数字推理题型的7种类型28种形式
- 格式:doc
- 大小:170.00 KB
- 文档页数:8
数字推理题型的7种类型28种形式,必会基础!第一种情形----等差数列1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,()A.7B.8C.11D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
提示:熟练掌握基本题型及其简单变化是保证数字推理题不丢分的关键第二种情形---等比数列:5、等比数列的常规公式。
设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。
[例5] 12,4,4/3,4/9,()A、2/9B、1/9C、1/27D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。
数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,( ) A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,( )A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,( ),( )。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,( ) A.7 B.8 C.11 D.13[知满天解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[知满天解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,( )A、8/9B、9/10C、9/11D、7/8[知满天解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,( ),( )。
A、19 21B、19 23C、21 23D、27 30[知满天解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
数字数字推理题是公务员考试行政测试中一直以来的固定题型。
考察应试者对数字的敏感程度,所谓数字推理,就是给应试者一个数列,但其中至少缺少一项,要求应试者仔细观察并通过一定的运算找出数列的排列规律,然后从四个选项中选出你认为最为合理的一项来填补空白项。
解答数字推理题时,应试者的反应不仅要快,而且要掌握恰当的方法和技巧。
一、基础数列数列通过一定得运算(主要包括和、差、积、商、方、倍)化归到基础数列才能称为有规律,基础数列有以下六类:1. 常数列(0级等差),6,6,66,62. 等差数列(一级等差),3,1,5,793. 等比数列,2,1,416,84. 素(质)、合数列素数列:,511,2,,3,713,19,17合数列:,1210,4,6,8,,9,141618,15,注:1既不是素数也不是合数5. 周期数列,3,5,3,2,2,53,26,8,6,8,6,8,6注:至少出现两个循环节才能称之为有规律6. 简单的递推数列和:,3,2,5,8,1321差:,212,13,5,8,3积:18,3,2,61944,108,商:108,,1944,6218,3,注:递推和、差、积、商列是相邻三项的关系【例1】(湖南2009)2,8,32,(),512.64A .128B.216C .256D 【例2】(江西2009)160,80,40,20,()1.5A .1B .10C .5D二、数字敏感1. 单数字发散:幂次发散与因式分解发散2. 多数字联系:幂次联系与递推联系常用幂次数常用“貌似素数”数的分解例一:单数字26的发散: (1)幂次发散:232651,2631=+=-(2)分解发散:26213=⨯【例1】(江苏2004)4,6,10,14,22,().30A .28B .26C .24D 【例2】(国家2005)2,3,10,15,26,() .29A .32B .35C .37D 【例3】(国家2007)0,9,,65,12264,() .165A .193B .217C .239D例二:多数字1,4,9的联系:(1)幂次联系:2220121,2,3;5,4,3⎧⎪⎨⎪⎩(2)递推联系: 241414192959(9()41)3=⨯+⎧⎪=⨯⎪⎨=-⎪⎪=-⎩+⨯【例1】 25,49,124,9,1,().144A .169B .196C .225D 【例2】1,4,1,,9(),16.2A .4B .8C .16D 【例3】(甘肃2010)1,4,2,3,9,().5A .16B .25C .36D 【例4】1,4,92,,22,().27A .34B .47C .53D 【例5】,29,71,4,94,().103A .132B .177C .219D 【例6】,15,11,4,98,().26A .8B .24C .9D三、基本运算方法2. 减法运算 1. 数字因数分解3. 幂次的敏感4. 相邻两数的倍数关系5. 尾数估计法(一)减法运算法则:1)每减一步看子列的规律2) 每减一步看子列与原数列的关系,切记,切记! 3)减到剩两个数字为止【例1】1,4,9,16,25,()3,6,11,18,27,()2,6,12,20,30,()注:平方列及平方列等差修正则是二级等差列,但平方列正负常数或正负等差修正不是。
常用幂次数一、平方数底数 1 2 3 4 5 6 7 8 9 10平方 1 4 9 16 25 36 49 64 81 100底数11 12 13 14 15 16 17 18 19 20平方121 144 169 196 225 256 289 324 361 400底数21 22 23 24 25 26 27 28 29 30平方441 484 529 576 625 676 729 784 841 900二、立方数底数 1 2 3 4 5 6 7 8 9 10平方 1 8 27 64 125 216 343 512 729 1000三、多次方数1 2 3 4 5 6 7 8 9 102 2 4 8 16 32 64 128 256 512 10243 3 9 27 81 243 7294 4 16 64 256 10245 5 25 125 6256 6 36 216 1296ps 1、很多数字的幂次数都是相通的,比如729=93=36=272,256=28=44=162等。
2、“21~29”的平方数是相联系的,以25为中心,24与26、23与27、22与28、21与29,他们的平方数分别相差100、200、300、 400。
常用阶乘数(定义 n的阶乘写作n!。
n!=1×2×3×4×···×(n-1)×n )数字 1 2 3 4 5 6 7阶乘 1 2 6 24 120 720 504040以内质、合数(0既不是质数也不是合数)一、质数: 2、3、5、7、11、13、17、19、23、29、31、37、41二、合数: 4、6、8、9、10、12、14、15、16、18、20、21、22、24、25、26、27、28、30、32、33、34、35、36、38、39常用经典因数分解91=7×13 111=3×37 119=7×17 133=7×19 117=9×13 143=11×13147=7×21 153=9×17 161=7×23 171=9×19 187=11×17 209=19×111)等差、等比这种最简单的不用多说,深一点就是在等差、等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b2)深一愕模型,各数之间的差有规律,如1、2、5、10、17。
三、三角形形式数字推理三角形数字推理的规律通常是寻找三角形的数字与中心数字之间的联系1.3 2 6 22 11 68 ?1 1 32 2 4 4 3A:10 B:15 C:19 D:21【答案】C.解析:“左下角的数”的“顶尖数的次方”+右下角的数=中间的数,比如 1的3次方+1=2 ,3的2次方+2=11, 2的6次方+4=68,结果为4的2次方+3=19,所以答案应为C.2.8 7 16 612 21 4 ?6 4 9 3 2 8 9 18A:3 B:5 C:7 D:9【答案】A.解析:6×8÷4=12,7×9÷3=21,16×2÷8=4,6×9÷18=(3)所以答案应为A. 6×8÷4=122.11 9 7 1046 48 32 ?7 5 8 7 3 6 5 4A:36 B:38 C:42 D:44【答案】B.解析:(11+7+5)×2=46 , (9+8+7)×2=48 , (7+3+6)×2= 32, (10+5+4)×2=(38)四、其他图形形式数字推理1.【答案】D.解析:下面2个数字之和的平方-上面一个数字的平方=中间的数字(5+2)^2-6^2=13 , (10+4)^2-12^2=52 , (3+7)^2-9^2=192.【答案】D.解析:交叉计算,(8-2)*(4+2)=36 ,(1-2)*(3+3)=-6 ,(5-5)*(5+5)=0 3.【答案】B.解析:(11+7)-(9+9)÷2=9 ,(3+0)-(5+1)÷2=0 ,(7+7)-(8+2)÷2=9 .4.2 103 6 5 710 1 ?2 11 5 4 13 6A:10 B:11 C:12 D:13 【答案】A.解析:左上角的数×右下角的数-右上角的数-左下角的数=中间的数,答案为5×6-13-7=10五、拓展:图形推理A B C D【解答】正确答案为B.因为只有B能使两套图形具有相似性,仅仅元素不同,一个是半圆,一个是半正方形,但两组图形中元素的排列规律完全相同.在右面的4个图形中,只有一个是由左边的纸板折叠而成.你需要选出正确的一个.A B C D【解答】正确答案为D,在例题中,只有D可以由左边的纸板折叠而成.因此,正确答案是D.行测备考战略之数字推理篇数字推理题因其考察的无背景化,也即不需要较高的数学知识和运算能力就可以做题,是公务员考试行政职业能力测试中一直以来的固定题型。
数字推理(可直接打印)
数字推理
数字推理是一种基于对数字模式和规律的分析和推导的方法。
通过观察数列、图形、表格等数字序列,我们可以发现其中的规律,并预测下一个数字或者填充缺失的数字。
数字推理可以帮助我们锻炼逻辑推理和数学思维能力,培养我
们的观察力和分析能力。
在许多领域,如数学、科学、工程和计算
机科学中,数字推理都有着重要的应用。
数字推理可以分为以下几种类型:
1. 数列推理:观察数列中数字的变化规律,推测下一个数字或
填充缺失的数字。
常见的数列推理包括等差数列、等比数列和斐波
那契数列等。
2. 图形推理:观察图形的形状、图案或线条的变化规律,推断下一个图形的形状或填充缺失的部分。
图形推理可以锻炼我们的几何思维和空间想象力。
3. 表格推理:观察表格中数据的关系和变化规律,推断下一个数据或填充缺失的数据。
表格推理可以帮助我们培养数据分析和统计能力。
在进行数字推理时,我们应该注意以下几点:
1. 注意细节:仔细观察数字模式或图形的变化细节,寻找规律和共同特征。
2. 多角度思考:从不同的角度和思维方式来分析和推理,寻找可能的解决方案。
3. 实践和训练:通过解决各种类型的数字推理问题,不断练和提高我们的推理能力。
数字推理是一个锻炼思维和逻辑能力的过程,通过不断的实践和训练,我们可以提高我们的数字推理能力,应用到各种领域中。
数字推理2011年国考没有数字推理,可能安徽也会跟着中央走,更何况安徽的数字推理是有名的弱智,完全可以随便看看。
所以我这部分也就没整理太多。
数字敏感记熟常用的幂次数3,多次方因数分解法有的数列,必须要把每项拆成2个数字的积,这2个数字分别构成数列。
这种数列,还是有迹可循的。
注意看所给的数字是不是很明显地某个数的倍数。
这是华图弄得数推思维过程,新手可以看看,一般的题基本这么就可以了。
难题其实顶多也就1个,为这1分花大工夫我觉得挺不值的~~真要全对,那就多接触接触各种题目,开阔思路。
1,等差数列及其变式这个是最基本的了,一般数字变化不大的都是此类。
不过现在为了增加难度,一般都是二级,三级,而且最后一级可能不只是等差数列2,等比数列及其变式观察数列各项间有大致的倍数关系,则易解,顶多是多了个修正数列3,平方,立方数列及其变式1,这个要求对基本的平方,立方非常熟悉,然后要有一定的数字敏感性——比如说26,就得想到26=25+1=27-1等等。
2,这种数列一般跳跃较大,而且前后没什么明显关系。
这可能是解题突破口。
3,可以在数列的中后部找到一数字,因为此时未修正数很大,修正数列已经无法掩盖其原貌。
4,一般不会直接考,会加个修正数列(注意修正数列特别大的情况,比如09年国考)或者是前面2项之差的平方等于第三项这类的规律5,有可能会与项数相联系,形成有通项公式的数列。
如:-2,-8,0,64,(250)为n*n*n*(n-5)4,做和数列(同理有可能是积数列,就不单列了)1,这种数列需要两项(甚至三项)做和,得到的和构成一个新数列2,如果数字彼此差距不大,而且不是等差,有的会“高低起伏”,那么可以尝试做和3,这种数列的难点就在于如何想到这是做和数列4,这种数列有的数字都很小,而且参差不齐,这或许可以作为突破口5,有的含有负数,不大6,在最开始的做差如果发现差跳来跳去,那么可以从这方面考虑5,递推和数列及其变式1,前2项和等于第三项,这是最普通的,可能会加个修正数列,如+1,-1。
仔细观察和分析各数之间的关系,大胆提出假设,迅速将这种假设延伸到下面的数,如果能得到验证,即解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。
(1)奇偶数规律:各个数都是奇数(单数)或偶数(双数);(2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减。
(3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减;(4)二级等差:相邻数之间的差或比构成了一个等差数列;(5)二级等比数列:相邻数之间的差或比构成一个等比数理;(6)加法规律:前两个数之和等于第三个数,(7)减法规律:前两个数之差等于第三个数(8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数;(9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含(10)混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列(11)A2-B=C这种数列有正负(12)奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:1、全是奇数:2、全是偶数3、奇、偶相间二、排序:题目中的间隔的数字之间有排序规律三、加法:题目中的数字通过相加寻找规律1、前两个数相加等于第三个数2、前两数相加再加或者减一个常数等于第三数四、减法:题目中的数字通过相减,寻找减得的差值之间的规律1、前两个数的差等于第三个数:“空缺项在中间,从两边找规律”2、等差数列:3、二级等差:相减的差值之间是等差数列4、二级等比:相减的差是等比数列5、相减的差为完全平方或开方或其他规律6、相隔数相减呈上述规律:“相隔”可以在任何题型中出现五、乘法:1、前两个数的乘积等于第三个数2、前一个数乘以一个数加一个常数等于第二个数,N1×m+a=N23、两数相乘的积呈现规律:等差,等比,平方,...六、除法:1、两数相除等于第三数2、两数相除的商呈现规律:顺序,等差,等比,平方,...七、平方:1、完全平方数列:2、前一个数的平方是第二个数。
数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
提示:熟练掌握基本题型及其简单变化是保证数字推理题不丢分的关键。
第二种情形---等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。
5、等比数列的常规公式。
设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。
[例5] 12,4,4/3,4/9,()A、2/9B、1/9C、1/27D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。
故选D。
6、二级等比数列。
是指等比数列的变式,相邻两项之比有着明显的规律性,往往构成等比数列。
[例6] 4,6,10,18,34,() A、50 B、64 C、66 D、68[解析] 此数列表面上看没有规律,但它们后一项与前一项的差分别为2,4,6,8,16,是一个公比为2的等比数列,故括号内的值应为34+16Ⅹ2=66 故选C。
7、等比数列的特殊变式。
[例7] 8,12,24,60,() A、90 B、120 C、180 D、240[解析] 该题有一定的难度。
题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的:3/2,4/2,5/2,因此,括号内数字应为60Ⅹ6/2=180。
故选C。
此题值得再分析一下,相邻两项的差分别为4,12,36,后一个值是前一个值的3倍,括号内的数减去60应为36的3倍,即108,括号数为168,如果选项中没有180只有168的话,就应选168了。
同时出现的话就值得争论了,这题只是一个特例。
第三种情形—混合数列式:是指一组数列中,存在两种以上的数列规律。
8、双重数列式。
即等差与等比数列混合,特点是相隔两项之间的差值或比值相等。
[例8] 26,11,31,6,36,1,41,() A、0 B、-3 C、-4 D、46[解析] 此题是一道典型的双重数列题。
其中奇数项是公差为5的等差递增数列,偶数项是公差为5的等差递减数列。
故选C。
9、混合数列。
是两个数列交替排列在一列数中,有时是两个相同的数列(等差或等比),有时两个数列是按不同规律排列的,一个是等差数列,另一个是等比数列。
[例9] 5,3,10,6,15,12,(),()A、20 18B、18 20C、20 24D、18 32[解析] 此题是一道典型的等差、等比数列混合题。
其中奇数项是以5为首项、公差为5的等差数列,偶数项是以3为首项、公比为2的等比数列。
故选C。
第四种情形—四则混合运算:是指前两(或几)个数经过某种四则运算等到于下一个数,如前两个数之和、之差、之积、之商等于第三个数。
10、加法规律。
之一:前两个或几个数相加等于第三个数,相加的项数是固定的。
[例11] 2,4,6,10,16,()A、26 B、32 C、35 D、20[解析] 首先分析相邻两数间数量关系进行两两比较,第一个数2与第二个数4之和是第三个数,而第二个数4与第三个数6之和是10。
依此类推,括号内的数应该是第四个数与第五个数的和26。
故选A。
之二:前面所有的数相加等到于最后一项,相加的项数为前面所有项。
[例12] 1,3,4, 8,16,() A、22 B、24 C、28 D、32[解析] 这道题从表面上看认为是题目出错了,第二位数应是2,以为是等比数列。
其实不难看出,第三项等于前两项之和,第四项与等于前三项之和,括号内的数应为前五项之和为32。
故选D。
11、减法规律。
是指前一项减去第二项的差等于第三项。
[例13] 25,16,9,7,(),5 A、8 B、2 C、3 D、6[解析] 此题是典型的减法规律题,前两项之差等于第三项。
故选B。
12、加减混合:是指一组数中需要用加法规律的同时还要使用减法,才能得出所要的项。
[例14] 1,2,2,3,4,6,() A、7 B、8 C、9 D、10[解析] 即前两项之和减去1等于第三项。
故选C。
13、乘法规律。
之一:普通常规式:前两项之积等于第三项。
[例15] 3,4,12,48,() A、96 B、36 C、192 D、576[解析] 这是一道典型的乘法规律题,仔细观察,前两项之积等于第三项。
故选D。
之二:乘法规律的变式:[例16] 2,4,12,48,() A、96 B、120 C、240 D、480[解析] 每个数都是相邻的前面的数乘以自已所排列的位数,所以第5位数应是5×48=240。
故选D。
14、除法规律。
[例17] 60,30,2,15,() A、5 B、1 C、1/5 D、2/15[解析] 本题中的数是具有典型的除法规律,前两项之商等于第三项,故第五项应是第三项与第四项的商。
故选D。
15、除法规律与等差数列混合式。
[例18] 3,3,6,18,() A、36 B、54 C、72 D、108[解析] 数列中后个数字与前一个数字之间的商形成一个等差数列,以此类推,第5个数与第4个数之间的商应该是4,所以18×4=72。
故选C。
思路引导:快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数。
如果假设被否定,立刻换一种假设,这样可以极大地提高解题速度。
第五种情形—平方规律:是指数列中包含一个完全平方数列,有的明显,有的隐含。
16、平方规律的常规式。
[例19] 49,64,91,(),121 A、98 B、100 C、108 D、116[解析] 这组数列可变形为72,82,92,(),112,不难看出这是一组具有平方规律的数列,所以括号内的数应是102。
故选B。
17、平方规律的变式。
之一、n2-n[例20] 0,3,8,15,24,() A、28 B、32 C、35 D、40[解析] 这个数列没有直接规律,经过变形后就可以看出规律。
由于所给数列各项分别加1,可得1,4,9,16,25,即12,22,32,42,52,故括号内的数应为62-1=35,其实就是n2-n。
故选C。
之二、n2+n[例21] 2,5,10,17,26,() A、43 B、34 C、35 D、37[解析]这个数是一个二级等差数列,相邻两项的差是一个公差为2的等差数列,括号内的数是26=11=37。
如将所给的数列分别减1,可得1,4,9,16,25,即12,22,32,42,52,故括号内的数应为62+1=37,,其实就是n2+n。
故选D。
之三、每项自身的平方减去前一项的差等于下一项。
[例22] 1,2,3,7,46,() A、2109 B、1289 C、322 D、147[解析] 本数列规律为第项自身的平方减去前一项的差等于下一项,即12-0,22-1=3,32-2=7,72-3=46,462-7=2109,故选A。
第六种情形—立方规律:是指数列中包含一个立方数列,有的明显,有的隐含。
16、立方规律的常规式:[例23] 1/343,1/216,1/125,() A、1/36 B、1/49 C、1/64 D、1/27 [解析] 仔细观察可以看出,上面的数列分别是1/73,1/63,1/53的变形,因此,括号内应该是1/43,即1/64。
故选C。
17、立方规律的变式:之一、n3-n[例24] 0,6,24,60,120,() A、280 B、320 C、729 D、336[解析] 数列中各项可以变形为13-1,23-2,33-3,43-4,53-5,63-6,故后面的项应为73-7=336,其排列规律可概括为n3-n。
故选D。
之二、n3+n[例25] 2,10,30,68,() A、70 B、90 C、130 D、225[解析] 数列可变形为13+1,23+1,33+1,43+1,故第5项为53+=130,其排列规律可概括为n3+n。
故选C。
之三、从第二项起后项是相邻前一项的立方加1。
[例26] -1,0,1,2,9,() A、11 B、82 C、729 D、730[解析] 从第二项起后项分别是相邻前一项的立方加1,故括号内应为93+1=730。
故选D。
思路引导:做立方型变式这类题时应从前面几种排列中跳出来,想到这种新的排列思路,再通过分析比较尝试寻找,才能找到正确答案。
第七种情形—特殊类型:18、需经变形后方可看出规律的题型:[例27] 1,1/16,(),1/256,1/625 A、1/27 B、1/81 C、1/100 D、1/121 [解析] 此题数列可变形为1/12,1/42,(),1/162,1/252,可以看出分母各项分别为1,4,(),16,25的平方,而1,4,16,25,分别是1,2,4,5的平方,由此可以判断这个数列是1,2,3,4,5的平方的平方,由此可以判断括号内所缺项应为1/(32)2=1/81。