐函数组).注:并不是每一个方程都能确定一个隐函数,例如:01242=+++z y x . 二、隐函数存在定理定理1.若函数),(y x F 在点),(00y x P 的某一邻域内具有连续偏导数,且0),(00=y x F ,0),(00≠y x F y ,则方程0),(=y x F 在点),(00y x P 的某一邻域内恒能唯一确定一个连续可导的函数)(x f y =,满足)(00x f y =,且yx F F dx dy -=. 注:若),(y x F 的二阶偏导数也连续,则有 dxdy F F y dx dx F F x dx y d y x y x ⎪⎪⎭⎫ ⎝⎛-∂∂+⎪⎪⎭⎫ ⎝⎛-∂∂=22---=xyy xyx y xx F F F F F F 2322y y x xy y xx F F F F F F +--=.定理2. 若函数),,(z y x F 在点),,(000z y x P 的某一邻域内具有连续偏导数,且0),,(000=z y x F ,0),,(000≠z y x F z ,则方程0),,(=z y x F 在点),,(000z y x P 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数),(y x f z =,满足),(000y x f z =,且zx F Fx z -=∂∂,z y F F y z -=∂∂. 例1. 设0122=-+y x ,求dxdy及22dx y d .解:令1),(22-+=y x y x F ,则x F x 2=,y F y 2=,从而yxF F dx dy y x -=-=. 33222221'yy x y y xy y y x dx d dx y d -=+-=--=⎪⎪⎭⎫ ⎝⎛-=. 例2.设04222=-++z z y x ,求22xz∂∂.解:设z z y x z y x F 4),,(222-++=,则x F x 2=,42-=z F z ,于是zx F F x z z x -=-=∂∂2,从而 3222222)2()2()2(2)2()2()2(z x z z z x x z z x z x z x z -+-=--⋅+-=-⎪⎭⎫ ⎝⎛∂∂---=∂∂.定理3. 若函数),,,(v u y x F 与),,,(v u y x G 在点),,,(0000v u y x P 的某一邻域内具有对各个变量的连续偏导数,又0),,,(0000=v u y x F ,0),,,(0000=v u y x G ,且函数行列式vu v uG G F F v u G F J =∂∂=),(),(在点),,,(0000v u y x P 不等于零,则方程组⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F 在点),,,(0000v u y x P 的某一邻域内恒能确定唯一一组连续且具有连续偏导数的函数组⎩⎨⎧==),(),(y x v v y x u u ,且v u v u v xvxG G F F G G F F v x G F J x u -=∂∂-=∂∂),(),(1,vuv u xu x uG G F F G G F F x u G F J x v -=∂∂-=∂∂),(),(1; vuv u v y v yG G F F G G F F v y G F J y u -=∂∂-=∂∂),(),(1,vuv u y uy u G G F F G G F F y u G F J y v -=∂∂-=∂∂),(),(1.例3. 设0=-yv xu ,1=+xv yu ,求xu ∂∂、y u ∂∂、xv∂∂、和y v ∂∂.解:设方程组⎩⎨⎧=+=-1xv yu yv xu ,两端对x 求导得:⎪⎪⎩⎪⎪⎨⎧=+∂∂+∂∂=∂∂-∂∂+00v x v x x u y x v y x u x u 或⎪⎪⎩⎪⎪⎨⎧-=∂∂+∂∂-=∂∂-∂∂v x v x xu y u xv y x u x , 在022≠+=-=y x xyy x J 的条件下,有22y x yv xu x y y x x v yu x u ++-=-----=∂∂,22y x xvyu xy y x v y ux x v +--=----=∂∂;同理可得22y x yu xv y u +-=∂∂,22y x yvxu y v ++-=∂∂.第六节 多元函数微分学的几何应用一、一元向量值函数及其导数1. 一元向量值函数的定义: )(t f r =,D t ∈(数集),n R r ∈. 注:1°. 在3R 中,))(),(),(()()()()(321321t f t f t f k t f j t f i t f t f r =++==.2°. 向量值函数)())(),(),(()(321D t t f t f t f t f r ∈==称为曲线⎪⎩⎪⎨⎧===)()()(:321t f z t f y t f x Γ的向量方程.2. 一元向量值函数的极限:设向量值函数)(t f 在点0t 的某一去心邻域内有定义,若存在常向量0r ,0>∀ε,0>∃δ,t ∀:满足δ<-<||00t t ,总有ε<-|)(|0r t f ,则称0r 为)(t f 当0t t → 时的极限,记作0)(lim 0r t f t t =→.注:)(lim 0t f t t →存在⇔)(lim 10t f t t →、)(lim 20t f t t →、)(lim 30t f t t →都存在.⎪⎭⎫ ⎝⎛=→→→→)(lim ),(lim ),(lim )(lim 3210000t f t f t f t f t t t t t t t t . 3. 一元向量值函数的连续性:设向量值函数)(t f 在点0t 的某一邻域内有定义,若)()(lim 00t f t f t t =→,则称向量值函数)(t f 在点0t 连续.注:)(t f 在点0t 连续⇔)(1t f 、)(2t f 、)(3t f 点0t 连续.4.一元向量值函数的导数(导向量):设向量值函数)(t f r =在点0t 的某一邻域内有定义,若tt f t t f t r t t ∆∆∆∆∆∆)()(lim lim0000-+=→→存在,则称此极限值为)(t f 在点0t 的导数或导向量,记作)('t f 或x t dtr d =.注:1°. )(t f 在点0t 可导⇔)(1t f 、)(2t f 、)(3t f 点0t 都可导.k t f j t f i t f t f )()()()(''3'2'1++=.2°. 一元向量值函数的导向量的几何意义:trt f t ∆∆∆00lim)('→=是向量值函数)(t f r =的终端曲线Γ在点)(0t M 处的一个切向量,其指向与t 的增长方向一致.例1.设k t j t i t t f ++=)(sin )(cos )(,求)(lim 4/t f t π→.解:k t j t i t t f t t t t )lim ()sin lim ()cos lim ()(lim 4/4/4/4/ππππ→→→→++=k j i 42222π++=. 例2.设空间曲线Γ的向量方程为R t t t t t t f r ∈--+==),62,34,1()(22,求曲线Γ在点20=t 相应的点处的单位切向量.解:由于)64,4,2()('-=t t t f ,有)2,4,4()2('=f ,进而6244|)2('|222=++=f ,于是⎪⎭⎫⎝⎛==31,32,32)2,4,4(611n 为指向与t 的增长方向一致的单位切向量.⎪⎭⎫⎝⎛---=31,32,322n 为指向与t 的增长方向相反的单位切向量.二、空间曲线的切线与法平面1. 参数式情形:设空间曲线Γ的参数方程为⎪⎩⎪⎨⎧===)()()(t z t y t x ωψϕ,],[βα∈t ,假设)(t ϕ、)(t ψ以及)(t ω在],[βα上可导,且三个导数不同时为零.(1). 切线:曲线Γ上的一点),,(000z y x M 处的切线方程为:)(')(')('000t z z t y y t x x ωψϕ-=-=-,参数0t 对应点),,(000z y x M .推导:由于曲线Γ的参数方程为⎪⎩⎪⎨⎧===)()()(t z t y t x ωψϕ,记向量值函数))(),(),(()(t t t t f ωψϕ=,由向量值函数导数的几何意义知:向量)('),('),('()('0000t t t t f T ωψϕ==即为曲线Γ在其上的点),,(000z y x M 处的一个切向量,从而曲线Γ在其上的点),,(000z y x M 处的切线方程为:)(')(')('000000t z z t y y t x x ωψϕ-=-=-. (2). 法平面:通过曲线Γ上的点),,(000z y x M 而与曲线Γ在点M 处的切线垂直的平面方程称为曲线Γ在点M 处的法平面,方程为0))(('))(('))(('000000=-+-+-z z t y y t x x t ωψϕ.其中法向量为))('),('),('()('0000t t t t f T ωψϕ==.2. 特殊式情形:设空间曲线Γ的方程为⎩⎨⎧==)()(x z x y ψϕ,且)(x ϕ、)(x ψ在点0x x =处可导,曲线Γ的方程可改写为⎪⎩⎪⎨⎧===)()(x z x y x x ψϕ,x 为参数,从而曲线Γ在点),,(000z y x M 处的切线与法平面方程分别为: (1). 切线方程:)(')('100000x z z x y y x x ψϕ-=-=-. (2). 法平面方程:0))(('))((')(00000=-+-+-z z x y y x x x ψϕ.3. 一般式(隐函数)情形:设曲线Γ的方程为⎩⎨⎧==0),,(0),,(z y x G z y x F ,),,(000z y x M 为曲线Γ上的一点,又设F 、G 有对各个变量的连续偏导数,且0),(),(≠∂∂Mz y G F ,这时方程组在点),,(000z y x M 的某一邻域内确定了一组隐函数⎩⎨⎧==)()(x z x y ψϕ,从而曲线Γ的参数方程为⎪⎩⎪⎨⎧===)()(x z x y xx ψϕ,x 为参数,于是切向量为))('),(',1(00x x T ψϕ=⎪⎪⎭⎫ ⎝⎛=M z yzy Myxy x Mzyz y Mx z x z G G F F G G F F G G F F G G F F ,,1 ⎪⎪⎭⎫ ⎝⎛=M yxy x M x zxzM z y z y Mzyzy G G F F G G F FG G F F G G F F ,,1. (1). 切线方程:)(')('100000x z z x y y x x ψϕ-=-=-. (2). 法平面方程:0))(('))((')(00000=-+-+-z z x y y x x x ψϕ.例3. 求曲线⎩⎨⎧=++=++06222z y x z y x 在点)1,2,1(-处的切线与法平面方程.解:在方程组⎩⎨⎧=++=++06222z y x z y x 两端对x 求导,得⎪⎪⎩⎪⎪⎨⎧=++=++010222dx dz dx dy dx dz z dx dy y x ,整理得⎪⎪⎩⎪⎪⎨⎧-=+-=+1dxdz dx dy x dxdz z dx dyy , 于是z y xz z y z x dx dy --=--=1111,0)1,2,1(=-dxdy;z y y x z y xy dx dz --=--=1111,1)1,2,1(=-dxdz ,故切向量为)1,0,1(=T ,从而所求切线方程为:110211--=+=-z y x ,或⎪⎩⎪⎨⎧-=--=-21111y z x .法平面方程为0)1()2(0)1(=--++-z y x 或0=-z x .三、曲面的切平面与法线 1.定义(1). 切平面:若曲面∑上通过点M 的一切曲线在点M 的切线都在同一个平面上,则称此平面为曲面∑在点M 的切平面.(2). 法线:通过点M 且与切平面垂直的直线称为曲面∑在点M 的法线. 2. 切平面与法线方程(1). 一般式情形:设曲面∑的方程为0),,(=z y x F ,点),,(000z y x M 为其上一点,且函数),,(z y x F 的偏导数在点M 连续.切平面方程:0))(())(())((000=-+-+-z z M F y y M F x x M F z y x ; 法线方程:)()()(000M F z z M F y y M F x x z y x -=-=-. 推导:在曲面∑上过点M 任意引一条曲线Γ,设其参数方程为⎪⎩⎪⎨⎧===)()()(t z t y t x ωψϕ,且函数)(t x ϕ=、)(t y ψ=以及)(t z ω=在0t t =都可导,0t t =对应点),,(000z y x M ,有方程0))(),(),((=t t t F ωψϕ, 两端对x 求导,在0t t =处,有0)('),,()('),,,()('),,(000000000000=++t z y x F t z y x F t z y x F z y x ωψϕ. 记()),,(),,,(),,,(000000000z y x F z y x F z y x F N z y x =.又))('),('),('(000t t t T ωψϕ=为曲线Γ在点),,(000z y x M 处的切向量,由上式可知0=⋅T N ,即曲面∑上通过点),,(000z y x M 的任意一条曲线的切向量都垂直于同一个向量,从而这些切线都在同一平面上,即曲面∑在点),,(000z y x M 的且平面存在,该切平面以向量()),,(),,,(),,,(000000000z y x F z y x F z y x F N z y x =为一法线向量.(2). 特殊式 (显函数) 情形:曲面∑:),(y x f z =,且函数),(y x f 的偏导数在点),(00y x 连续. 切平面方程:0)())(,())(,(0000000=---+-z z y y y x f x x y x f y x .法线方程:1),(),(0000000--=-=-z z y x f y y y x f x x •y x .推导:记0),(),,(=-=z y x f z y x F ,有),(),,(y x f z y x F x x =,),(),,(y x f z y x F y y =,1),,(-=z y x F z ,故有法向量()1),,(),,(0000-=y x f y x f N y x .例4. 求球面14222=++z y x 在点)3,2,1(处的且平面及法线方程.解:设14),,(222-++=z y x z y x F ,有x z y x F x 2),,(=,y z y x F y 2),,(=,z z y x F z 2),,(=,故所求切平面的法向量为())6,4,2(2,2,2)3,2,1(==z y x N ,于是所求切平面方程为:0)3(6)2(4)1(2=-+-+-z y x ,即01432=-++z y x ,法线方程为:332211-=-=-z y x •,即321zy x •==. 例5. 求旋转抛物面122-+=y x z 在点)4,1,2(处的切平面即法线方程.解:设1),(22-+=y x y x f ,有x y x f x 2),(=,y y x f y 2),(=,于是所求切平面的法向量为())1,2,4(1,2,2)4,1,2(-=-=y x N .从而所求切平面方程为0)4()1(2)2(4=---+-z y x ,即0624=--+z y x ,法线方程为142142--=-=-z y x •.第七节 方向导数与梯度引入:由函数),(y x f 在点),(000y x P 的偏导数的几何意义可知:偏导数),(00y x f x 、),(00y x f y 只是函数),(y x f 过点),(000y x P 沿平行坐标轴法线的变化率.但在实际应用中,往往要求我们知道函数),(y x f 在点),(000y x P 沿任意确定的方向的变化率,以及沿什么方向函数的变化率最大,这就涉及到函数的方向导数和梯度. 一、方向导数1. 定义:设函数),(y x f 在点),(000y x P 的某个邻域)(0P U 内有定义,)sin ,cos (000ααt y t x P ++为过点),(000y x P 的射线l ()sin ,(cos αα=l e )上另一点,且)(0P U P ∈.若极限ty x f t y t x f t ),()sin ,cos (lim 00000-+++→αα存在,则称此极限为函数),(y x f z =在点),(000y x P 沿方向l 的方向导数,记作),(00y x lf ∂∂.注:若函数),(y x f 在点),(000y x P 的偏导数存在,且i e l ==)0,1(,则),(),(),(lim 0000000),(00y x f ty x f y t x f lf x t y x =-+=∂∂+→.若函数),(y x f 在点),(000y x P 的偏导数存在,且j e l ==)1,0(,则),(),(),(lim 0000000),(00y x f ty x f t y x f lf y t y x =-+=∂∂+→.2. 方向导数的存在性定理:若函数),(y x f 在点),(000y x P 可微分,则函数),(y x f 在点),(000y x P 沿任意方向l 的方向导数都存在,且有βαcos ),(cos ),(0000),(00y x f y x f lf y x y x +=∂∂,其中αcos 、βcos 的方向余弦.注:1°. 可推广:若函数),,(z y x f 在点),,(0000z y x P 可微分,则),,(z y x f 在点0P 沿方向)cos ,cos ,(cos γβα=l e 的方向导数为γβαcos ),,(cos ),,(cos ),,(000000000),,(000z y x f z y x f z y x f lfz y x z y x ++=∂∂.2°. 方向导数存在,函数未必可微分.例如:22),(y x y x f +=在点)0,0(沿方向)cos ,(cos βα=l e 的方向导数都存在,但),(y x f 在点)0,0(不可微分.事实上:由于1lim )0,0()cos 0,cos 0(lim 00==-++++→→t ttf t t f t t βα,从而22),(y x y x f +=在点)0,0(沿方向l e 的方向导数都存在.但22),(y x y x f +=在点)0,0(的两个偏导数都不存在,从而不可微分. 例1. 求函数y xe z 2=在点)0,1(P 处从点)0,1(P 到)1,2(-Q 方向的方向导数.解:由题可知方向l 就是向量)1,1(-=PQ 的方向,有⎪⎭⎫ ⎝⎛-=21,21l e .又1)0,1(2)0,1(==∂∂ye xz,22)0,1(2)0,1(==∂∂yxe yz ,故所求方向导数为22212211)0,1(-=⎪⎭⎫ ⎝⎛-⋅+⋅=∂∂lz . 例2.求zx yz xy z y x f ++=),,(在点)2,1,1(沿方向l 的方向导数,其中l 的方向角分别为o o o 60,45,60.解:由题可知与方向l 同向的单位向量为⎪⎪⎭⎫⎝⎛==21,22,21)60cos ,45cos ,60(cos o o o l e ,又3)()2,1,1()2,1,1(=+=z y f x ,3)()2,1,1()2,1,1(=+=z x f y ,2)()2,1,1()2,1,1(=+=x y f z , 故所求方向导数为)235(21212223213)2,1,1(+=⋅+⋅+⋅=∂∂lf.二、梯度1.梯度的定义:设函数),(y x f 在平面区域D 内具有一阶连续偏导数,对每一个点D y x P ∈),(000,称向量j y x f i y x f y x ),(),(0000+为函数),(y x f 在点),(000y x P 的梯度,记作),(00y x f grad ,或),(00y x f ∇,即j y x f i y x f y x f y x f grad y x ),(),(),(),(00000000+=∇=. 注:可推广:k z y x f j z y x f i z y x f z y x f z y x f grad z y x ),,(),,(),,(),,(),,(000000000000000++=∇=. 2.梯度与方向导数的关系(1).沿梯度方向,方向导数达到最大值; (2).梯度的模为方向导数的最大值.推导:设)cos ,(cos βα=l e ,若函数),(y x f 在点),(000y x P 可微分,则),(y x f 在点0P 沿方向l 的方向导数为βαcos ),(cos ),(0000),(00y x f y x f lfy x y x +=∂∂)),,((cos |||),(|),(000000∧⋅⋅=⋅=l l l e y x f grad e y x f grad e y x f gradθ∆cos |||),(|00⋅⋅=l e y x f grad .1. 当0=θ时,|),(|00),(00y x f grad lf y x =∂∂.这说明函数),(y x f 在一点),(y x 的梯度),(y x f grad 是这样一个向量,它的方向是),(y x f 在这点的方向导数取得最大值的方向,它的模等于方向导数的最大值.2. 当πθ=时,有l e 与),(00y x f grad 的方向相反,函数),(y x f 减小最快,),(y x f 在这个方向上的方向导数达到最小值,|),(|00),(00y x f grad lfy x -=∂∂.3. 当2πθ=时,有l e 与),(00y x f grad 的方向正交,函数),(y x f 的变化率为零,即0cos |),(|00),(00==∂∂θy x f grad lf y x .例3. 求221y x grad+.解:令221),(y x y x f +=,有222)(2),(y x x y x f x +-=,222)(2),(y x yy x f x +-=,于是 j y x yi y x x y x grad22222222)(2)(21+-++-=+.例4.设)(21),(22y x y x f +=,)1,1(0P ,求(1). ),(y x f 在0P 处增加最快的方向以及),(y x f 沿这个方向的方向导数; (2). ),(y x f 在0P 处减少最快的方向以及),(y x f 沿这个方向的方向导数; (3). ),(y x f 在0P 处变化率为零的方向.解:(1). ),(y x f 在点)1,1(0P 处沿)1,1(f ∇的方向增加最快,由于j i j y i x f +=+=∇)1,1()()1,1(,故所求方向可取为j i f n 2121)1,1(+=∇∇=2|)1,1(|)1,1(=∇=∂∂f n f . (2). ),(y x f 在点)1,1(0P 处沿)1,1(f ∇-的方向减少最快,故所求方向可取为j i n n 21211--=-=2|)1,1(|)1,1-=∇-=∂∂f nf.(3). ),(y x f 在点)1,1(0P 处沿垂直于)1,1(f ∇的方向变化率为零,故所求方向为j i n 21212+-=或j i n 21213-=.第八节 多元函数的极值及其求法引入:在一元函数微分学中,我们讨论了一元函数的极值和最值问题,但在许多实际问题中,往往会遇到多元函数的极值和最值问题,我们以二元函数为例来讨论多元函数的极值与最值问题.一、二元函数的极值与最值1. 极值:二元函数),(y x f 的定义域为D ,),(000y x P 为D 的内点,若存在0P 的某个邻域DP U ⊂)(0,)(),(0P U y x P ∈∀,且),(),(0y x P y x P ≠,都有),(),(00y x f y x f <(),(),(00y x f y x f >),则称),(y x f 在点0P 有极大值(极小值).点),(000y x P 称为函数),(y x f 的极大值点(极小值点). 统称极大值、极小值为极值;使函数取得极值的点称为函数的极值点.2. 最值:设函数),(y x f 的定义域为D ,若存在D y x P ∈),(000,D y x P ∈∀),(,都有),(),(00y x f y x f ≤(),(),(00y x f y x f ≥),则称),(00y x f 为),(y x f 在D 上的最大值(最小值). 注:1°. 极值是一个局部概念,最值是一个整体概念.2°. 极值与最值的关系:极值可以是最值,但最值未必是极值. 例1. 函数2243y x z +=在点)0,0(取得极小值,也是最小值.例2. 函数22y x z +-=在点)0,0(取得极大值,也是最大值. 例3.函数xy z =在点)0,0(既不取得极大值,也不取得极小值.由此可见,并不是每一个函数在其定义域上都有极值点,那么什么样的点可能是函数的极值点呢?又如何判断函数在该极值点处取得极大值还是极小值呢?下面我们来学习极值点的必要条件和充分条件,从中得到这些问题的答案. 二、极值点的条件定理1. 若函数),(y x f z =在点),(000y x P 具有偏导数,且在点),(000y x P 处取得极值,则有0),(00=y x f x ,0),(00=y x f y .注:1°.称使⎩⎨⎧==0),(0),(0000y x f y x f y x 成立的点),(00y x 为),(y x f 的驻点或稳定点.2°. 可偏导函数的极值点一定是其驻点,但反之未必.例如:函数xy z =,在点)0,0(是其驻点,但xy z =在点)0,0(却不取得极值.那么什么样的驻点才能是极值点呢?下面的极值点的充分条件回答这一问题,并给出求极值的方法.定理2. 设函数),(y x f z =在点),(00y x 的某一邻域内连续且具有一阶以及二阶连续偏导数,又0),(00=y x f x ,0),(00=y x f y ,令A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则),(y x f 在),(00y x 处是否取得极值的条件如下:(1). 02>-B AC 时具有极值,且当0<A 时有极大值,当0>A 时有极小值. (2). 02<-B AC 时没有极值.(3). 02=-B AC 时是否取得极值不定,需另行讨论. 3.求极值的步骤第一步:求偏导数,解方程组⎩⎨⎧==0),(0),(y x f y x f y x ,得),(y x f z =的所有驻点.第二步:对每一驻点),(i i y x ,求二阶偏导数的值A 、B 、C .第三步:考察2B AC -的符号,判断),(i i y x f 是否为极值,若是极值,判断出是极大值还是极小值.例4.求函数x y x y x y x f 933),(2233-++-=的极值.解:解方程组⎪⎩⎪⎨⎧=+-==-+=063),(0963),(22y y y x f x x y x f y x ,得驻点)0,1(,)2,1(,)0,3(-,)2,3(-. 又66),(+=x y x f xx ,0),(=y x f xy ,66),(+-=y y x f yy .(1). 在点)0,1(处,0726122>=⨯=-B AC ,且012>=A ,故),(y x f 在)0,1(处取得极小值5)0,1(-=f .(2). 在点)2,1(处,0726122<-=⨯-=-B AC ,故)2,1(f 不是极值. (3). 在点)0,3(-处,072)6(122>=-⨯-=-B AC ,故)0,3(-f 不是极值.(4). 在点)2,3(-处,0726122>=⨯=-B AC ,且012<-=A ,故),(y x f 在)0,1(处取得极大值31)2,3(=-f .例5. 求函数27227)(2),(y x x y y x f ---=的极值.解:由方程组⎪⎩⎪⎨⎧=--==---=02)(4),(0)(8),(262y x y y x f x x y x y x f y x 得两个驻点)8,2(-,)0,0( . 又526248),(x x y y x f xx -+-=;x y x f xy 8),(-=;2),(=y x f yy ;(1). 在点)8,2(-处,0224)8,2(>=-=xx f A , 16)8,2(=-=xy f B ,2)8,2(=-=yy f C ,有01922>=-B AC ,故),(y x f 在点)8,2(-取极小值7/352)8,2(-=-f .(2). 在点)0,0(处,0)0,0(==xx f A ,0)0,0(==xy f B ,2)0,0(==yy f C ,有02=-B AC ,由于0)0,0(=f ,而),(y x f 在)0,0(的某个邻域内既有大于0的值,也有小于0的值,例如0),(<y y f ,而0),0(>y f .故),(y x f 在)0,0(取不到极值.注:可偏导函数的极值点一定是其驻点,但函数的极值点也可以在其不可偏导点处取得, 例如:22y x z +-=在)0,0(取得极大值0,但)0,0(不是22y x z +-=的驻点. 三、函数最值的求法在一元函数微分学中,我们利用函数极值求函数的最值,这一方法仍然适用于多元函数. 设函数),(y x f 在有界闭区域D 上连续,在D 内可微且有有限多个驻点,则),(y x f 在D 上具有最大值和最小值,将),(y x f 在D 内的所有驻点的函数值与D 边界上的最大值和最小值。
(完整word版)高数答案(下)习题册答案第六版下册同济大学数学系编高数答案(下)习题册答案第六版下册同济大学数学系编第八章多元函数的微分法及其应用§ 1 多元函数概念一、设f(x,y)x2y2,(x,y)x2y2,求:f[(x,y),y2]. 答案:f((x,y),y2)(x2y2)2y4x42x2y22y4二、求下列函数的定义域:x2(1y)221、f(x,y){(x,y)|y x1}; 221x yy2、z arcsin {(x,y)|y x,x0}; x三、求下列极限:x2siny 1、lim (0)2(x,y)(0,0)2x y2、y(1)3x (e6) (x,y)(,2)xlimx2y四、证明极限lim不存在. 2(x,y)(0,0)4x y证明:当沿着x轴趋于(0,0)时,极限为零,当沿着y x趋于(0,0)时,极限为二者不相等,所以极限不存在21, 21,(x,y)(0,0)xysin22五、证明函数f(x,y)在整个xoy面上连续。
x y0,(x,y)(0,0)证明:当(x,y)(0,0)时,f(x,y)为初等函数,连续。
当(x,y)(0,0)时,1xysi0f(0,0),所以函数在(0,0)也连续。
所以函数(x,ylim)(0,0)22x y在整个xoy面上连续。
六、设z x y2f(x y)且当y=0时z x2,求f(x)及z的表达式. 解:f(x)=x2x,z x22y22xy y§ 2 偏导数y z z xy z 1、设z=xy xex ,验证x y x yzy z z z y ex ex,x ex,x y xy xy xex xy z 证明:xx y x yyyyyz x2y212、求空间曲线:在点(,,1)处切线与y轴正向夹角() 1y224 2x23、设f(x,y)xy(y1)arcsin, 求fx(x,1) ( 1) y4、设u x, 求zzy u u u ,,y x zzz uz u1y uzy12xylnx xlnx x 解:,y zy xyy 2u2u2u2 5、设u x y z,证明: x2y2z2u6、判断下面的函数在(0,0) 处是否连续?是否可导(偏导)?说明理由222122xsin,x y022f(x,y)x y220,x y0100 limf(x,y)0f(0,0) 连续;fx(0,0)lim fy(0,0)limsi2 不存在,0 x0y0x0y0xy07、设函数f(x,y)在点(a,b)处的偏导数存在,求limx0f(a x,b)f(a x,b) x(2fx(a,b))§ 3 全微分1、单选题(1)二元函数f(x,y)在点(x,y)处连续是它在该点处偏导数存在的__________(A) 必要条件而非充分条件(B)充分条件而非必要条件(C)充分必要条件(2)对于二元函数f(x,y),下列有关偏导数与全微分关系中正确的是___(A) 偏导数不连续,则全微分必不存在(C)全微分存在,则偏导数必连续(D)全微分存在,而偏导数不一定存在2、求下列函数的全微分:yyy11)z ex dz ex(2dx dy) xx22 2)z sin(xy) 解:dz cos(xy)(y2dx2xydy)yz11y 3)u x 解:du xdx xzlnxdy2xzlnxdz zzzyzyyy3、设z ycos(x2y),求dz(0,)4解:dz ysin(x2y)dx(cos(x2y)2ysin(x2y))dy dz|(0,4)=4dx2dy4、设f(x,y,z)z1(2dx4dy5dz) 求:df(1,2,1)2225x y122(x y)sin5、讨论函数f(x,y)x2y20,,(x,y)(0,0)(x,y)(0,0)在(0,0)点处的连续性、偏导数、可微性1(x2y2)sin0f(0,0) 所以f(x,y)在(0,0)点处连续。
第九章 重积分§1二重积分的概念与性质1. 根据重积分的性质,比较下列积分的大小.⎰⎰+D d y x σ)ln(与⎰⎰+Dd y x σ2)ln(,其中积分区域D 是:(1)以)0 ,1(,)1 ,1(,)0 ,2(为顶点的三角形区域;解:在以)0 ,1(,)1 ,1(,)0 ,2(为顶点的三角形区域内显然有1x y +> 故在三角形区域内2()()x y x y +>+即2ln()ln()x y x y +>+, 故⎰⎰+Dd y x σ)ln(≤⎰⎰+Dd y x σ2)ln((2)矩形区域:10 ,53≤≤≤≤y x .解:矩形区域:10 ,53≤≤≤≤y x 内显然有1x y +> 故在矩形区域内2()()x y x y +>+即2ln()ln()x y x y +>+,故⎰⎰+Dd y x σ)ln(≤⎰⎰+Dd y x σ2)ln(2.利用二重积分的性质,估计下列积分的值.(1)⎰⎰+=Dd y x xy I σ)(,其中D 是矩形区域:10 ,10≤≤≤≤y x ;解:在矩形区域:10 ,10≤≤≤≤y x 内0()2xy x y ≤+≤, 故0()2DDDd xy x y d d σσσ≤+≤⎰⎰⎰⎰⎰⎰,即:0()2DDxy x y d d σσ≤+≤⎰⎰⎰⎰得20≤≤I (2)⎰⎰++=D d yx I σ22cos cos 1001,其中}10 ),{(≤+=y x y x D .解:在}10 ),{(≤+=y x y x D 中,22111102100cos cos 100x y ≤≤++ 22111102100cos cos 100D D Dd d d x y σσσ≤≤++⎰⎰⎰⎰⎰⎰,即 22111102100cos cos 100D DDd d d x y σσσ≤≤++⎰⎰⎰⎰⎰⎰得2102200≤≤I 2. 设D 是平面上有界闭区域,),(y x f 在D 上连续。
证明若),(y x f 在D 上非负,且⎰⎰=Dd y x f 0),(σ,则在D 上0),(≡y x f证明:若不恒为零,则不妨设有内点()00,x y 使得()00,0f x y A =>, 由在()00,x y 连续得()00lim ,x x y y f x y A →→=,故对2Aε=,存在()00,x y 的某个领域1D ,使得()1,x y D ∀∈有(),2A f x y A -<即在1D 上()3,22A Af x y <<。
故(,)Df x y d σ⎰⎰1(,)D f x y d σ=⎰⎰1\(,)D D f x y d σ+⎰⎰1()002AS D ≥+> 其中1()S D 为1D 的面积。
这与⎰⎰=Dd y x f 0),(σ矛盾,故在D 上0),(≡y x f§2 二重积分的计算1.画出下列积分区域的草图,并将区域分别用不等式表示为-X 型区域以及-Y 型区域的形式.(1)D 由直线:1, 1, 0x y x y x +=-==围成;-X 型区域0111x x y x ≤≤⎧⎨-≤≤-⎩-Y 型区域10010101y y x y x y -≤≤≤≤⎧⎧⎨⎨≤≤+≤≤-⎩⎩(2)D 由曲线22-4 ,y x y x ==围成;-X型区域02x y ≤≤⎧⎪⎨≤≤⎪⎩24x y ≤≤⎧⎪⎨≤≤⎪⎩ -Y型区域224y y x y⎧≤≤⎪⎨≤≤-⎪⎩ (3)D 由2 , ,1===x x y xy 围成; -X 型区域121x y x x ≤≤⎧⎪⎨≤≤⎪⎩,-Y 型区域11122122y y y x x y⎧≤≤⎪≤≤⎧⎪⎨⎨≤≤⎩⎪≤≤⎪⎩(4)222,2 :x y y x D ≥≤+.X-型区域⎩⎨⎧-≤≤≤≤-22211:x y x x D ; Y-型区域21D D D ⋃=,其中⎩⎨⎧≤≤-≤≤y x y y D 10:1,⎪⎩⎪⎨⎧-22:D2.计算下列二重积分(1)⎰⎰Dd y x σ,D 由x y =,2x y =所围成;解:法一201:x D x y ≤≤⎧⎪⎨≤≤⎪⎩ 21xDdx σ=⎰⎰⎰10xdx =⎰31202(3x y dx =⎰3111351442241()33115x x x dx x x ⎛⎫=-=- ⎪⎝⎭⎰655=法二201:y D y x ≤≤⎧⎪⎨≤≤⎪⎩Dσ⎰⎰210ydy =⎰20yxdx =⎰21(2x dy =⎰41)2y y dy =-⎰51112201226251155y y ⎛⎫=-=⎪⎝⎭(2)⎰⎰+Dy x d e σ,1 :≤+y x D ;解:1001:1111x x D x y x x y x -≤≤≤≤⎧⎧⎨⎨--≤≤+-≤≤-+⎩⎩0111111x xx yx yx y x x Ded dx edy dx e dy σ+-+++----=+⎰⎰⎰⎰⎰⎰0111111x xx y x y x x e dx e dy e dx e dy +-----=+⎰⎰⎰⎰111111()()x yx x yx x x e e dx e e dx +-----=+⎰⎰1211211()()x x ee dx e e dx +---=-+-⎰⎰21102111011()()22x x e e x ex e +---=-+- 1111311()()2222e e e e e e ---=-++=- (3)⎰⎰-Dd x y σ)(2,D 由曲线2y x =与223y x -=解:2211:32y D y x y-≤≤⎧⎨≤≤-⎩22132221()()y y Dy x d dy y x dx σ---=-⎰⎰⎰⎰221223211()2y y y x x dy --=-⎰221223211()2y y y x x dy --=-⎰142199(9)22y y dy -=-+-⎰53119924(3)1025y y y -=-+-=-法二:D 关于x 轴对称,函数()()2,,f x y y x f x y =-=-即关于y 是偶函数。
故122()2()D D y x d y x d σσ-=-⎰⎰⎰⎰,其中12201:32y D y x y ≤≤⎧⎨≤≤-⎩ 221132220()()y yD y x d dy y x dx σ--=-⎰⎰⎰⎰221223201()2y y y x x dy -=-⎰ 221223201()2y y y x x dy -=-⎰ 142099(9)22y y dy =-+-⎰ 53109924(3)10210y y y =-+-=-12224()2()5DD y x d y x d σσ-=-=-⎰⎰⎰⎰ (4)⎰⎰-Dd y x σ)(22, π≤≤≤≤x x y D 0,sin 0:.解:sin 22220()()xDx y d dx x y dy πσ-=-⎰⎰⎰⎰23sin 01()3x x y y dx π=-⎰2301(sin sin )3x x x dx π=-⎰232001sin (2sin )3x xdx xdx ππ=-⎰⎰20012(cos )2cos (2)33x x x xdx ππ=-+-∙⎰2200440(2sin )2sin 99x x xdx ππππ=-+-=-⎰ 记住公式:(D⎰⎰321(cos )y yxy dy y=-⎰221(cos cos1)y y y dy =-+⎰222111sin cos122y y ⎛⎫=-- ⎪⎝⎭1(3cos1sin1sin 4)2=+- 3.化二重积分⎰⎰Dd y x f σ),(为两种不同积分次序的二次积分,其中积分区域D 为: (1)由x y x y 4,2==所围成的闭区域;:D X -型区域04x x y ≤≤⎧⎪⎨≤≤⎪⎩⎰⎰D d y x f σ),(=⎰⎰xxdy y x f dx 240),(:D Y -型区域2044y y x y ≤≤⎧⎪⎨≤≤⎪⎩,故⎰⎰D d y x f σ),(=⎰⎰y y dx y x f dy 4402),( (2)由x 轴及上半圆周)0(222≥=+y r y x 所围成的闭区域;:D X -型区域0r x ry -≤≤⎧⎪⎨≤≤⎪⎩⎰⎰D d y x f σ),(=⎰⎰--220),(x r r r dy y x f dx :D Y -型区域0y rx ≤≤⎧⎪⎨≤⎪⎩⎰⎰D d y x f σ),(=⎰⎰---2222),(0y r y r r dx y x f dy (3)环形闭区域:4122≤+≤y x .:D X -型区域21x y -≤≤-⎧⎪⎨≤≤⎪⎩11x y -≤≤⎧⎪⎨≤⎪⎩11x y -≤≤⎧≤≤12x y ≤≤⎧⎪⎨≤≤⎪⎩故⎰⎰Dd y x f σ),(=1121(,)(,)dx f x y dy dx f x y dy ---+⎰⎰⎰1211(,)(,)dx f x y dy dx f x y dy -++⎰⎰:D Y -型区域2111y y x x -≤≤--≤≤⎧⎧⎪⎪⎨⎨≤≤≤⎪⎪⎩⎩1112y y x x -≤≤≤≤⎧⎧⎪⎨≤≤≤⎪⎩ 故⎰⎰Dd y x f σ),(=1121(,)(,)dy f x y dx dy f x y dx ---+⎰⎰⎰1211(,)(,)dy f x y dx dy f x y dx -++⎰⎰(D 的极坐标为0212r θπ≤≤⎧⎨≤≤⎩故2201(,)(cos ,sin )Df x y d d f r r rdr πσθθθ=⎰⎰⎰⎰)4.计算下列二次积分 (1)dy edx x y ⎰⎰-10022;解:设20101::10x y D D y x y ≤≤≤≤⎧⎧⎪⎨⎨≤≤≤≤⎪⎩⎩,则22122y y Ddx dy edxdy --=⎰⎰⎰22221111220y y yydy edx edy dx --==⎰⎰⎰⎰2221112220()(1)y y y ex dy ey dy --==-⎰⎰22112220y y edy y edy --=-⎰⎰221122y y edy yde--=+⎰⎰22211112222[]y y y edy yeedy e ----=+-=⎰⎰(2)dy yxdx dy yxdx xxx⎰⎰⎰⎰+214222sin 2sin ππ.解:设1224:2x x D y x y ≤≤≤≤⎧⎧⎪⎪≤≤≤≤ ,212:y D y x y ≤≤⎧⇒⎨≤≤⎩则2421222xxxdx dy dx dy yyππ+⎰⎰221sinsin22y yDxxdxdy dy dx yyππ==⎰⎰⎰⎰2212(cos)2y yyxdy yππ=-⎰212(coscos )22y y y dy πππ=--⎰212cos2yy ππ=-⎰ 2211222(sin sin )22y y y dy πππππ=--⎰ 2122322448(cos )2y ππππππ=--+=+ 5.改变下列二次积分的积分次序. (1)⎰⎰--21222),(x x xdy y x f dx ;解:设12:2x D x y ≤≤⎧⎪⎨-≤≤⎪⎩01:21y D y x ≤≤⎧⎪⇒⎨-≤≤+⎪⎩⎰⎰--21222),(x x xdy y x f dx =(),Df x y dxdy ⎰⎰=⎰⎰-+-102112),(y ydx y x f dy (2)dy y x f dx dy y x f dx x x⎰⎰⎰⎰-+4006460),(),(解:设0446:0602x x D x y x y ≤≤⎧≤≤⎧⎪⎨⎨≤≤-≤≤⎩⎪⎩ 02:26y D y x≤≤⎧⇒⎨≤≤-⎩dy y x f dx dy y x f dx x x ⎰⎰⎰⎰-+4026460),(),(=(),Df x y dxdy ⎰⎰=⎰⎰-2062),(yy dx y x f dy6.如果二重积分⎰⎰Dd y x f σ),(的被积函数),(y x f 能分解为x 的函数与y 的函数的乘积,即)()(),(21y f x f y x f ⋅=,且积分区域D 为矩形区域:d y c b x a ≤≤≤≤,,证明二重积分等于两个定积分的乘积,即12(,)()()b da c Df x y d f x dx f y dy σ⎡⎤⎡⎤=⋅⎰⎰⎰⎰⎣⎦⎣⎦证明:12(,)(,)()()bdbda c a c Df x y d dx f x y dy dx f x f y dy σ==⎰⎰⎰⎰⎰⎰.12[()()]b da c f x f y dy dx =⎰⎰12[()(())]b da c f x f y dy dx =⎰⎰ 21()()dbc a f y dy f x dx ⎡⎤⎡⎤=⋅⎰⎰⎣⎦⎣⎦12()()bd a c f x dx f y dy ⎡⎤⎡⎤=⋅⎰⎰⎣⎦⎣⎦7.把二重积分⎰⎰Dd y x f σ),(化为极坐标系下的二次积分,其中积分区域D 分别为:(1)x y x 422≤+;解:区域的极坐标表示为::2204cos D r ππθθ⎧-≤≤⎪⎨⎪≤≤⎩。