七年级数学上册1.1正数和负数教学设计(新版)新人教版【精品教案】
- 格式:doc
- 大小:124.51 KB
- 文档页数:5
人教版七年级数学上册1.1《正数和负数》教学设计一. 教材分析人教版七年级数学上册1.1《正数和负数》是学生在小学阶段对正负数有了初步认识的基础上,进一步学习正负数的性质和运算。
本节课的内容主要包括正数和负数的定义、性质以及它们之间的运算规律。
通过本节课的学习,学生能够掌握正负数的基本概念,理解正负数的相对性,并能进行简单的正负数运算。
二. 学情分析学生在小学阶段已经接触过正负数,对正负数有一定的认识,但仅仅是停留在表面,没有深入理解。
此外,学生的数学基础和学习能力各有差异,因此在教学过程中需要关注学生的个体差异,因材施教。
三. 教学目标1.理解正数和负数的定义,掌握它们的性质。
2.能进行简单的正负数运算。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.正数和负数的定义及性质。
2.正负数的运算规律。
五. 教学方法1.情境教学法:通过生活实例引入正负数的概念,让学生在实际情境中感受正负数的意义。
2.小组合作学习:引导学生分组讨论,共同探究正负数的性质和运算规律。
3.启发式教学:教师提问,引导学生思考,激发学生的学习兴趣。
4.实践操作:让学生通过计算器进行实际操作,加深对正负数运算的理解。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解。
2.计算器:每个学生一台计算器,用于实践操作。
3.练习题:准备适量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如温度、海拔等,引入正负数的概念。
引导学生思考:为什么需要正负数?怎样表示正负数?2.呈现(10分钟)讲解正数和负数的定义,通过示例让学生理解正负数的性质。
如:正数表示具有某种意义的量,负数表示相反意义的量;正数大于0,负数小于0,正数大于一切负数等。
3.操练(10分钟)学生分组讨论,探究正负数的运算规律。
教师提问,引导学生思考:正数和负数如何相加、相减、相乘、相除?学生通过实际操作计算器,验证所探究的运算规律。
初一上册数学《正数和负数》教案(精选10篇)初一上册数学《正数和负数》教案 1一、内容和内容解析1、内容正数和负数的意义。
2、内容解析引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。
本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。
在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析1、教学目标(1)体会引入负数的必要性;(2)了解负数的意义,会用正数、负数表示具有相反意义的量。
2、目标解析(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。
在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。
在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。
这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。
突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计1、创设情境,引入新知教师展示教科书图1。
1.1正数和负数教学过程设计课题1.1正数和负数授课人教学目标1.理解正、负数的概念,会判断一个数是正数还是负数.2.会用正、负数表示具有相反意义的量,会用数学的方法表达实际情境.3.通过对具体情境的观察和思考,知晓负数概念形成的过程,培养学生的数感、符号意识,培养学生用数学眼光看待、观察现实世界的意识与习惯.教学重点能理解正、负数的概念,会判断一个数是正数还是负数.教学难点会用正、负数表示具有相反意义的量.教学活动教学步骤师生活动设计意图活动一: 创设情境导入新课【课堂引入】数的产生和发展离不开生活和生产的需要.人们对于数的认识就是伴随着记数、测量、运算等方面的需求不断拓展的(如图1-1-2).在小学,我们学过自然数、小数和分数,它们都是大于或等于0的数,但是在日常生活和生产实践中,为了表达和运算的需要,还有必要引入一类新的数.图1-1-2(1)北京冬季某一天的最高气温为零上3摄氏度,最低气温为零下结合已有的知识经验和生活常识,通过问题的形式引导学生发现“新数”,进而引入课题.3摄氏度.如何用数区分“零上3摄氏度”和“零下3摄氏度”? (2)某公司今年7月份盈利50万元,8月份亏损10万元.该公司在记账时如何用数分别表示“盈利50万元”和“亏损10万元”? (3)某年,我国棉花产量比上年增长7.8%,玉米产量比上年减少0.7%.统计这两种农作物产量的变化情况时,如何用数分别表示“增长7.8%”和“减少0.7%”?活动二: 探究与应用【探究1】正、负数的概念正数:像3,50,7.8%这样大于0的数叫作正数.负数:像-3,-10,-0.7%这样在正数前加上符号“-”的数叫作负数.3或+3读作“3或正3”,-3读作“负3”.注意:(1)有时,为了明确表达与负数的相反意义,在正数的前面也加上符号“+”.例如,+10,+2,+2.7%.一般情况下,正数前面的“+”省略不写.采取比较轻松的方式,尽量避免使概念复杂化,让学生觉得数学并不难学,增强学生的自信心!活动二: 探究与应用(2)一个数前面的“+”“-”号叫作这个数的符号.例如,+10读作“正10”;-3读作“负3”.【探究2】0我们在小学时知道:0表示没有,0不能作除数,0乘任何数都等于0.从本节课的学习中我们知道,0不仅仅表示没有,0 ℃不是没有温度,而是规定冰水混合物的温度为0 ℃.在实际意义中,0往往表示基准,比如海平面、警戒水位等,有着丰富的内涵.总结:0既不是正数,也不是负数.【探究3】用正、负数表示具有相反意义的量甲汽车向东行驶3 km,乙汽车向西行驶1 km.蔬菜店某天上午购进黄瓜50 kg,下午售出黄瓜2 kg.教师:你会用正、负数来表示这些具有相反意义的量吗?总结:对0的分析,能够帮助学生加深对0的内涵的理解.用趣味情境启发学生用正、负数表示具有相反意义的量.让学生初步认识负数,知道负数的产生是生活的需要.(1)定义:在生活中存在各种各样的量,其中有一种量,它们的属性相同(即同类量),但表示的意义却相反,我们把这样的量叫作相反意义的量.(2)表示法:用正数与负数表示一对具有相反意义的量.把其中一种意义的量规定为正,把另一种与之意义相反的量规定为负. 【应用举例】例1 指出下面各数中的正数、负数: -2,+313,0,45,2024,-0.02,+3.65,-112.例2 某校组织学生去劳动实践基地采摘橘子,并称重、封装.一箱橘子的标准质量为2.5 kg .如果用正数表示超出标准质量的克数,那么(1)比标准质量多65 g 和比标准质量少30 g 各怎么表示? (2)50 g,-27 g 各表示什么意思?例3 (1)一个月内,李明体重增加1.2 kg,张华体重减少0.5 kg,刘伟体重无变化,写出他们这个月的体重增长值.(2)四种品牌的手机今年第二季度的销售量与第一季度相比,变化率如下:A 品牌减少2%,B 品牌增长4%,C 品牌增长1%,D 品牌减少3%.写出今年第二季度这些品牌的手机销售量的增长率. 通过对实例的分析,让学生知道如何用正、负数表示具有相反意义的量.【拓展提升】例4 一批螺帽产品的内径允许的偏差是±0.02 mm,现抽查5个样品,超过规定的毫米数记为正数,不足的毫米数记为负数,检查结果(单位:mm)如下表,则符合要求的产品有 ( )序号 12345结果+0.031 +0.017 +0.023 -0.021 -0.015A .1个B .2个C .3个D .5个例5 某粮食加工厂生产的大米,每袋的标准质量是20 kg,规定合格产品最重不超过20.5 kg,最轻不低于19.8 kg .用正数表示超通过练习进行针对性的巩固,使学生在掌握基础知识的同时,拓展提升.过标准的质量,用负数表示不足标准的质量,现有10袋大米,它们的质量分别记作-0.3 kg,0.4 kg,-0.1 kg,-0.2 kg,0 kg,-0.25 kg,0.5 kg,-0.15 kg,0.6 kg,-0.06 kg,则这10袋大米的合格率是多少? 活动 三: 课堂 总结 反思【当堂训练】1.下列结论正确的是 ( )A .0既是正数,又是负数B .0是最小的正数C .0是最大的负数D .0既不是正数,也不是负数 2.在-7,0,-3.78,+100,-0.27中,负数有 ( )A .0个B .1个C .2个D .3个 3.若-50元表示支出50元,则+100元表示 .4.正常水位为0 m,如果用正数表示水面高于正常水位的高度,那么水位高于正常水位0.2 m 记作 ,低于正常水位0.3 m 记作 .5.指出下面各数中的正数、负数:-0.3,52,+312,-135,0,-4,2024.6.某商店利用公式:利润=售价-进价,计算该商店星期一的利润为-30元,星期二的利润为+300元,请说明-30元和+300元的含义. 通过检测发现学生对本节课知识的掌握情况,总结本节课的教学效果,并为课下辅导做好准备.【知识网络】提纲挈领,重点突出. 【作业布置】教材P3练习,P5练习、习题1.1T4,T5,T6.根据内容,重点设置作业,巩固课堂教学效果.【教学反思】①[授课流程反思]通过身边常见的生活情境,让学生感受到数不够用了,进而引入新课,容易调动学生的积极性,更能体现正、负数的实际意义.②[讲授效果反思]通过对实际问题的探究,感受正、负数的实际意义,更好地理解负数的概念.让学生正确理解“一个数,如果不是正数,必定是负数或0”,强调“0既不是正数,也不是负数”.③[师生互动反思]④[习题反思]好题题号错题题号反思,更进一步提升.。
正数与负数教学设计:一、教学目标1. 知识与技能:(1)理解正数和负数的概念,掌握正数和负数的表示方法。
(2)掌握正数和负数是表示具有相反意义的量(3)能够解决实际问题中涉及正数和负数的问题。
2. 过程与方法:(1)通过实例引入正数和负数,培养学生从实际情境中抽象出数学概念的能力。
(2)通过小组合作、讨论交流,培养学生的合作意识和解决问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,增强学生对数学学科的认识。
(2)培养学生勇于探索、积极思考的学习态度。
二、教学内容1. 正数和负数的概念:(1)正数:像1.1,2,5.9这样大于0的数叫做正数(2)负数:在正数前面加上一个符合“”的数,比如2,3,9.12. 正数和负数的表示方法:(1)正数:直接写出数字,如5、5。
(2)负数:在数字前加上“”号,如3、10。
3.正数和负数的意义正数和负数用来表示具有相反意义的量三、教学过程1. 导入:(1)通过实际情境(如温度、高度等)引入正数和负数。
(2)让学生举例说明生活中遇到的正数和负数。
2. 新课:(1)讲解正数和负数的概念。
(2)介绍正数和负数的表示方法。
,强调0既不是正数,也不是负数(3)正数和负数用来表示具有相反意义的量3. 练习:(1)让学生完成课本上的练习题。
(2)小组合作,讨论交流,解决实际问题。
4. 总结:(1)总结正数和负数的概念、表示方法。
(2)强调正数和负数在实际生活中的应用。
四、作业1. 完成课本上的练习题。
2. 结合实际情境,自编一道涉及正数和负数的实际问题,并解答。
五、课后反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学方法,以提高学生对正数和负数的认识和应用能力。
同时,关注学生的学习兴趣,激发学生的学习积极性,为后续学习打下坚实基础。
第一章有理数1.1 正数和负数教学目标课题 1.1 正数和负数授课人素养目标1.理解具有相反意义的量及正数、负数的意义.2.会用正数、负数表示具体情境中具有相反意义的量,体会数学知识与生活的密切联系,进一步增强符号意识,培养应用意识.3.理解0的意义,体会0在解决实际问题中的“基准”作用,初步培养抽象能力.教学重点1.能理解正数、负数的概念,会判断一个数是正数还是负数.2.会用正数、负数表示具体情境中具有相反意义的量.教学难点1.用正数、负数表示具有相反意义的量时描述向指定方向变化的情况.2.理解0的意义,体会0在解决实际问题中的“基准”作用.教学活动教学步骤师生活动活动一:创设情境,导入新课【情境导入】1.观察下面三幅图,这些自然数、分数以及小学时学过的小数是由生活实际的需要产生的,那么它们能否完全满足我们目前生产、生活的需要呢?2.思考教材P1引言中的三个问题.在这三个问题中,“零下3摄氏度”“亏损10万元”“减少0.7%”能够用上面的数表示吗?这说明了什么?【教学建议】引导学生通过观察三幅图,体会小学学过的几个数都是基于现实需要产生的,然后引导学生思考三个问题,提出疑问,使学生产生探索欲望.设计意图先通过图片形式让学生体会已学过的数的产生具有必然性与局限性,然后通过列举的三个问题为引入新知做准备.活动二:实践探究,获取新知探究点1 具有相反意义的量及正数、负数的认识Ⅰ.具有相反意义的量问题1结合下面图示,对于引言中的问题(1),我们如何用数区分“零上3摄氏度”和“零下3摄氏度”呢?观察图①,零上温度和零下温度是以0 ℃为分界点的具有相反意义的量.观察图②中的天气预报可以看出,零上3摄氏度用3 ℃表示,零下3摄氏度用-3 ℃表示.问题2类似地,对于引言中的问题(2)(3),应如何用【教学建议】这里要结合教材引言中的问题进行分析,其中第一个问题与生活实际密切相关,学生通过平时看天气预报已经对此有一定的了解,教师要结合实际情境进行说明.可在最后指出具有相反意义的量的一些特点.“属性相同”,也就是同类量,比如“盈利”与“亏损”是同类量,但“盈利”与“减少”就不是设计意图借助生活实例,引导学生理解具有相反意义的量,通过相应出现的数,进一步引入正数、负数的概念,并借此体会正数、负数的意义.数分别表示“盈利50万元”“亏损10万元”以及“增长7.8%”“减少0.7%”呢?如果用“50万元”表示盈利50万元,就可以用“-10万元”表示亏损10万元.如果用“7.8%”表示增长7.8%,就可以用“-0.7%”表示减少0.7%.问题3通过问题1,2,你认为具有相反意义的量有哪些特点?成对出现、属性相同(同类量)、意义相反.Ⅱ.正数、负数的认识问题1通过上面对“具有相反意义的量”的介绍,我们已经知道有-3,-10,-0.7%这样的数,对于这种类型的数,我们该如何进行定义?概念引入:问题2正数前面的“+”号和负数前面的“-”号是否都可以去掉?为什么?正数前面的“+”号可以去掉也可以不去掉,负数前面的“-”号不能去掉.因为正数就是大于0的,加不加“+”号都没有影响;但对负数而言,只有在正数前面加上“-”号才是负数,所以“-”号不能去掉.如果一个问题中出现具有相反意义的量,就可以用正数和负数分别表示它们.我们一起来看下面的例题.例1(教材P3例1)某校组织学生去劳动实践基地采摘橘子,并称重、封装.一箱橘子的标准质量为2.5 kg.如果用正数表示超过标准的质量,那么(1)比标准质量多65 g和比标准质量少30 g各怎么表示?(2)50 g,-27 g各表示什么意思?填空分析:(1)前面我们讲到“零上温度和零下温度是以0 ℃为分界点的具有相反意义的量”,那么本题中的分界点是标准质量2.5 kg.(2)题目中比标准质量多×× g 和比标准质量少×× g 是具有相反意义的量.解:(1)比标准质量多65 g用+65 g表示,比标准质量少30 g用-30 g表示.(2)50 g表示这箱橘子的质量比标准质量多50 g,-27 g表示这箱橘子的质量比标准质量少27 g.【对应训练】教材P3练习同类量;“意义相反”指变化的方向相反,不要与意义相近混淆(比如增长与增加就不构成具有相反意义的量).另外需注意:具有相反意义的量要求意义相反,但不要求数量相等.如盈利3`000元与亏损400元是具有相反意义的量.【教学建议】这里注意引导学生正确理解正数、负数的概念.注意前面有“-”号的数不一定是负数,比如-(-3)就不是负数,这涉及后面的知识,教师知道即可,如学生有疑问可适当解释,本课时不作要求. 【教学建议】例1可让学生回答下什么是“分界点”,什么是具有相反意义的量,便于加深理解.设计意图探究点20的意义正数和负数在实践中有着广泛的应用.如图,在表示某地的高度时,通常以海平面为基准,用0 m表示海平面的海拔.【教学建议】教师提醒学生注意,生活中有在用正数、负数表示具有相反意义的量的基础上,以海拔说明0的“基准”作用,丰富0的意义. 用正数表示高于海平面的海拔,用负数表示低于海平面的海拔,如图中用正数、负数分别表示世界最高峰的海拔和我国陆地最低处的海拔.问题1结合上面这个实际应用和上面所学知识,你认为0还只仅仅表示“没有”吗?0是正数与负数的分界.0 ℃是一个确定的温度,海拔0 m是一个确定的海拔.0已不只是表示“没有”.问题2(教材P4思考)如图①是地理中的分层设色地形图,图②是手机中的部分收支款账单,其中的正数和负数的意义分别是什么?你能再举一些用正数、负数表示具有相反意义的量的例子吗?图①中的正数表示A地高于海平面4 600 m,负数表示B地低于海平面100 m.图②中的正数表示收入15元,负数分别表示支出10元、支出30元.其他例子:比如叶宇同学向南走20 m记为+20 m,那么他向北走30 m可记为-30 m.例2(教材P4例2)(1)一个月内,李明体重增加1.2 kg,张华体重减少0.5 kg,刘伟体重无变化,写出他们这个月的体重增长值.(2)四种品牌的手机今年第二季度的销售量与第一季度相比,变化率如下:A品牌减少2%,B品牌增长4%,C品牌增长1%,D品牌减少3%.写出今年第二季度这些品牌的手机销售量的增长率.填空分析:第(1)小题要求写出“增长值”,所以,用正数表示体重增加量,用负数表示体重减少量.这样,直接翻译“体重减少1 kg”就是体重增长-1 kg.第(2)小题可以此类推.解:(1)这个月李明体重增长1.2 kg,张华体重增长-0.5 kg,刘伟体重增长0 kg.(2)四种品牌的手机今年第二季度销售量的增长率是:A品牌-2%,B品牌4%,C品牌1%,D品牌-3%.追问增长-2%是什么意思?什么情况下增长率是0?增长-2%就是减少2%.第二季度的手机销售量与第一季度相同时,增长率是0.【对应训练】些具有相反意义的量没有明确的分界,一般把某一个量规定为“0”,即基准,习惯上,超过基准的部分用正数表示,低于基准的部分用负数表示.【教学建议】这个问题2继续说明0作为正数、负数的“分界”,在解决实际问题中的“基准”作用.注意例子中地形图上的海拔一般不标单位,实际采用米作单位W.手机收付款的收支平衡可以用0表示.【教学建议】用正数、负数表示具有相反意义的量时,难点是描述向指定方向变化的情况,即:向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示.这与学生的日常经验有一定的矛盾,需要一个“心理转换”:把“体重减少0.5 kg”,转换为“体重增加-0.5 kg”,需要对“负”与“正”的相对性有较好的理解.实际上,只要问题中包含具有相反意义的量,就可以用正数和负数分别表示,而哪个量用负数表示,可以视实际需要而定,教学时要注意引导.教材P5练习.活动三:知识升华,巩固提升例3(教材P5习题1.1第6题)某班七组同学分别测量同一座楼的高度,测得的数据(单位:m)分别是:79.4,80.6,80.8,79.1,80,79.6,80.5.这些数据的平均值是多少?以平均值为标准,用正数表示超出的部分,用负数表示不足的部分,它们对应的数分别是什么?解:平均值是(79.4+80.6+80.8+79.1+80+79.6+80.5)÷7=560÷7=80.即这些数据的平均值是80 m.它们对应的数分别是-0.6 m,0.6 m,0.8 m,-0.9 m,0 m,-0.4 m,0.5 m.【对应训练】1.体育锻炼标准规定:13岁男生每分钟做22个仰卧起坐为达标,超过标准的个数用正数表示,不足标准的个数用负数表示.八位同学的成绩分别记录为:+3,-1,+1,0,-2,+2,+4,-3.这八位同学中达标的有(B)A.4人B.5人C.6人D.8人2.某校七年级利用劳动实践课开展创意点心制作比赛活动.李龙制作了一盒精美点心(共计6枚),现在他把6枚点心称重(单位:g)后统计列表如下:第1枚第2枚第3枚第4枚第5枚第6枚68.4 g 71.3 g 70.7 g 68.6 g 69.1 g 72 g为了简化运算,李龙依据比赛的标准质量,把超出部分记为正,不足部分记为负,列出下表(数据不完整),请你把表格补充完整:第1枚第2枚第3枚第4枚第5枚第6枚-1.6 g +1.3 g +0.7 g -1.4 g -0.9 g +2 g解:补充表格如上所示.【教学建议】对于例题中求平均值,小学时已经学过,只要将各个数据相加求和再除以7即可,这个可由学生自主完成.难点主要在于以平均值为标准,用负数表示不足的部分.这里没学有理数的加减运算,可让学生用较大数减去较小数,然后根据具有相反意义的量的知识来表示.设计意图安排此例题和对应训练是想让学生体会以平均值为标准,用正数表示超出的部分,用负数表示不足的部分的方法.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是正数,什么是负数,0是什么数?2.怎么表示具有相反意义的量?3.0的意义是什么?【知识结构】【作业布置】1.教材P5习题1.1第1,2,3,4,5题.2.《创优作业》主体本部分相应课时训练.板书设计1.1 正数和负数1.具有相反意义的量:①“零上3摄氏度”与“零下3摄氏度”②“盈利50万元”与“亏损10万元”……2.正数和负数教学反思本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分.学生通过经历讨论、探索、交流、合作等过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,提升学生的能力,促进学生的发展,使每个学生在教学中都能得到收获.解题大招一用正数、负数表示具有相反意义的量当题目中已明确“一种意义”的量对应的是正数(负数)时,我们就可以判断“与之具有相反意义”的量所对应的是负数(正数).如果没有明确哪种意义的量用正数表示,那么我们可以任选一种意义的量用正数表示,而另一种意义的量必须用负数表示.例1(1)在知识竞赛中,如果用-10分表示扣10分,那么加20分记为(C)A.+10分B.-10分C.+20分D.-20分(2)如果风车顺时针旋转66°,记作+66°,那么逆时针旋转78°,记作(A)A.-78°B.78°C.-12°D.12°(3)我国古代数学名著《九章算术》中对正数和负数的概念注有“今两算得失相反,要令正负以名之”.如:库管员把仓库运进30 t粮食记为“+30”,则“-30”表示运出30 t粮食.解题大招二用正负数表示允许偏差例2某品牌饮料外包装上标明“净含量:200 mL ±5 mL”,随机抽取四种口味的这种饮料分别检测如表.其中,净含量不合格的是(B)种类原味草莓味香草味巧克力味净含量/ mL 195 210 200 205A.原味B.草莓味C.香草味D.巧克力味分析:先计算净含量范围,比较即可求解.由题目中200 mL±5 mL可知,200+5=205(mL),200-5=195(mL),所以净含量合格范围是195 mL~205 mL之间.因为210>205,所以净含量不合格的是草莓味.故选B.解题策略:解这类题关键是知道“±××”表示的是允许偏差的范围.以本题为例,200 mL±5 mL表示饮料净含量最大可以是(200+5)mL,最小可以是(200-5)mL.培优点实际问题中“基准”的相对性例如图,已知摩天轮的最高点距地面165 m,最低点距地面5 m.(1)若以地面为基准,则摩天轮最高点和最低点的高度分别如何表示?(2)若以摩天轮最低点的位置为基准,则最高点和地面的高度分别如何表示?分析:(1)以地面为0 m时,高出地面都记为正数;(2)以该摩天轮最低点的位置为0 m时,最高点的高度为正数,地面高度为负数.解:(1)若以地面为基准,该摩天轮最高点和最低点的高度分别表示为+165 m,+5 m.(2)若以该摩天轮最低点的位置为基准,则最高点的高度为165-5=160(m).最高点的高度可表示为+160 m,地面高度表示为-5 m.。
正数和负数一、内容和内容解析内容:人教版课标实验教材七年级上册第一章第一节正数和负数(第一课时)内容解析:正数和负数是学生由小学进入初中后上的第一堂数学课。
课本开宗明义指出数的产生和发展离不开生活和生产的需要。
当我们在生产、生活、科研中遇到数的表示和数的运算的问题时,我们在小学阶段所学的数无法满足生产和生活的需要,于是自然地要求进行数的扩充,依据互为相反意义的量引我们入了负数的概念,把数系扩充到了有理数的范围。
这是第二次对数的扩充(第一次数的扩充是分实物或做除法时不能整除而引进正分数而把自然数扩充到非负有理数):课本通过生产和生活中的具体的例子,把数系扩充到了有理数。
这一过程让学生了解数的扩充的背景,经历数的扩充的形成过程,学生从已有的认知出发,在一串与生产和生活戚戚相关的有关问题中,复习和巩固小学数系扩充的历程,开通了新数系又一次扩充的新理念,形成了良性的小学数学与初中数学的衔接关系,这样做既符合学生在现阶段的认知特点,又为学生的后续学习以及后一级阶段进行数系的继续扩充奠定了理论和实践的基础。
引入负数后,生产和生活中的一些具体事件能够很好地运用数学来进行描述,说明了引入数学符号的必要性,也为我们日后用字母代替数的代数运算开了先河,它可以使问题的阐述更简明、更深入。
本节课的教学重点是:正确认识正数和负数,理解0所表示的量的意义。
二、目标和目标解析教学目标:知识与技能:使学生了解正数与负数是从实际需要中产生的。
过程与方法:在经历从具体例子引入负数的过程中,使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量,理解0所表示的意义。
情感与态度:在负数概念形成的过程中,培养学生的观察、归纳和概括能力,激发学生学好数学的热情。
教学目标解析:1.了解负数产生的背景(数的产生和发展离不开生活和生产的需要),体会负数在生产和生活中运用的重要性。
2.学生经历负数引入的过程:生产和生活中的例子(具有互为相反意义的量)——数不够用——负数的引入——数学符号的表示——问题的解决等过程,初步培养学生数学符号感,了解数学符号在数学学习中的地位和作用。
第一章有理数1.1正数和负数【教学目标】1.经历从现实生活中的实例引入负数的过程,体会引入负数的必要性与合理性;掌握正、负数的概念和表示方法,会判断一个数是正数还是负数;理解数0表示的量的意义.2.理解具有相反意义的量的含义,熟练地运用正、负数描述现实世界具有相反意义的量,体会数学符号与对应的思想,掌握用正、负数表示具有相反意义的量的符号化方法.3.通过用正负数表示相反意义的量的教学,培养学生观察、比较和概括的能力.【重点难点】重点:灵活掌握正负数的概念,理解正数、负数及0的意义.难点:1.正确了解负数,能准确地举出具有相反意义的量的典型例子;2.会用正数、负数表示具有相反意义的量.【教学过程】一、创设情境在小学,我们从日常生活中的实例出发,先后学习了整数、小数、分数及其运算,在日常生活、生产和科研中,还会遇到另外一些数的表示问题,例如:教师出示教材P1的问题(1)-(3).上面的问题都涉及意义相反的两个量,如何用数表示像这样具有相反意义的两个量,需要引入负数.今天我们就来学习正数与负数.二、新知探究探究点1:正、负数的认识问题1:(1)负数有什么特点?(2)如果一个数不是正数就是负数,对吗?问题2:0只表示没有吗?要点归纳:引入正、负数后,0不再简简单单的只表示没有.它具有丰富的意义,是正负数的分界点.1.正数和负数的定义:像3,50,7.8%这样大于0的数叫作正数,正数的“+”有时可以省去不写.在正数前加上符号“-”的数叫作负数,其中符号“-”是负号,例如-10,-3,…,负数的“-”不能省去不写.2.正数与负数的表示法及读法一个数前面的“+”“-”号叫作这个数的符号.+3读作正3或3,-3读作负3.讨论思考:你认为0应该放在什么地方?+0与-0都是0,0是正数与负数的分界.0的意义不仅是表示“没有”,如0 ℃是一个确定的温度,海拔0表示海平面的平均高度.注:0既不是正数,也不是负数.探究点2:用正负数表示具有相反意义的量在日常生活中,你会遇到:(1)你向东走了5米和向西走了3米;(2)你的爸爸给(收入)你20元和你用了(支出)8元;(3)下雨池塘里的水位升高了0.01米和干旱池塘里的水位降低了0.03米;(4)温度是零上10度和零下6度.问题:上面出现的每一对量有什么共同特点?向东和向西,给(收入)和用了(支出),升高和降低,零上和零下都是具有相反意义的量.为了用数表示具有相反意义的量,我们把某种量的一种意义规定为正的,而把与它相反的一种意义规定为负的,负数是根据实际需要而产生的.要点归纳:具有相反意义的量包含两层含义:一是意义相反,二是必须含有具体的量.探究点3:0的意义及用正负数表示相对基准量问题:下图是吐鲁番盆地的示意图,你能用语言表述它与海平面的高度关系吗?它的含义是什么?要点归纳:“0”可以表示一种基准,高于基准的量用正数来表示,低于基准的量用负数表示.解题时注意,一定要先弄清“基准”是什么,再把数据还原成原数据.【典例评析】例1:读出下列各数,并把它们填在相应的圈里:,+38,-0.36,2.7,0,+9-11,49例2:教材P3【例1】.例3:教材P4【例2】.三、检测反馈1.下列语句正确的是()A.零上与零下是具有相反意义的量B.快和慢是具有相反意义的量C.向东走10米与向西走8米是具有相反意义的量D.+15米表示向南走15米2.飞机上升-50米实际上就是()A.上升50米B.下降50米C.下降-50米D.先上升50米,再下降50米3.如果收入300元表示为+300元,那么支出200元用表示.4.向南走-4米实际上是向走了米.5.在数-6,2.5,+23,0,-45,+8中,正数是,负数是,非正非负的数是.6.思考:某学校地面上的旗杆高28米,甲楼高26米,乙楼高35米,若以旗杆的高为基准,记作“0”米,如何表示甲、乙两大楼的高度?同学们,你能再举一些用正负数表示数量的实际例子吗?四、本课小结1.相反意义的量和正数、负数(1)为了用数表示具有相反意义的量,我们把某种量的一种意义规定为正的,而把与它相反的一种意义规定为负的,负数是根据实际需要而产生的.(2)0既不是正数也不是负数,正负数以0为界.2.基准在用正负数表示相反意义的量时,实际上除了规定正负外,还必须确定以什么为基准,并把它记为0.五、布置作业课堂作业:P3,P5练习课后作业:P5T1,4,5,6,P6T7六、板书设计七、教学反思本节是小学所学算数之后数的范围的第一次扩充,是从算数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础.本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量.本节的重点是通过熟悉的实例引入负数的概念,使学生明确数学知识来源于实践又服务于实践.能正确识别负数、用正负数表示具有相反意义的量是本节的难点.教学中要特别强调“0”的特殊身份,明确“0”既不是正数,也不是负数,它是正、负数的分界点.教学中应多结合实例让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识,通过实际例子的学习激发学生学习数学的兴趣.。
一、导入新课
1.情景引入 1
2.情景引入 2
3. 思考:根据实际生活的需要,人们引进了另一种数,你知道是什么数吗?
学生:(1) 预计明天白天某地的温度为- 3℃~3℃。
(2) 电梯楼层标数-1、-2
(2) 某年下列国家的商品进出口总额比上年的变化情况是:
美国减少 6.4%,德国增长 1.3%,法国减少 2.4%,英国减少 3.5%,
意大利增长 0.2%,中国增长 7.5%。
写出这些国家这一年商品进出口总额的增长率。
练习 1.
2010 年我国全年平均降水量比上年增加 108.7mm,2009 年比上年减少81.5mm,2008 年比上年增加 53.5mm,用正数和负数表示这三年我国全年平均降水量比上年的增长量。
练习 2.
如果把一个物体向右移动 1 m 记作移动+1m,那么这个物体又移动了-1m 是什么意思?如何描述这时物体的位置?
1.正数和负数的定义。
2.正数和负数的意义。
正数和负数一、内容和内容解析内容:人教版课标实验教材七年级上册第一章第一节正数和负数(第一课时)内容解析:正数和负数是学生由小学进入初中后上的第一堂数学课。
课本开宗明义指出数的产生和发展离不开生活和生产的需要。
当我们在生产、生活、科研中遇到数的表示和数的运算的问题时,我们在小学阶段所学的数无法满足生产和生活的需要,于是自然地要求进行数的扩充,依据互为相反意义的量引我们入了负数的概念,把数系扩充到了有理数的范围。
这是第二次对数的扩充(第一次数的扩充是分实物或做除法时不能整除而引进正分数而把自然数扩充到非负有理数):课本通过生产和生活中的具体的例子,把数系扩充到了有理数。
这一过程让学生了解数的扩充的背景,经历数的扩充的形成过程,学生从已有的认知出发,在一串与生产和生活戚戚相关的有关问题中,复习和巩固小学数系扩充的历程,开通了新数系又一次扩充的新理念,形成了良性的小学数学与初中数学的衔接关系,这样做既符合学生在现阶段的认知特点,又为学生的后续学习以及后一级阶段进行数系的继续扩充奠定了理论和实践的基础。
引入负数后,生产和生活中的一些具体事件能够很好地运用数学来进行描述,说明了引入数学符号的必要性,也为我们日后用字母代替数的代数运算开了先河,它可以使问题的阐述更简明、更深入。
本节课的教学重点是:正确认识正数和负数,理解0所表示的量的意义。
二、目标和目标解析教学目标:知识与技能:使学生了解正数与负数是从实际需要中产生的。
过程与方法:在经历从具体例子引入负数的过程中,使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量,理解0所表示的意义。
情感与态度:在负数概念形成的过程中,培养学生的观察、归纳和概括能力,激发学生学好数学的热情。
教学目标解析:1.了解负数产生的背景(数的产生和发展离不开生活和生产的需要),体会负数在生产和生活中运用的重要性。
2.学生经历负数引入的过程:生产和生活中的例子(具有互为相反意义的量)——数不够用——负数的引入——数学符号的表示——问题的解决等过程,初步培养学生数学符号感,了解数学符号在数学学习中的地位和作用。
培养学生在与人合作交流的过程中,主动探究问题本质,善于观察、归纳、概括以及发现解决问题的方法的能力。
3.负数引入过程的教学,让学生感受引入负数的必要性,激励学生在今后的学习中,要善于从生活和生产的事例中,发掘问题的本质,寻找规律,自我归纳,明确解决问题的基本套路,从而主动地去理解数学,感悟数学。
三、教学问题诊断分析:七年级的学生,已经有了当数不够用时而引入新数(正分数)的经历,并且也有用数学符号(字母)表示数(算术数或非负有理数)的基础。
但是,对于从具有相反意义的量引入负数,用负数来表示实际问题开始还是不习惯的,因此在教学中我们应从具体的事例出发,引导学生正确认识负数和数0表示量的意义,让学生通过思考、探究、归纳,主动地进行学习。
本节课的教学难点是:负数、数0表示的量的意义。
四、教学支持条件分析利用多媒体辅助教学,鲜活的动画效果和图片的展示,直观地引导学生认识互为相反意义的量,从而激发学生学习的积极性,达到突出重点,分散难点的作用。
五、教学过程设计(一)营造问题情境,导入新课1.复习回顾,做好衔接同学们已经有了六年学习数学的经验,数对每一位同学来说并不陌生,相信同学们已经认识到数的产生和发展离不开生产和生活的需要。
首先让我们来回顾:自然数的产生、分数的产生。
演示课件,展示图片,直观说明数的产生和扩充:(出示图片说明自然数的产生、分数的产生。
让学生理解数的符号的产生的好处)师生活动(引导学生观察图片,试着解释图片意义):我们知道,为了表示物体的个数(如原始社会打猎计数)或事物的顺序,产生了数1,2,3,...;为了表示“没有”(比如猎物分完),引入了数0;有时分配、测量(丈量土地)的结果不是整数,需要用分数(小数)表示. 总之,数是为了满足生产和生活的需要而产生发展起来的.设计意图:数的产生和发展离不开生活和生产的需要。
2.自主学习,合作交流,导入新课游戏(规则):各组派两名同学进行如下活动:一名同学按老师的指令表演,另一名同学在黑板上速记,看哪一组获胜。
师生活动:教师说出指令:向前两步,向后两步;向前一步,向后三步;向前四步,向后一步;向前四步,向后两步。
……一名学生按老师的指令表演,另一名学生在黑板上速记。
设计意图:通过活动,激发学生参与课堂教学的热情,使学生进入问题情境。
在教师分析同学们的活动情况下,指导学生引入数学符号刻画游戏本质:向前与向后是一组互为相反意义的的量。
规定向前用“+”,向后用“-”表示,这样上述游戏可用一组数学符号表示为+2、-2、+1、-3、+4、-1、+4、-2…。
让其感受到引入数学符号的必要性,由此引入新课(研究数字前面添上“+”或“-”的数,即互为相反意义的量)。
(二)自主探索,获取新知1.问题背景展示,获取具有相反意义的量常识在生活、生产、科研中,经常遇到数的表示与运算的问题。
①章前图(引言)演示课件,展示问题及相应的图片。
问题(1)北京冬季里某天的温度为-3~3,它的确切含义是什么?这一天北京的温差是多少?问题(2)有三个队参加的足球比赛中,红队胜黄队(4:1),黄队胜蓝队(1:0),蓝队胜红队(1:0)三个队的净胜球数分别是2,-2,0,如何确定排名顺序?问题(3)2006年我国花生产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里增长-2.7%代表什么意思?师生活动:教师演示课件并对问题背景做些说明:例如在净胜球的问题中,先介绍确定足球比赛排名顺序的规定:两队积分不相同,积分高的队排名在前;两队积分相同,净胜球多的队排名在前;两队积分、净胜球都相同,进球多的队排名在前。
其次介绍积分计算规则:胜一场得3分,平一场得1分,输一场得0分。
由此易知这三个队的积分均为3+0=3。
最后介绍净胜球的计算规则:红队胜黄队(4:1)表示红队进4球,失1球或者黄队进1球,失4球,净胜球就是比赛中多进了几个球。
这里进球和失球是互为相反意义的量。
我们规定:进球用“+”,失球用“-”表示,这样进球数和失球数可分别在进球数和失球数前面添上“+”或“-”来表示。
净胜球就是在比赛中进球与失球之和。
比如以红队为例,进球为4,失球为2(两场比赛各失一球)记为-2,所以红队净胜球为4+(-2)=2.类似地可算出黄队净胜球-2(进球比失球少2个球,相当于净失球2个,所以记为-2),蓝队净胜球是0.在教师的指导下,学生思考-3~3、净胜球与排名的顺序、增长-2.7%的意义以及在解决这些问题时必须要对这些新数进行四则运算等问题。
设计意图:通过温度的例子——出现新数-3还涉及到有理数的减法;净胜球的例子,也出现了负数,确定净胜球涉及有理数的加法,确定排名顺序涉及有理数的大小的比较;在产量增长率的例子中,运用正负数描述朝指定方向变化的情况等问题,引出用各种符号表示数,让学生试着解释,激发他们的求知欲,同时对问题进行说明,找出它们的共性,揭示问题的实质(具有相反意义的量)。
②具有相反意义的量的表示师生活动:鉴于上面的分析讨论,在教师的引导下,让学生试着归纳具有相反意义的量的表示:比如温度的问题,零上与零下(是以零为分界点)是具有相反意义的量,我们规定零上为正,则零下为负;净胜球的例子,进球与失球(对方进球)也是具有相反意义的量,我们规定进球为正,则失球为负……一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正,并在其前面写上一个“+”(读作“正”)来表示;把与它意义相反的量规定为负的,并在其前面写上一个“-”(读作“负”)来表示(零除外)设计意图:由实例归纳具有相反意义的量的表示方法,培养学生合作交流意识及从特殊到一般认识问题本质的能力。
③做一做,信息反馈(演示课件:出示幻灯片)例1 运用相反意义的量的意义,完成下表:例2 请你把下面句子中的量用“+”或“-”的数表示出来(1)一辆公共汽车在一个停车站下去10个乘客(2)甲工厂盈利了10万元,乙工厂亏损了8万元(3)商品价格上涨10%和下降15%.师生活动:让学生抢答,尽量照顾不同层次的学生,调动全班的积极性。
在教师的引导下学生仔细观察,小组讨论、交流,发表个人见解,学生踊跃发言,相互补充、完善,尝试归纳。
设计意图:通过师生活动,使学生正确理解具有相反意义的量,并能用数学符号表示具有相反意义的量。
由此为引入负数的概念埋下伏笔。
2.分析观察,认识新数,给出正数与负数的定义本章引言及例1与例2中的用到的数有-3,3,2,-2,0,1.8%,-2.7%,10,-8,10%,-15%(选取部分数),观察这一组数,哪些数的形式与在小学里学过的数有区别?师生活动:学生独立思考,分组讨论,举手发言,教师根据多名同学的发言归纳总结,同时板书课题:正数和负数。
①这组数中出现了部分新数,其中一部分数-3,-2,-2.7%,-8,-15%,在前面的实际问题中,它们分别表示零下3摄氏度,净输2球,减少2.7%,亏损8万元,下降15%,另一部分3,2,1.8%,10,10%分别表示零上3摄氏度,净胜2球,增长1.8%,盈利10万元,上涨10%。
②这两部分数在外形上的区别:比较这组数中的两部分数,发现第一部分数是在已学过的数(0除外)的前面添上“-”。
由此我们有正负数的描述性定义:③归纳定义:有像3,2,1.8%,8844.3,10%这样大于0的数叫做正数;像-3,-2,-2.7%,-155,-15%这样在正数前面加上负号“-”的数叫负数。
注:根据需要,有时也在正数的前面也加上“+”(正)号。
一个数前面的“+”“-”好叫做它的符号。
设计意图:在出现若干新数后,让学生合作交流,共同探究,在与小学学过的数对比的基础上,弄清新数的本质特征,采用描述定义正数和负数的意义,有利于学生对概念的理解。
④由正负数的概念立刻可知:数0既不是正数,也不是负数。
师生活动:在教师引导下,组织学生进一步理解正负数的概念,可以从正负数的描述性定义入手,在教师阐述0的意义的基础上,让学生对0的意义有一个新的认识。
0是正数与负数的一个分界,0是一个确定的温度,海拔0表示海平面的平均高度,0的意义已不仅是表示“没有”设计意图:对数0的意义讨论,有利于对正数和负数的意义的进一步了解。
(三)负数概念的应用1.0是正数与分数的分界点从前面的学习我们知道,把0以外的数分为正数和负数,起源于表示两种相反意义的量。
规定一种意义的量为正,则另一种意义的量为负。
后来正数和负数在许多方面被广泛地应用。
演示课件:幻灯片(出示图片)①小学使用的地图册里,有中国地形图,其中珠穆朗玛峰与吐鲁番盆地处都标有海拔高度。