“构造法”在求数列通项中的应用
- 格式:doc
- 大小:1.33 MB
- 文档页数:14
解题宝典求数列的通项公式问题比较常见,解答的方法有很多种,其中最常用的是构造法.构造法常用于求递推式较为复杂的数列的通项公式.我们运用构造法,将原数列构造成等差、等比数列,然后利用等差、等比数列的通项公式就可以求得数列的通项公式.一、a n +1=pa n +q (p ,q 均为常数)型递推式对于形如a n +1=pa n +q (p ,q 均为常数)的递推式,要求其数列的通项公式,一般需先引入参数x ,使a n +1+x =p ()a n +x ,然后将其整理为a n +1=pa n +px +x ,那么px +x =q ,由此解出x ,便可得到一个以a 1+x 为首项、p 为公比的等比数列,然后运用等比数列的通项公式即可解出.例1.已知数列{}b n 的前n 项和为S n ,满足b 1=1,S n =b n +1-n 2-n +22,求{}b n 的通项公式.解:由S n =b n +1-n 2-n +22可得S n -1=b n -n 2-3n +42,则2b n +n -1=b n +1,设2()b n +pn +q =b n +1+p ()n +1+q ,则2b n +2pn +2q =b n +1+pn +p +q ,所以p =1,q =0,即2()b n +n =b n +1+n +1,则{}b n +n 是以2为公比,2为首项的等比数列,所以b n +n =2×2n -1,故b n =2n -2..解答本题,首先需利用b n 与S n 的关系式求得b n的表达式,然后引入参数p 、q ,构造出等比数列{}b n +n ,进而利用等比数列的通项公式求得结果.二、a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0)型递推式由a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0)型递推式求数列的通项公式,一般有两种思路:1.先在递推关系式两边同除以q n +1,得a n +1qn +1=p q ·a n q n +1q ,引入辅助数列{b n }(其中b n =a n q n ),得b n +1=p q ·b n +1q ,再用待定系数法求解;2.将原递推关系式两边同除以p n +1,得a n +1pn +1=a np n +1q ·(q p )n ,引入辅助数列{b n }(其中b n =a npn ),得b n +1-b n =1p (q p)n ,再利用累加法(逐差相加法)求解.例2.已知数列{a n }中,a 1=56,a n +1=13a n +(12)n +1,求a n .解法一:在a n +1=13a n +(12)n +1两边同乘以2n +1,得2n +1·a n +1=23(2n ·a n )+1.令b n =2n ·a n ,则b n +1=23b n +1,根据待定系数法,得b n +1-3=23(b n -3).所以数列{b n -3}是以b 1-3=-43为首项、以23为公比的等比数列.所以b n -3=-43·(23)n -1,即b n =3-2(23)n.于是a n =bn 2n=3(12)n -2(13)n .解法二:在a n +1=13a n +(12)n +1两边同乘以3n +1,得3n +1a n +1=3n a n +(32)n +1.令b n =3n ·a n ,则b n +1=b n +(32)n +1.所以b n -b n -1=(32)n ,b n -1-b n -2=(32)n -1,…,b 2-b 1=(32)2.将以上各式累加,得b n -b 1=(32)2+…+(32)n -1+(32)n .又b 1=3a 1=52=1+32,所以b n =1+32+(32)2+…+(32)n -1+(32)n=2(32)n +1-2,即b n =2(32)n +1-2.故a n =b n 3n=3(12)n -2(13)n .解法一采用了第一种思路:在递推式左右两边同乘以2n +1,通过对应系数,构造出等比数列;解法二采用了第二种思路:在递推式左右两边同乘以3n +1,运用累加法求得数列的通项公式.由递推式求数列的通项公式问题的题型多种多样,但无论怎么变化,其解题的思路、方法基本相同:通过构造、变形等方式,将陌生、复杂的问题转化为熟悉、简单的等差、等比数列问题来求解.(作者单位:南京航空航天大学附属高级中学)41Copyright©博看网 . All Rights Reserved.。
构造法求数列通项公式典型例题解析构造法是一种求解数列通项公式的有效方法,也是数学中最具有挑战性的问题之一。
在广泛的数学研究和应用中,构造法往往可以解决复杂的问题,为我们提供求解给定数列的通项公式的有效方法。
本文将从构造法的基本定义和思想出发,通过一系列典型例题,详细解析构造法求解数列通项公式的基本原理和方法,以期更深入地理解构造法求数列通项公式的实际应用。
首先,构造法是什么?构造法是一种求解数列通项公式的策略,它以建立数列通项公式为目标,通过构造一个符合一定规律的数列来解决问题。
根据构造法的思想,我们可以确定以下步骤:首先,确定数列的个数和元素的值;其次,当确定了数列的个数和元素的值后,还需要确定数列的规律;最后,根据上述步骤,数列的规律和期望求解结果,最终确定数列通项公式。
构造法求解数列通项公式的典型例题,将从比较简单的例题开始介绍:例题1:已知数列{an}的通项公式为:an=3n-2,求数列{an}的前5项。
解:数列{an}的前5项为a1=3×1-2=1,a2=3×2-2=4,a3=3×3-2=7,a4=3×4-2=10,a5=3×5-2=13。
例题2:已知数列{bn}的前4项为:b1=2,b2=10,b3=26,b4=50,求数列{bn}的通项公式。
解:根据数列{bn}的前4项值,构造出以下数列:2,8,16,24,…,由此可得出bn=2n×4,即数列{bn}的通项公式为bn=2n×4。
例题3:已知数列{cn}的前3项为:c1=3,c2=12,c3=27,求数列{cn}的通项公式。
解:根据数列{cn}的前3项值,构造出以下数列:9,9,18,27,…,故数列{cn}的通项公式为cn=3n2-2n,即cn=3n2-2n。
以上就是构造法求解数列通项公式的三个典型例题及其解析,可以看出,构造法是一种有效的求解数列通项公式的方法。
专题04构造法求数列通项的八种技巧(一)【必备知识点】◆构造一:待定系数之1n n a Aa B +=+型构造等比数列求关于1n n a Aa B +=+(其中,A B 均为常数,(1)0AB A -≠)类型的通项公式时,先把原递推公式转化为()1n n a M A a M ++=+,再利用待定系数法求出M 的值,再用换元法转化为等比数列求解.其实对于这类式子,我们只需要记住在等式两侧加上一个常数M ,构造成等比数列.常数M 的值并不需要背诵,我们可以通过待定系数法推导出来.【经典例题1】已知{}n a 满足13a =,121n n a a +=+求数列{}n a 的通项公式.【解析】根据原式,设()12n n a m a m ++=+,整理得12n n a a m +=+,题干中121n n a a +=+,根据对应项系数相等得1m =.()1121n n a a +∴+=+,令11n n b a +=+,111314b a =+=+=,所以{}1n a +是4为首项,2为公比的等比数列.即1142n n a -+=⋅,121n n a +=-.【经典例题2】已知数列{}n a 中,11a =,123n n a a +=+,求数列{}n a 的通项公式.【解析】设()12n n a t a t ++=+,整理得12n n a a t +=+,题干中123n n a a +=+,根据对应项系数相等,解得3t =,故()1323.n n a a ++=+令3n n b a =+,则1134b a =+=,且11323n n n n b a b a +++==+.所以{}n b 是4为首项,2为公比的等比数列.所以11422n n n b -+=⨯=,即12 3.n n a +=-【经典例题3】已知数列{}n a 中,11a =,134n n a a +=+,求数列{}n a 的通项公式.【解析】设13()n n a t a t ++=+,即132n n a a t +=+,题干中134n n a a +=+,根据对应项系数相等,解得2t =,故()1232.n n a a ++=+令2n n b a =+,则1123b a =+=,且11232n n n n b a b a +++==+.所以{}n b 是3为首项,3为公比的等比数列.所以1333n n n b -=⨯=,即3 2.n n a =-【练习1】数列{}n a 中,1321,2n n a a a +=-=,设其前n 项和为n S ,则6()S =A.874B.634C.15D.27【答案】A 【解析】1321,2n n a a a +=-= ,可得2221a =-,解得232a =,同理可得:154a =变形为()111121,14n n a a a +-=--=.∴数列{}1n a -为等比数列,首项为14,公比为2.()6136121187412, 2 1.6.4214n n n n a a S ---∴-=⨯=+∴=+=-故选:A .【练习2】已知数列{}n a 的前n 项和为n S ,若323n n S a n =-,则2018()a =A.201821- B.201826- C.20181722⎛⎫- ⎪⎝⎭D.201811033⎛⎫-⎪⎝⎭【答案】A 【解析】数列{}n a 的前n 项和为n S ,()1111323,23,3n n S a n a S a =-∴==-解得13a =-,()()111123, (1), 2 , 233, 33n n n n S a n n S a n --=-=-+ (2),(1) (2),-得122133n n n a a a -=--,11123,2, 1n n n n a a a a --+∴=--∴=-+112a +=- ,{}1n a ∴+是以2-为首项,以2-为公比的等比数列,1(2),(2)1, n n n n a a ∴+=-∴=--201820182018(2)121a ∴=--=-.故选:A .【练习3】在数列{}n a 中,112,21n n a a a +==+,则5a =_______.【答案】47【解析】数列{}n a 中,112,21n n a a a +==+,变形为:()1121n n a a ++=+,113a +=,∴数列{}1n a +为等比数列,首项为3,公比为2,1132n n a -∴+=⨯,即1321n n a -=⨯-则4532147a =⨯-=.故答案为:47.【练习4】已知数列{}n a 满足113,21n n a a a +==+,则数列{}n a 的通项公式n a =______.【答案】21n n a =-【解析】()(){}*1121,121,1n n n n n a a n a a a ++=+∈∴+=+∴+N 是以112a +=为首项,2为公比的等比数列.12nn a ∴+=,故21nn a =-.【练习5】已知数列{}n a 的首项12a =,且()*11122n n a a n +=+∈N ,则数列11n a ⎧⎫⎨⎬-⎩⎭的前10项的和为______.【答案】1023【解析】数列{}n a 的首项12a =,且111(*)22n n a a n N +=+∈,则:()()11112n n a a +-=-,整理得:11112n n a a +-=-(常数),所以:数列{}1n a -是以11211a -=-=为首项,12为公比的等比数列,所以:1111*2n n a -⎛⎫-= ⎪⎝⎭,当1n =时,符合通项.故:1121n n a -=-,所以:01212222n n S -=++++ 21n =-所以:101021102411023S =-=-=.【练习6】已知数列{}n a 中,111,32n n a a a +==+,则n a =_______.【答案】1231n n a -=⨯-【解析】因为132n n a a +=+,所以()1131n n a a ++=+,因为112a +=,所以数列{}1n a +是以2为首项,以3为公比的等比数列,所以1123n n a -+=⨯,故答案为:1231n n a -=⨯-.◆构造二:待定系数之1n n a Aa Bn C +=++型构造等比数列求关于1(1,0,0)n n a Aa Bn C A C B +=++≠≠≠类型的通项公式时,与上面讲述的构造一的方法很相似,只不过等式中多了一项Bn ,在构造时我们也保持跟题干一样的结构,加一项pn 再构造等比数列就可以,即令()1(1)n n a p n q A a pn q ++++=++,然后与已知递推式各项的系数对应相等,解,p q ,从而得到{}n a pn q ++是公比为A 的等比数列.【经典例题1】设数列{}n a 满足14a =,1321(2)n n a a n n -=+-,求数列{}n a 的通项公式.【解析】将递推公式转化为[]13(1)n n a pn q a p n q -++=+-+,化简后得()13223n n a a pn q p -=++-,与原递推式比较,对应项的系数相等,得22231p q p =⎧⎨-=-⎩,解得11p q =⎧⎨=⎩,令1n n b a n =++,则13n n b b -=,又16b =,故16323n n n b -=⋅=⋅,1n n b a n =++,得231n n a n =⋅--.【经典例题2】已知:11a =,2n 时,11212n n a a n -=+-,求{}n a 的通项公式.【解析】设[]1111111(1),.22222n n n n a pn q a p n q a a pn p q --++=+-+=---与题干原式比较,对应项系数相等得12211122p p q ⎧-=⎪⎪⎨⎪--=-⎪⎩,解得46p q =-⎧⎨=⎩,首项146 3.a -+=所以{}46na n -+是3为首项,12为公比的等比数列.所以114632n n a n -⎛⎫-+=⋅ ⎪⎝⎭,即134 6.2n n a n -=+-【练习1】已知数列{}n a 是首项为11152,233n n a a a n +==++.(1)求{}n a 通项公式;(2)求数列{}n a 的前n 项和n S .【解析】因为(113(1)233n n a n a n +-++=-+2),且1321a -+=,所以数列{}32n a n -+是以1为首项,13为公比的等比数列,则3n a n -1123n -+=,即11323n n a n -=+-.【练习2】已知数列{}n a 和{}{},n n b a 的前n 项和n S ,对于任意的*,,n n n a S ∈N 是二次方程223x n x -+0n b =的两根.(1)求{}n a 和{}n b 通项公式;(2){}n a 的前n 项和n S .【解析】因为,n n a S 是一元二次方程223x n x -0n b +=的两个根,所以23n n n n na S n a Sb ⎧+=⎨=⎩,由n a 23n S n +=得2113(1)n n a S n +++=+,两式相减得1163n n n n a a S S n ++-+-=+,所以1n a +=11(63)22n a n ++,令1(1)n a A n B ++++=()12n a An B ++,则1111222n n a a An B +=--A -,比较以上两式的系数,得1321322A B A ⎧-=⎪⎪⎨⎪--=⎪⎩,解得69A B =-⎧⎨=⎩.所以1n a +-()16(1)9692n n a n ++=-+.又113a S +=,132a =,所以数列{}69n a n -+是以92为首项、12为公比的等比数列.所以69n a n -+=12919,69,3222n n n n n a n S n a -⎛⎫=++=-= ⎪⎝⎭293692n n n --+,所以9692n n b n ⎛⎫=+- ⎪⎝⎭293692n n n ⎛⎫--+ ⎪⎝⎭【练习3】设数列{}n a 是首项为11a =,满足2123(1,2,)n n a a n n n +=-+= .问是否存在,λμ,使得数列{}2nan n λμ++成等比数列?若存在,求出,λμ的值,若不存在,说明理由;【解析】依题意,令21(1)(n a n n λμ++++()21)2n a n n γλμγ++=+++所以12n na a +=22n n n λμλγλμ++-+--,即123,0λμλγλμ=-⎧⎪-=⎨⎪--=⎩解得110λμγ=-⎧⎪=⎨⎪=⎩.所以数列{}2n a n n -+是以2为公比、1111a -+=为首项等比数列.所以na 21212,2n n n n n a n n ---+==+-,即存在λ=1,1μ-=,使得数列{}2n a n n -+成等比数列.◆构造三:待定系数之1n n n a pa q +=+型构造数列求关于1nn n a pa q +=+(其中,p q 均为常数,(1)0pq p -≠)类型的通项公式时,共有3种方法.方法一:先用待定系数法把原递推公式转化为()11n n n n a q p a q λλ+++=+,根据对应项系数相等求出λ的值,再利用换元法转化为等比数列求解.方法二:先在递推公式两边同除以1n q+,得111n n n n a a p q q q q ++=⋅+,引入辅助数列{}n b (其中n b nna q=),得11n n p b b q q+=⋅+,再利用待定系数法解决;方法二:也可以在原递推公式两边同除以1n p +,得111nnn n n a a q p p p p ++⎛⎫=+⋅ ⎪⎝⎭,引入辅助数列{}n b (其中n n n a b p =),得11n n b b p +-=⋅.nq p ⎛⎫⎪⎝⎭,再利用叠加法(逐差相加法)求解.【经典例题1】已知数列{}n a 中111511,632n n n a a a ++⎛⎫==+ ⎪⎝⎭,求{}n a 的通项公式.【解析】解法一:构造数列11111232n n n n a a λλ++⎡⎤⎛⎫⎛⎫=+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎣⎦+⎥,化简成题干结构得11111332n n n a a λ++⎛⎫=- ⎪⎝⎭,对应项系数相等得3λ=-,设123nn n b a ⎛⎫= ⎪⎝⎭-,11112233b a ⎛⎫==- ⎪⎝⎭-,所以数列{}n b 是以23-为首项,13为公比的等比数列,12133n n b -⎛⎫=- ⎪⎝⎭,所以3223n nn a =-.解法二:将111132n n n a a ++⎛⎫=+ ⎪⎝⎭两边分别除112n +⎛⎫⎪⎝⎭,也就是乘12n +,为方便计算,我们等式两边同乘12n +,得()11222 1.3n nn n a a ++⋅=⋅+令2n n n b a =⋅,则1213n n b b +=+,这又回到了构造一的方法,根据待定系数法,得()12333n n b b +-=-,所以数列{}3n b -是首项为15432363b -=⨯-=-,公比为23的等比数列.所以142333n n b -⎛⎫-=-⋅ ⎪⎝⎭即2323nn b ⎛⎫=-⋅ ⎪⎝⎭.所以32223n n n nn b a ==-.解法三:将111132n n n a a ++⎛⎫=+ ⎪⎝⎭两边分别除113n +⎛⎫⎪⎝⎭,也就是乘13n +,得1113332n n nn n a a +++⎛⎫=+⋅ ⎪⎝⎭令3n n n b a =⋅,则1132n n n b b ++⎛⎫=+ ⎪⎝⎭,所以111233,22...nn n n n n b b b b ----⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,,22132b b ⎛⎫-=⋅ ⎪⎝⎭将以上各式叠加,得211333222n nn b b -⎛⎫⎛⎫⎛⎫-=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,又113b a =55331622=⨯==+,所以1213112333313222212n n n n b +-⎡⎤⎛⎫⋅-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦=+++++= ⎪ ⎪ ⎝⎭⎝⎭⎝⎭- 13222n +⎛⎫=⋅- ⎪⎝⎭,即132 2.2n n b +⎛⎫=⋅- ⎪⎝⎭所以32323n n n n n b a ==-.【经典例题2】已知数列{}n a 满足111243,1n n n a a a -+=+⋅=-,求数列{}n a 的通项公式.【解析】解法一:设()11323n n n n a a λλ-++⋅=+⋅,待定系数法得4λ=-,则数列{}143n n a --⋅是首项为111435a --⋅=-,公比为2的等比数列,所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅.解法二:(两边同除以1n q +)两边同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略.解法三:(两边同除以1n p+)两边同时除以12n +得:1113222n n n n n a a -++⎛⎫=+ ⎪⎝⎭,下面解法略.【练习1】已知数列{}n a 满足()*1111,32,nn n n nna a a a n ba ++==+∈=N .设t ∈Z ,若对于*n ∀∈N ,都有n b t >恒成立,则t 的最大值为()A.3B.4C.7D.9【答案】A 【解析】解法一:因为132n n n a a +=+,所以13122n n n n a a +=+,所以11312222n n n n a a ++=⋅+,所以11311222n n n na a ++⎛⎫+=+ ⎪⎝⎭,因为11a =,所以1112a +32=,所以数列12n n a ⎧⎫+⎨⎬⎩⎭是以32为首相以32为公比的等比数列,所以3122nn na ⎛⎫+= ⎪⎝⎭,所以n a 32n n =-,故选A.解法二:令()11232n n n n a A a A +++⋅=+⋅,因为132nn n a a +=+,对比系数得:1A =,所以数列{}2nna+是以3为首项,3为公比的等比数列,所以23n n n a +=,所以32n n n a =-,所以111332322332312nn n n n n nnn na b a +++⎛⎫⋅- ⎪-⎝⎭====+-⎛⎫- ⎪⎝⎭1312n⎛⎫- ⎪⎝⎭,因为*n ∀∈N ,所以312n⎛⎫- ⎪⎝⎭ 12.所以102312n<⎛⎫- ⎪⎝⎭,所以35n b <,对于*n ∀∈N ,都有n b t >恒成立,所以3t ,所以t 的最大值为3,故选A.【练习2】已知数列{}n a 满足()*112,22n n n a a a n +==++∈N .(1)判断数列{}2n n a -是否为等差数列,并说明理由;(2)记n S 为数列{}n a 的前n 项和,求n S .【解析】(1)数列{}n a 满足112,2nn n a a a +==+()*2n +∈N ,所以()()1122n n n n a a ++---=2.120a -=,所以数列{}2nn a -为等差数列,首项为0,公差为2.(2)由(1)可得:202(1)nn a n -=+-,可得:22(1)nn a n =+-,所以()221221n n S -=+⨯-12(01)222n n n n n ++-=-+-【过关检测】一、单选题1.已知n S 为数列{}n a 的前n 项和,若1222,10n n a a S +=-=,则{}n a 的通项公式为()A .34n n a =-B .22nn a =+C .2n a n n=+D .231n a n =-【答案】B 【解析】令1n =可得2122a a =-,又21210S a a =+=,解得14a =,又12242(2)n n n a a a +-=-=-,则122a -=,1222n n a a +-=-,即{}2n a -是以2为首项,2为公比的等比数列,则1222n n a --=⋅,22n n a =+.故选:B.2.已知数列{}n a 中,11a =,121n n a a +=+,则数列{}n a 的通项公式为()A .n a n =B .1n a n =+C .2nn a =D .21nn a =-【答案】D 【解析】121n n a a +=+ ,112(1),n n a a +∴+=+又11a =,112a +=,所以数列{}1n a +是首项为2,公比为2的等比数列,所以1122n n a -+=⨯,2 1.n n a ∴=-故选:D.3.已知数列{}n a 满足13a =,158n n a a +=-,则2022a 的值为()A .202152-B .202152+C .202252+D .202252-【答案】B 【解析】因为158n n a a +=-,所以125(2)n n a a +-=-,又121a -=,所以{2}n a -是等比数列,公比为5,首项是1,所以125n n a --=,152n n a -=+,所以2021202252a =+.故选:B .4.设数列{}n a 的前n 项和为n S ,若221n n S a n =-+,则10S =()A .11223-B .10219-C .103223⨯-D .93219⨯-【答案】C 【解析】当1n =时,111221S a a ==-+,解得11a =.当2n ≥时,11223n n S a n --=-+,所()11221223n n n n n a S S a n a n --=-=-+--+,即122n n a a -=+,所以()1222n n a a -+=+,即1222n n a a -+=+,所以数列{}2n a +是首项为3,公比为2的等比数列,则1232n n a -+=⨯,从而3223nn S n =⨯--,故10103223S =⨯-.故选:C5.在数列{}n a 中,11a =,且121n n a a +=+,则{}n a 的通项为()A .21nn a =-B .2n n a =C .21n n a =+D .12n n a +=【答案】A 【解析】解:∵121n n a a +=+,∴()1121n n a a ++=+,由11a =,得112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,∴11222n n n a -+=⋅=,即21nn a =-.故选:A6.数列{}n a 中,121n n a a +=+,11a =,则100a =()A .10021+B .1012C .10021-D .1002【答案】C 【解析】数列{}n a 中,121n n a a +=+,故()1121n n a a ++=+,故10n a +≠,所以1121n n a a ++=+,因为11a =,所以1120a +=≠,所以{}1n a +是首项为2,公比为2的等比数列,所以12nn a +=,即21n n a =-,故10010021a =-,故选:C.7.数列{}n a 满足111122n n n a a ++⎛⎫=- ⎪⎝⎭,且112a =,若13n a <,则n 的最小值为()A .3B .4C .5D .6【答案】B 【解析】因为111122n n n a a ++⎛⎫=- ⎪⎝⎭,等式两边同时乘以12n +可得11221n n n n a a ++=-,所以,11221n n n n a a ++-=且121a =,所以,数列{}2n n a 是等差数列,且首项和公差都为1,则211nn a n n =+-=,所以,2n nn a =,因为111111212222n n n n n n n n n n na a ++++++---=-==.当1n =时,1212a a ==;当2n ≥时,1n n a a +<,即数列{}n a 从第二项开始单调递减,因为33183a =>,41143a =<,故当3n ≤时,13n a >;当4n ≥时,13n a <.所以,13n a <,则n 的最小值为4.故选:B.8.已知数列{}n a 中,11a =,134n n a a -=+(n *∈N 且2n ≥),则数列{}n a 通项公式n a 为()A .13n -B .132n +-C .32n -D .3n【答案】C 【解析】由已知得27a =,1232n n a a -+=+进而确定数列{2}n a +的通项公式,即可求n a .由11a =,134n n a a -=+知:27a =且1232n n a a -+=+(2n ≥),而123a +=,229a +=,∴{2}n a +是首项、公比都为3的等比数列,即32nn a =-,故选:C9.数列{}n a 满足()1432n n a a n -=+≥且10a =,则此数列第5项是()A .15B .255C .16D .63【答案】B 【解析】∵()1432n n a a n -=+≥,∴()()11412n n a a n -+=+≥,∴{}1n a +是以1为首项,4为公比的等比数列,则114n n a -+=.∴141n n a -=-,∴4541255a =-=.故选:B .10.在数列{}n a 中,已知11a =,121n n a a +=+,则n a =()A .12n -B .21n -C .nD .21n -【答案】B 【解析】由121n n a a +=+,得()112221n n n a a a ++=+=+,故数列{}1n a +为等比数列,首项为112a +=,公比为2,所以12nn a +=,21n n a =-,故选:B.11.在数列{}n a 中,13a =,()1222,N n n a a n n n -+=-+≥∈,若980n a >,则n 的最小值是()A .8B .9C .10D .11【答案】C 【解析】因为()1222,N n n a a n n n -+=-+≥∈,所以()()1212,N n n a n a n n n -+-=--≥∈⎡⎤⎣⎦.因为13a =,所以112a -=,所以数列{}n a n -是首项和公比都是2的等比数列,则2n n a n -=,即2nn a n =+,因为11210n n n a a ---=+>,所以数列{}n a 是递增数列,因为9521980a =<,101034980a =>,所以满足980n a >的n 的最小值是10,故选:C12.设数列{an }中,a 1=2,an +1=2an +3,则通项an 可能是()A .5-3n B .3·2n -1-1C .5-3n 2D .5·2n -1-3【答案】D 【解析】设()12n n a x a x ++=+,则12n n a a x +=+,因为an +1=2an +3,所以3x =,所以{}3n a +是以13a +为首项,2为公比的等比数列,1352n n a -+=⨯,所以1523n n a ⋅=--故选:D13.在数列{}n a 中,若12a =,1132n n n a a ++=+,则n a =()A .2nn ⋅B .5122n-C .1232n n +⋅-D .11432n n -+⋅-【答案】C 【解析】令22n n n a b =+,则11111322232222222n n n n n n n n n n n a a b a a b ++++++++===++,又11232a b =+=,所以{}n b 是以3为首项,32为公比的等比数列,所以132322n n n n a b -⎛⎫=+=⨯ ⎪⎝⎭,得1232n n n a +=⋅-.故选:C .14.已知在数列{}n a 中,156a =,111132n n n a a ++⎛⎫=+ ⎪⎝⎭,则n a =()A .3223n n-B .2332n n-C .1223n n-D .2132n n-【答案】A 【解析】解:因为156a =,111132n n n a a ++⎛⎫=+ ⎪⎝⎭,所以1122213n n n n a a ++⋅=⋅+,整理得()11223233n n n n a a ++⋅-=⋅-,所以数列{}23nn a -是以14233a -=-为首项,23为公比的等比数列.所以1422333n n n a -⎛⎫-=- ⎪⎝⎭,解得3223n n na =-.故选:A15.数列{}n a 满足*123,n n a a n N +=+∈,若20171a a ≥,则1a 的取值范围为()A .(,3]-∞-B .{3}-C .(3,)-+∞D .[3,)-+∞【答案】D 【解析】由123n n a a +=+可得()1323n n a a ++=+,所以()11332n n a a -+=+⨯所以()11323n n a a -=+⨯-,所以()2016201711323a a a =+⨯-≥所以()201611323a a +⨯≥+,所以130a +≥,所以13a ≥-故选:D 二、填空题16.设数列{}n a 满足11a =,且()1342n n a a n -=+≥,则数列{}n a 的通项公式为n a =___________.【答案】32n -##23n -+【解析】解:因为()1342n n a a n -=+≥,()1232n n a a -∴+=+,1232n n a a -+∴=+,11a = ,则123a +=,∴数列{}2n a +是以3为首项,3为公比的等比数列.12333n n n a -∴+=⋅=,所以32nn a =-,故答案为:32n -17.已知数列{}n a 中,11a =,121n n a a +=+,则{}n a 通项n a =______;【答案】21n -【解析】因为121n n a a +=+,所以11112(1),21++++=+∴=+n n n n a a a a ,所以{}+1n a 是一个以1+1=2a 为首项,以2为公比的等比数列,所以1+1=222,21-⨯=∴=-n n n n n a a .故答案为:21n -18.数列{an }满足a 1=1,an +1=2an +1.(n ∈N *).数列{an }的通项公式为______.【答案】()*21n n a n N -=∈.【解析】∵*121n n a a n N +=+∈(),∴1121n n a a ++=+(),又112a +=∴{}1n a +是以2为首项,2为公比的等比数列.∴12nn a +=.即*21nn a n N =-∈().故答案为:()*21n n a n N =∈-.19.数列{}n a 满足143n n a a -=+,且10a =,则6a =_________.【答案】1023【解析】由题意知:111444(1)n n n a a a --+=+=+,又111a +=,故{}1n a +是1为首项,4为公比的等比数列,故()5611141024a a +=+⨯=,故6a =1023.故答案为:1023.20.已知数列{}n a 满足1122n n a a +=+,且{}n a 前8项和为761,则1a =______.【答案】52##2.5【解析】解:数列{}n a 满足1122n n a a +=+,整理得1112()22n n a a ++=+,若112a =-,则12n a =-,显然不符合题意,所以12n a ≠-,则121212n n a a +++=(常数);所以数列12n a ⎧⎫+⎨⎬⎩⎭是以112a +为首项,2为公比的等比数列;所以1111222n n a a -⎛⎫+=+⋅ ⎪⎝⎭,整理得1111222n n a a -⎛⎫=+⋅- ⎪⎝⎭;由于前8项和为761,所以187811111121((12...2)842554761222122S a a a -⎛⎫⎛⎫=+⋅+++-⨯=+⨯-=+-= ⎪ ⎪-⎝⎭⎝⎭,解得152a =.故答案为:52.三、解答题21.已知数列{}n a 满足111,32n n a a a +==+.(1)证明{}1n a +为等比数列,并求{}n a 的通项公式;(2)记数列11n a ⎧⎫⎨⎬+⎩⎭的前n 项和为n S ,证明34n S <.【答案】(1)证明见解析,1231n n a -=⋅-(2)见解析【解析】(1)证明:因为132n n a a +=+,所以()1131n n a a ++=+,又112a +=,所以数列{}1n a +是以2为首项,3为公比的等比数列,则1123n n a -+=⋅,所以1231n n a -=⋅-;(2)证明:由(1)得111123n n a -=+⋅,因为11111123113123n n n n a a +-+⋅==+⋅,11112a =+,所以数列11n a ⎧⎫⎨+⎩⎭是以12为首项,13为公比的等比数列,则1113123114313n n nS ⎛⎫⨯- ⎪⎛⎫⎝⎭==- ⎪⎝⎭-,因为1113n -<,所以34n S <.22.已知数列{}n a 满足113,22+==-n n a a a .(1)求{}n a 的通项公式;(2)求{}n a 的前n 项和n S .【答案】(1)122n n a -=+;(2)221nn S n =+-.【解析】(1)122n n a a +=- ,()1222n n a a +∴-=-即1222n n a a +-∴=-∴数列{}2n a -是以首相为1,公比为2的等比数列,122n n a -∴-=122n n a -∴=+(2)由(1)知122n n a -=+()()()()()()123012101212222222222222112212221n nn n n n S a a a a n nn --∴=++++=++++++++=+++++⨯-=+-=+- 23.已知数列{}n a 的首项11a =,且1121n na a +=+.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足n n a b n ⋅=,求数列{}n b 的前n 项和n S .【答案】(1)121n n a =-(2)()()111222n n n n S n ++=-+-【解析】(1)∵1121n n a a +=+,等式两边同时加1整理得111121n n a a +⎛⎫+=+ ⎪⎝⎭又∵11a =,∴1112a +=∴11n a ⎧⎫+⎨⎬⎩⎭是首项为2,公比为2的等比数列.∴112n na +=,∴121n na =-(2)∵n n a b n ⋅=,∴2n n nnb n n a ==⋅-.记{}2⋅nn 的前n 项和为nT 则()1231122232122n nn T n n -=⋅+⋅+⋅+⋅⋅⋅⋅⋅⋅+-⋅+⋅所以()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅⋅⋅⋅+-⋅+⋅相减得12341222222n n n T n +-=++++⋅⋅⋅⋅⋅⋅+-⋅整理得()1122n n T n +=-+.所以()()111222n n n n S n ++=-+-24.在数列{}n a 中,15a =,且()*121n n a a n N +=-∈.(1)证明:{}1n a -为等比数列,并求{}n a 的通项公式;(2)令(1)nn n b a =-⋅,求数列{}n b 的前n 项和n S .【答案】(1)证明见解析,121n n a +=+(2)()*2*421,2,,327,21,.3nn n n k k S n k k +⎧-=∈⎪⎪=⎨+⎪-=-∈⎪⎩N N 【解析】(1)解:因为121n n a a +=-,所以()1121n n a a +-=-,又114a -=,所以1121n n a a +-=-,所以{}1n a -是以4为首项,2为公比的等比数列.故1142n n a --=⨯,即121n n a +=+.(2)解:由(1)得()1(1)21n n n b +=-⋅+,则()1*1*21,2,21,21,n n n n k k N b n k k N ++⎧+=∈⎪=⎨-+=-∈⎪⎩,①当*2,n k k =∈N 时,()()()()()23412121212121n n n S +=--++-+++--++ ()2345124422222222221;3n n n n+=-+-++-+=+++=- ②当*21,n k k =-∈N 时,()()21211427212133n n n n n n S S b ++++++=-=--+=-,综上所述,()*2*421,2,327,21,3n n n n k k N S n k k N +⎧-=∈⎪⎪=⎨+⎪-=-∈⎪⎩25.已知数列{}n a 的前n 项和为n S ,12a =,且122n n a a +=+.(1)求数列{}n a 的通项公式;(2)令()212n n n b a +=+,记数列{}n b 的前n 项和为n T ,求证:3n T <.【答案】(1)122n n a +=-(2)证明见解析【解析】(1)解:因为12a =,122n n a a +=+,所以()1222n n a a ++=+,所以{}2n a +是以4为首项,2为公比的等比数列,所以112422n n n a -++=⨯=,所以122n n a +=-;(2)解:由(1)可知()()121211222n n n n n n n b a ++++===+,所以12323412222n n n T +=++++ ①,所以23411234122222n n n T ++=++++ ②;①-②得212311111111111133221112222222212n n n n n n n n n T -+++⎛⎫- ⎪+++⎝⎭=++++-=+-=-- 所以3332n nn T +=-<;。
谈构造法在高中数学解题中的重要应用 --以“数列的通项公式求法”教学为例提要:构造法是高中化归与转化思想的重要组成部分,也是高中数学的解题方法之一,它是将未知化已知,复杂化简单的重要途径,为高中数学的函数、导数、数列、不等式等问题提供重要解题思路。
在数学中应用构造法,能提升学生的逻辑思维能力,发展学生的创新能力。
在新课改的教学背景下,数列的通项公式作为解决数列问题的基础与重点,也是高考中的重点考察内容之一,利用构造法发现数列模型,可以帮助学生快速找到突破口,解决难题并提高解题速度。
关键词:数列;通项公式;构造法;化归与转化思想在高中数学课程标准中明确提出数学教育促进学生思维能力、实践能力和创新意识的发展,探寻事物变化规律。
[1]构造法是具有创造性的解题方法,体现了数学中的化归与转化思想,凸显数学的内在逻辑和思想方法。
构造法在高中数学中应用广泛,如构造不等式求最值、构造数列求通项公式、构造函数得到基本初等函数模型、构造几何体求外接球、构造向量求证正弦定理等,对数学学习的拓展与思维发展有积极作用。
构造法主要应用于两个方面:(1)当某些数学问题无法用定向思维解决时,可以根据条件与结论的性质,从新的角度和观点观察分析条件(结论)与已有数学模型或性质的联系,通过类比、想象构造新的数学模型,进而解决问题;(2)可以用于概念、定理推导,逻辑推理。
在数学中构造法解题的本质是利用已有条件与已知的定理公式,构造新的数学对象或模型,发现条件和结论中隐含的性质与数学形式,利用新的数学对象或模型解决问题。
其中构造法还可以促进学生创新思维的发展,促进学生达成不同阶段的数学核心素养。
构造法解题一般步骤如下:通过对近年高考真题分析,发现数列通项公式问题灵活多变,学生难以自如应用构造法,创新解题,失分较严重。
本节课通过设计数列的通项公式求解,以学生为主进行探究,发现构造法在求解数列通项公式中的积极作用,感受由难化简,由未知化已知的创造思维,提高数学洞察力和理解力,利用构造法为新的数学问题建立新的方法与策略。
在数列问题中,求数列的通项公式问题比较常见,但有些求数列的通项公式的问题较为复杂,利用等差、等比数列公式很难直接求得结果,需要采用一些方法,如累加法、累乘法和构造法,才能使问题得解.下面我们来探讨一下累加法、累乘法和构造法在解题中的应用.一、累加法有些数列的递推式可以转化为a n +1=a n +f (n )或a n +1-a n =f ()n 的形式,我们就可以采用累加法来求解,将n =1,2,3,…,n 时f (n )的式子表示出来,然后将左边与左边的式子相加,右边与右边的式子相加,通过正负抵消求出a n ,便可得到数列的通项公式.累加法也称为逐差相加法,这种方法是比较简单、比较基础的,操作起来也比较容易.例1.设数列{}a n 满足a 1=1,且a n +1=a n +n +1(n ∈N *),则数列{}a n 的通项公式为_____.分析:题目中给出的递推式形如a n +1=a n +f (n ),可运用累加法来求解,逐一列出各项,并将其累加,便可求出数列的通项公式.解:由题意知a 2=a 1+2,a 3=a 2+3,a 4=a 3+4,…,a n =a n -1+n (n ≥2),将以上各式进行相加可得a n =a 1+2+3+…+n ,又a 1=1,所以a n =1+2+3+…+n =n 2+n 2(n ≥2),当n =1时也满足上式,所以数列{}a n 的通项公式为a n =n 2+n 2(n ∈N *).在运用累加法求和时,很多同学们经常忽略了n =1的情况,因此在求出了a n 之后,必须要检验a 1是否满足所求的通项公式.二、累乘法当遇到形如a n +1a n=f ()n 或a n +1=f ()n a n 的递推式,我们可以采用累乘法来求解.首先列出n =1,2,3,…,n 时f (n )的表达式,然后将每项的左边与左边,右边与右边相乘,通过约分就可以求出a n .需要注意的是,在使用这种方法求数列的通项公式时,不要把a n 与f ()n 、f ()n -1、f ()n +1的对应项弄混.例2.设数列{}a n 满足a 1=1,且a n =n -1n a n -1(n ≥2),则数列{}a n 的通项公式为_____.分析:题目中给出的递推公式为a n =n -1n an -1,即a n a n -1=n -1,形如a n +1a n =f ()n ,运用累乘法求解比较简便.解:∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=2a 1.将上述n -1个式子相乘后可得a n =a 1⋅12⋅23⋅34⋅…⋅n -1n =a1n =1n,当n =1时,a 1=1,满足上式,∴a n =1n(n ∈N *).三、构造法对于一些形如a n +1=pa n +q (p ≠0、1,q ≠0)的递推式,我们一般采用构造法来求数列的通项公式.可首先设a n +c =k (a n -1+c ),然后利用待定系数法求出相关k ,c 的值,这样便构造出等比数列{}a n +c ,运用等比数列的通项公式求得{}a n +c 的通项公式,进而得到{}a n 的通项公式.例3.已知数列{}a n 满足a 1=1,且a n +1=3a n +2,则数列{}a n 的通项公式为_____.分析:题目中给出的递推式形如a n +1=pa n +q ,结合已知条件可构造出新的等比数列,然后利用等比数列的通项公式来求解.解:∵a n +1=3a n +2,∴a n +1+1=3a n +2+1,即a n +1+1=3a n +3=3(a n +1),∴a n +1+1a n +1=3,∴数列{}a n +1为q =3的等比数列,又a 1+1=2,∴a n +1+1=2∙3n -1,∴a n =2∙3n -1-1(n ∈N *).以上三种方法都是求数列通项公式的常用方法,同学们要扎实掌握.求数列的通项公式问题并没有同学们想象中的那么难,只要同学们能够熟练掌握常用的解题方法和技巧,学会举一反三,就能在掌握精髓的基础之上破解此类问题.(作者单位:安徽省宣城中学)方法集锦47Copyright©博看网 . All Rights Reserved.。
构造法求数列通项的八种技巧(三)【必备知识点】◆构造六:取对数构造法型如a n +1=ca n k ,a n =ca n -1k或者a n +b =c (a n -1+b )k ,b 为常数.针对出现这种数列,为方便计算,两边通常取以c 或首项为底的对数,就能找到突破口.什么情况取c 为底,什么情况取首项为底呢?我们来看两道例题.【经典例题1】数列a n 中, a 1=2,a n +1=a n 2,求数列a n 的通项公式.【解析】取以a 1=2为底的对数(不能取c 为底,因为c =1,不能作为对数的底数),得到log a n +12=log an22,log a n +12=2log a n2,设b n =log a n2,则有b n +1=2b n ,所以b n 是以b 1=log a 12=1为首项,2为公比的等比数列,所以b n =2n -1,所以log a n2=2n -1,a n =22n -1.【经典例题2】数列a n 中,a 1=1,a n +1=2a n 2,求数列a n 的通项公式.【解析】取以2为底的对数(这里知道为什么不能取a 1=1为底数的对数了吧),得到log a n +12=log 2a n22,log an +12=log 22+2log a n2,log a n +12=1+2log a n2设b n =log an2,则有b n +1=1+2b n ,这又回归到构造二的情况,接下来的步骤大家应该都记得吧,由于这道题较为简单,所以直接可看出b n +1+1=2(b n +1),所以b n +1 是以b 1+1=1为首项,2为公比的等比数列,所以b n +1=2n -1,所以b n =2n -1-1,log a n2=2n -1-1,a n =22n -1-1.【经典例题3】已知a 1=2,点a n ,a n +1 在函数f x =x 2+2x 的图像上,其中n ∈N *,求数列a n 的通项公式.【解析】将a n ,a n +1 代入函数得a n +1=a n 2+2a n ,a n +1+1=a n 2+2a n +1=a n +1 2,即a n +1+1=a n +1 2两边同时取以3为底的对数,得log a n +1+13=log a n+123⇒log a n +1+13=2log a n+13(为什么此题取以3为底的对数呢,大家思考下,新构造的数列首项为log a 1+13,a 1+1=3,所以应当取以3为底,这样计算会简单很多,当然如果你计算能力较强,也可以取其他数作为底数).所以log a n+1 3 是以1为首项,2为公比的等比数列,即log a n+1 3=1×2n -1,a n +1=32n -1,a n =32n -1-1.【经典例题4】在数列a n 中, a 1=1,当n ≥2时,有a n +1=a n 2+4a n +2,求数列a n 的通项公式.【解析】由a n +1=a n 2+4a n +2,得a n +1+2=a n 2+4a n +4,即a n +1+2=a n +2 2,两边同取以3为底的对数,得log a n +1+23=log a n+223,即log a n +1+23=2log a n+2 3,所以数列log a n+2 3是以1为首项,2为公比的等比数列,log a n+23=2n -1,a n +2=32n -1,即a n =32n -1-2.◆构造七:二阶整体构造等比简单的二阶整体等比:关于a n +1=Aa n +Ba n -1的模型,可通过构造二阶等比数列求解,大部分题型可转化为a n +1-a n =(A -1)a n -a n -1 ,利用a n +1-a n 成等比数列,以及叠加法求出a n .还有一小部分题型可转化为a n +1+a n =(A +1)a n +a n -1 ,利用a n +1+a n 成等比数列求出a n .【经典例题1】已知数列a n 满足a 1=1,a 2=3,a n +2=3a n +1-2a n n ∈N * ,求数列a n 的通项公式.【解析】由a n +1=3a n -2a n -1⇒a n +1-a n =2a n -a n -1 ,故a n +1-a n 是以a 2-a 1=2为首项,2为公比的等比数列,即a n +1-a n =a 2-a 1 2n -1=2n ,接下来就是叠加法啦,a n -a n -1=2n -1...a 2-a 1=2全部相加得:a n -a 1=2n-2,所以a n =2n -1.【经典例题2】已知数列a n 中,a 1=1,a 2=2,a n +2=23a n +1+13a n ,求数列a n 的通项公式。
巧用构造法求递推数列的通项公式蒋明权利用递推数列求通项公式,在理论上和实践中均有较高的价值,自从二十世纪八十年代以来,一直是全国高考和高中数学联赛的热点之一。
本文想介绍一下利用构造法求递推数列的通项公式的方法和策略,希望能抛砖引玉。
一、构造等差数列法例1.在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项公式a n 。
解:对原递推式两边同除以n n n ()()++12可得:a n n a n nn n +++=++12112()()()① 令b a n nn n =+()1② 则①即为b b n n +=+12,则数列{b n }为首项是b a 1111132=+=()×,公差是b b n n +-=12的等差数列,因而b n n n =+-=-3221212(),代入②式中得a n n n n =+-12141()()。
故所求的通项公式是a n n n n =+-12141()() 二、构造等比数列法1.定义构造法 利用等比数列的定义q a a n n=+1,通过变换,构造等比数列的方法。
例2.设在数列{a n }中,a a a a n n n 112222==++,,求{a n }的通项公式。
解:将原递推式变形为a a a n n n++=+12222()① a a a n n n+-=-12222()② ①/②得:a a a a n n n n +++-=+-1122222[], 即lg lg[]a a a a n n n n +++-=+-1122222③ 设b a a n n n =+-lg[]22④ ③式可化为a a n n +=12,则数列{b n }是以b 1=lg[]lg lg()a a 11222222221+-=+-=+为首项,公比为2的等比数列,于是b n n n =+=+-22122211lg()lg()×,代入④式得:a a n n +-22=()212+n ,解得a n n n=+++-221121122[()]()为所求。
构造法求数列通项公式典型例题解析构造法是一种求解数列通项公式的技巧,它可以在给定数列中发现出某些共同的特征,从而构建出数列的通项公式。
这种技巧的本质是人们通过观察数列的特点,并尝试推测通项的类型、公式和系数,从而找到数列的通项公式。
二、构造法的应用1.比数列的通项公式对于等比数列来说,它的通项公式的结构为:a_n = a_1 q^(n-1)其中a_1是数列的第一项,q是数列的公比。
为了求出等比数列的通项公式,我们可以使用构造法,观察该数列给出的前几项,如: a_1 , a_2, a_3, a_4我们发现,从第二项a_2开始,每一项都是由上一项乘以某个常数,也就是公比q得到的,所以q可以用以下的公式表示:q = a_2/a_1接下来,我们就可以用上面的通项公式求出数列的任意项值了。
2.差数列的通项公式对于等差数列来说,它的通项公式的结构为:a_n = a_1 + (n-1)d其中a_1是数列的第一项,d是数列的公差。
为了求出等差数列的通项公式,我们也可以使用构造法,观察该数列给出的前几项,如: a_1 , a_2, a_3, a_4我们发现,从第二项a_2开始,每一项都是由上一项加上某个常数,也就是公差d得到的,所以d可以用以下的公式表示:d = a_2 - a_1接下来,我们就可以用上面的通项公式求出数列的任意项值了。
三、构造法的优点1.以让我们省去求解数列通项公式的一系列步骤,使用构造法求解数列通项公式的过程简单易懂,用时也短。
2.造法可以使我们更加清晰地观察数列的特征,从而更快地找到数列的通项公式。
3.造法可以使我们在求解特定的数列时,能够更加得心应手地把握数列的变化规律。
四、典型例题解析1. 例题一已知一个等差数列:2, 5, 8, 11, 14, 17, 20, ...(1)该数列的通项公式解:由题意可知,该数列是等差数列,我们可以用构造法求解。
我们可以观察数列的前几项,a_1 = 2, a_2 = 5,根据d = a_2 - a_1原理,我们可以求出公差d = 3.因此,该数列的通项公式为:a_n = 2 + (n-1)3,即a_n = 2 + 3n - 32. 例题二已知一个等比数列:2, 6, 18, 54, ...(1)该数列的通项公式解:由题意可知,该数列是等比数列,我们可以用构造法求解。
用构造法求数列通项公式
一、构造法的原理
构造法是一种求解数列通项公式的方法,它依赖于对数列数据的分析,其基本原理是通过分析数列前几项的关系,推出数列的规律,从而确定数
列的通项公式。
二、构造法的步骤
1、根据给定的数列,找出相邻两项的关系;
2、根据求出的关系,确定该数列的类型,即数列的递推公式;
3、根据确定的递推公式,从第一项开始,逐步求出数列中的其它项;
4、推出数列的规律,并将其表示为数列的通项公式;
5、利用确定的通项公式,验证数列中的其它项。
三、构造法的应用
1、举例:
给出一个数列:1,2,4,8,16,32
(1)根据给定的数列,找出相邻两项的关系:
由数列可以看出,数列中相邻两项的关系是:an = 2 * an-1
(2)根据求出的关系,确定该数列的类型,即数列的递推公式:
an = 2 * an-1
递推公式:an+1 = 2 * an
(3)根据确定的递推公式,从第一项开始,逐步求出数列中的其它项:
a1=1
a2=2*a1=2
a3=2*a2=4
a4=2*a3=8
a5=2*a4=16
a6=2*a5=32
(4)推出数列的规律,并将其表示为数列的通项公式:
由所求得的数列可以看出,数列中每一项都是前一项的2倍,因此可
得数列的通项公式为:an=2^(n-1)。
(5)利用确定的通项公式。
四川师范大学本科毕业论文浅谈构造法在数列中的运用学生姓名院系名称数学与软件科学学院专业名称数学与应用数学班级学号指导教师完成时间浅谈构造法在数列中的运用学生姓名:指导教师:内容摘要:构造法,就是根据题设条件或结论所具有的特征、性质,构造出满足条件或结论的数学模型,借助于该数学模型解决数学问题的方法。
利用利用构造法求数列的通项公式是高考中的常考点之一,解题思路比较简单、可操作性强。
但是利用构造法求数列的前n项和的可操作性则较弱。
本文就是通过举例来说明构造法在数列求通项公式和前n项和中的一些运用,并简要说明一些通过构造数列的方法来证明一些不等式题型的方法。
关键词:构造法数列不等式How to Apply the Construction Method in Sequence Abstract:Construction method, is a way of which is based on the characteristics of the hypothesis or conclusion to build a mathematical model which is constructed to meet the condition and conclusion, with which to solve mathematics problems.The gener al term formula for the sequence which is constructed by using construction method is often one of the examination points in the college entrance examination. With this method, the way of problem-solving is relatively simple and strong operability. But for the sum of the first n terms of the sequence which is constructed by using construction method is weak in its maneuverability.This article is through the way of giving examples to illustrate some application of construction method for general term formula in sequence and the sum of the first n terms, and is a brief description of some ways by constructing a sequence to prove some inequality questions.Key words:Construction Sequence Inequality目录1引言 (1)2构造法在数列求通项公式中的运用 (2)2.1直接构造一个等差数列或等比数列 (2)2.2形如)(1n f pa a n n +=+(p 为常数,且1,0≠≠p p )的数列 (2)2.3形如“n n n ra qa pa +=++12”型的数列 (4)2.4用特征方程构造等差数列或等比数列 (6)2.5取倒数构造等差数列或等比数列 (6)2.6取对数构造新的等差或等比数列 (7)2.7公式变形构造 (7)2.8通过换元来构造新的数列求解 (8)2.9对于两个数列的复合问题,也可构造等差或等比数列求解 (9)2.10其他特殊数列的特殊构造方法 (9)3构造法在数列求和中的运用 (11)3.1逐差构造法 (11)3.2利用组合数公式构造数列的通项求和 (12)4构造数列证明不等式 (12)4.1直接法 (13)4.2作差法 (13)4.3作商法 (14)4.4差分法 (15)4.5商分法 (15)5总结 (16)参考文献 (17)致谢 (18)浅谈构造法在数列中的运用1引言 数列的基本知识等差数列等比数列 定义对一切n ∈N *有d a a n n =-+1 (d 为常数)对一切n ∈N *有:=q (1a ≠0,且q 是非零常数) 通项 公式d n a a n )1(1-+= 11-⋅=n n q a a 中项 公式21+n a =n a +2+n a 1+n a 2=n a ⋅2+n a 任意两项 的关系n a =d m n a m )(-+ m n m n q a a -⋅= 前n 项 和公式 d n n na a a n s n n 2)1(2)(11-+=+= ⎪⎩⎪⎨⎧≠--=--==)1(1)1(1)1(111q q q a q q a a q na s n n n数列的实质是“按照一定规律”排列成的一列数,描述这种“规律”最简单的形式就是通项公式,所以求数列的通项公式是数列中最常见的题型之一,也是历年来高考中常遇到的问题,通常数列题都有三个小问,而第一个问基本上都是求通项,且求通项都是为后面的两个问题作铺垫。
“构造法”在求数列通项中的应用武汉市吴家山中学 刘忠君由递推公式求数列的通项公式是数列中的常见题型,也是高考考查的热点问题。
“大纲”中对递推数列规定的教学目标是“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,但从近几年的高考试题中对递推数列的考查来看,其考查目标远在于教学目标。
由于此类问题的解法很多,技巧性较强,特别是对运算能力、归纳猜想能力、类比转化能力、以及运用数学知识分析和解决数学问题的能力要求较高,故而成为学习中的一大难点。
本文介绍一种构造“新数列”求原数列通项的方法,思路自然,简捷实用,可给人耳目一新的感觉。
一、型如1()n n a pa f n +=+(p 为常数且0p ≠,1p ≠)的数列,其本身并不是等差或等比数列,但可以经过适当的变形后,即可构造出一个新数列,利用这个数列可求其通项公式。
1、()f n q = (q 为常数),可构造等比数列求解。
例1、已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a 。
解:∵121+=+n n a a ,∴)1(211+=++n n a a ,令1+=n n a b ,则数列}{n b 是公比为2的等比数列,∴11-=n n q b b ,即n n n q a a 2)1(111=+=+-,∴12-=n n a 。
例2、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a 。
解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-。
注:一般地,递推关系式1n n a pa q +=+ (p 、q 为常数,且p ≠0,p ≠1)可等价地改写成)1(11p q a p p q a n n --=--+,则{pqa n --1}为等比数列,从而可求n a 。
2、()f n 为等比数列,可构造等差数列、等比数列求解。
如()nf n q = (q 为常数) ,两边同除以nq ,得111n n n n a a q p q q ++∙=+,令nnn a qb =,则可转化为1n n b pb q +=+的形式求解。
例3、已知数列{a n }中,156a =,1111()32n n n a a ++=+,求通项n a 。
解:由条件,得1122(2)13n n n n a a ++=+,令2n n n b a =,则1213n n b b +=+,即123(3)3n n b b +-=-,又111523b a ==,1433b -=-,∴数列{3}n b -为等比数列,故有142()333n n b -=-+,即1422()333n n n a -=-+, ∴ 2332n n n a =-+。
例4、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a 。
解:由条件,得113222n n n n a a ++=+,即113222n n n n a a ++-=,故数列{}2n na 是以1222a 11==为首项,以23为公差的等差数列, ∴31(1)22n n a n =+-, 故31()222n n a n =-。
例3、已知数列{}n a 的前n 项和n S 与n a 的关系是11(1)n n nS ba b =-+-+ ,其中b 是与n无关的常数,且1-≠b ,0b ≠,求n a (用n 和b 表示)。
解:首先由公式:11 (1)(2)n n n S n a S S n -=⎧=⎨-≥⎩,得 12(1)b a b =+,111(1)n n n b b a a b b -+=+++(2n ≥),22121()11(1)n n n b b b a a b b b --+=++++, 323231()()11(1)n n n b b b a a b b b --+=++++,…,121211()()11(1)n n n n b b b a a b b b ---+=++++, ∴12312111111(1)(1)(1)n n n n n n n n b b b b b b b b b a a b b b b ---++++++++++⎛⎫=+=+⎪++++⎝⎭, ∴21(1)nnn b b ba b ++++=+ 11( (1)21)(1)(1)n n nb b b b b b ++⎧⎪⎪⎨⎪⎪⎩==-≠-+。
例5. 已知b ≠0,b ≠±1,,写出用n 和b 表示a n 的通项公式。
解:将已知递推式两边乘以,得,又设,于是,原递推式化为,仿类型三,可解得,故。
3、()f n 为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列求解。
例5、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求解:令n n b a pn q =++,则n n a b pn q =--,∴11(1)n n a b p n q --=---,代入已知条件, 得11[(1)]212n n b pn q b p n q n ---=---+-,即11111(2)(1)2222n n b b p n p q -=++++-,令202p +=,1022p q +-=,解得p =-4,q =6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-。
注:此例通过引入一些尚待确定的系数,转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解。
例6、在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n 。
解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A =-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n -+=69912·()。
4、()f n 为非等差、非等比数列,可构造等差、等比数列求解。
法一、构造等差数列求解:例7、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式。
解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+。
例8、在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。
解:由条件可得:2)1()1)(2(1++=+++nn a n n a n n ,∴数列{}(1)n a n n +是首项为13(11)12a =+×,公差为2的等差数列,∴a n n n n =+-12141()()。
法二、构造等比数列求解:例9、已知数列{}n a 满足11a =,13524n n n a a +=+⨯+,求数列{}n a 的通项公式。
解:设1123(2)n n n n a x y a x y +++⨯+=+⨯+,将已知条件代入此式,整理后得(52)24323n n x y x y +⨯++=⨯+,令52343x x y y +=⎧⎨+=⎩,解得52x y =⎧⎨=⎩, ∴有115223(522)n n n n a a +++⨯+=+⨯+,又11522112130a +⨯+=+=≠, 且5220n n a +⨯+≠,故数列{522}n n a +⨯+是以1152211213a +⨯+=+=为首项,以3为公比的等比数列,∴1522133n n n a -+⨯+=⨯,故1133522n n n a -=⨯-⨯-。
二、形如0),(12=++n n n a a a f ,的复合数列,可先构造等差数列或等比数列,再用叠加法、叠乘法、迭代法等方法求解。
例1、⑴在数列}{n a 中,12a =,23a =,2132n n n a a a ++=-求n a 。
⑵在数列{}n a 中,11a =,22a =,212133n n n a a a ++=+,求n a 。
解:⑴由条件,2312n n n a a a ⋅-⋅=++ ∴),(2112n n n n a a a a -=-+++故1212n n n a a -++-=,再叠加法可得:2222(12)2112n n n a a --=+=--。
⑵由条件可得2111()3n n n n a a a a +++-=--,∴ 数列1{}n n a a +-是以112=-a a 为首项,以13-为公比的等比数列,∴11)31(-+-=-n n n a a , 故n a =112211)()()(a a a a a a a n n n n +-+⋅⋅⋅+-+----=+--2)31(n +--3)31(n …11)31(++-=311)31(11+---n =1])31(1[431+---n = 1)31(4347---n 。
例2、已知数列{}n a 满足11a =,22a =,2144n n n a a a ++=-(*n N ∈),求n a 。
解:由已知可得:211111()222n n n n a a a a +++-=-,又211132222a a -=-=,所以数列11{}2n n a a +-是首项为32、公比为12的等比数列,∴11131()222n n n a a -+-=∙,即1113()22n n n a a +=+⨯,亦即11226n n n n a a ++∙=∙+,又1122a ∙=,∴数列{2}n n a ∙是首项为2、公差为6的等差数列,∴226(1)64n n a n n ∙=+-=-,∴1322n n n a --=。
三、一些较为特殊的数列,可利用“取倒数”的方法构造等差数列或等比数列求解。
例1、已知数列}{n a 中,11=a ,11+=+n nn a a a (N n ∈),,求n a 。