《多边形的内角和》公开课教案
- 格式:doc
- 大小:57.00 KB
- 文档页数:5
《多边形的内角和》教案(通用14篇)《多边形的内角和》篇1一、素质教育目标(一)知识教学点1.使学生把握四边形的有关概念及四边形的内角和外角和定理.2.了解四边形的不稳定性及它在实际生产,生活中的应用.(二)能力练习点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.2.通过推导四边形内角和定理,对学生渗透化归思想.3.会根据比较简单的条件画出指定的四边形.4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.(三)德育渗透点使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好.(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美.二、学法引导类比、观察、引导、讲解三、重点·难点·疑点及解决办法1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.四、课时安排2课时五、教具学具预备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.第2课时七、教学步骤复习提问1.什么叫四边形?四边形的内角和定理是什么?2.如图4-9, 求的度数(打出投影).引入新课前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题.讲解新课1.四边形的外角与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.2.外角和定理例1 已知:如图4-11,四边形abcd的四个内角分别为,每一个顶点处有一个外角,设它们分别为 .求 .(1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).(2)教给学生一组外角的画法——同向法.即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.证得:360°外角和定理:四边形的外角和等于360°3.四边形的不稳定性①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的外形和大小,已知一边一夹角,作三角形你会吗?(学生回答)②若以为边作四边形abcd.提示画法:①画任意小于平角的 .②在的两边上截取 .③分别以a,c为圆心,以12mm,18mm为半径画弧,两弧相交于d 点.④连结ad、cd,四边形abcd是所求作的四边形,如图4-13.大家比较一下,所作出的图形的外形一样吗?这是为什么呢?因为的大小不固定,所以四边形的外形不确定.③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的外形改变了,这说明四边形没有稳定性.教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:①四边形改变外形时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的外形就固定了,如教材p125中2的第h问,为克服不稳定性提供了理论根据.(4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育.总结、扩展1.小结:(1)四边形外角概念、外角和定理.(2)四边形不稳定性的应用和克服不稳定性的理论根据.2.扩展:如图4-15,在四边形abcd中, ,求四边形abcd的面积八、布置作业教材p128中4.九、板书设计十、随堂练习教材p124中1、2补充:(1)在四边形abcd中, , 是四边形的外角,且 ,则度.(2)在四边形abcd中,若分别与相邻的外角的比是1:2:3:4,则度, 度, 度, 度(3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角.《多边形的内角和》教案篇2七年级数学下册《多边形的内角和》教案黑龙江省宾县宾西镇第二中学杨显英设计理念:众所周知,数学课堂是以学生为中心的活动的课堂。
第一篇:多边形的内角和教案多边形的内角和教案教学目标通过探索多边形的对角线研究多边形的内角和公式,并会应用它们进行有关计算.教学重点、难点重点:多边形的内角和公式的理解和运用.难点:多边形的内角和公式的推导.教学流程设计一、回顾1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?4. 什么是多边形的对角线?二、学生问题探究1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?n边形一共有多少条对角线.三、教师引导学生分析总结:1.通过以上探索我们知道:从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。
这(n-2)个三角形的内角和正好是这个n边形的内角和。
由此我们推导出n边形内角和公式:n边形的内角和:(n一2)·180°.2.n边形一共有n(n-3)/2条对角线.四、示例讲解例1:求八边形的内角和。
例2:如果一个多边形的内角和是2160度,求这个多边形的边数。
五、课堂练习P:86 练习1、2.六、课时小结1.从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。
n边形一共有n(n-3)/2条对角线.2.n边形的内角和:(n一2)·180°.七、学生课后思考:要得到多边形的内角和需通过“三角形的内角和”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?第二篇:《多边形的内角和》教案《多边形的内角和》教案以下是查字典数学网为您推荐的《多边形的内角和》教案,希望本篇文章对您学习有所帮助。
多边形内角和教学设计3篇多边形内角和教学设计1《多边形内角和》教学设计一、教材分析本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标1、知识目标:(1)使学生了解多边形的有关概念。
(2)使学生掌握多边形内角和公式,并学会运用公式进行简单的计算。
2、能力目标(1)通过对“多边形内角和公式”的探究,培养学生分析问题、解决问题的能力,同时让学生充分领会数学转化思想。
(2)通过变式练习,培养学生动手、动脑的实践能力。
3、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:引导发现法、讨论法五、教具、学具及辅助教学媒体教具:多媒体课件学具:三角板、量角器教学媒体:大屏幕、实物投影六、教学过程:(一)创设情境,设疑激思1、以疑导入,引发求知欲。
先展示六螺帽,八角石英钟、多边形水果盘等多边形实物。
由此激发学生自己要设计,怎样设计的求知欲。
然后提出具体问题。
2、复习提问,知识巩固。
(1)三角形内角和等于多少度?(2)四边形内角和定理以及推导方法。
3、引入新课上一节课学习了求四边形内角和的方法,怎样求五边形、六边形……n边形的内角和呢?下面我们一起来讨论这个问题。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)方法1:把五边形分成三个三角形,3个180o的和是540o。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180o的和减去一个周角360o。
结果得540o。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180o的和减去一个平角180o,结果得540o。
八年级上册《多边形的内角和》教学设计八年级上册《多边形的内角和》教学设计(精选8篇)作为一名默默奉献的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以更好地组织教学活动。
我们该怎么去写教学设计呢?下面是小编收集整理的八年级上册《多边形的内角和》教学设计,希望能够帮助到大家。
八年级上册《多边形的内角和》教学设计篇1教学目标:1、理解多边形及正多边形的定义2、掌握多边形内角和公式。
教学重、难点:教学重点:1、多边形内角和公式。
2、计算多边形的内角和及依据内角和确定多边形边数。
教学难点:多边形内角和公式的推导。
一、创设情境,导入新课前面我们学过了三角形内角和定理,你还记得三角形内角和是多少度吗?你知道四边形内角和的度数吗?如何计算多边形内角和吗?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。
(设计说明:复习引入,开门见山,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,从而自然引入新课。
)二、自主探究,发现新知自学教材内容,动手操作,并思考:1、三角形内角和多少度?2、分别从四边形、五边形、六边形一个顶点出发可以引出多少条对角线?你能类比归纳出从n边形的一个顶点出发可以引出多少条对角线吗?3、分别四边形、五边形、六边形从一个顶点出发引出的对角线将原图形分割成多少个三角形?你能类比归纳出从n边形的一个顶点出发引出的对角线把这些多边形分别分割成了多少个三角形吗?4、请结合图形计算四边形、五边形、六边形的内角和。
5、从n边形一个顶点出发可以引出多少条对角线呢?这些对角线将n边形分割成了多少个三角形?现在你知道多边形内角和公式了吗?6、用几何符号表示你的发现。
(师生活动:学生自学教材,结合探究提纲思考、作图、观察、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情,为展示交流做准备。
)(设计意图:从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,让学生体会分割的过程,有利于深入领会转化的本质——n边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性, 同时,渗透类比的数学思想。
多边形的内角和数学教案一、教学目标1. 让学生理解多边形的内角和的概念。
2. 引导学生通过观察、操作、推理等方法探究多边形的内角和定理。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 多边形的内角和概念:多边形内角和指的是多边形所有内角的总和。
2. 多边形的内角和定理:n边形的内角和等于(n-2)×180°。
三、教学重点与难点1. 教学重点:多边形的内角和定理的推导和应用。
2. 教学难点:多边形内角和定理的理解和运用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、操作、推理等方法探究多边形的内角和定理。
2. 利用多媒体课件辅助教学,直观展示多边形的内角和定理。
3. 分组讨论,合作学习,提高学生的参与度和积极性。
五、教学过程1. 导入:通过展示一些多边形图片,引导学生关注多边形的内角和。
2. 新课导入:介绍多边形的内角和概念,引导学生理解多边形的内角和。
3. 探究活动:引导学生通过观察、操作、推理等方法探究多边形的内角和定理。
4. 讲解与演示:利用多媒体课件,讲解多边形的内角和定理,并展示定理的推导过程。
5. 练习与巩固:布置一些练习题,让学生运用内角和定理解决问题,巩固所学知识。
6. 课堂小结:对本节课的内容进行总结,强调多边形的内角和定理的应用。
7. 课后作业:布置一些课后作业,让学生进一步巩固多边形的内角和定理。
六、教学评估1. 课堂提问:通过提问了解学生对多边形内角和概念的理解程度。
2. 练习反馈:收集学生的练习题答案,分析其对多边形内角和定理的掌握情况。
3. 课后作业:检查课后作业的完成质量,评估学生对课堂所学知识的巩固程度。
七、教学反思1. 针对课堂提问和练习反馈,反思教学过程中的不足之处,如讲解不清、学生理解困难等问题。
2. 根据课后作业的完成情况,分析学生的学习效果,调整教学方法和策略。
3. 针对教学反思的结果,制定改进措施,提高教学质量。
部编版初中数学八年级上册《多边形的内角和》优质课公开课课件、教案11.3.2多边形的内角和(教学设计)一、教学目标1、知识与技能:(1)探索并了解多边形的内角和公式。
(2)能对多边形的内角和公式进行应用,解决实际问题。
(3)掌握多边形的外角和定理,并能运用。
2、过程与方法:(1)通过量,拼,分,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。
(2)通过把多边形转化成三角形体会转化思想在几何中的运用,让学生尝试从不同的角度寻求解决问题的方法,同时让学生体会从特殊到一般的认识问题的方法。
3、情感态度与价值观:(1)通过师生共同活动,培养学生创新精神,增强学生对数学的好奇心与求知欲。
(2)向学生渗透类比、转化的数学思想,并使学生学会与他人合作。
二、教材分析本节课选自人教版数学七年级册第七章第三节多边形内角和,训练重点是探索多边形内角和公式的得出及利用内角和公式解决一些计算和证明问题。
本节课“多边形的内角和”作为本章的一个重点也是一个难点,是学生在上学期初步认识和感受空间图形之后的延伸,是三角形有关知识的拓展,将会大大提高学生的探究、推理、表达等各方面能力,公式的运用还充分地体现了图形与客观世界的密切联系。
三、学情分析前面,学生已经知道三角形的内角和及外角、正方形的内角和、长方形的内角和,并了解了多边形的有关概念,这些都为学生学习本节知识作了知识准备。
学生已经初步具备小组合作能力、独立学习能力,探究的能力,以及归纳、分析能力,能通过合作、交流来完成学习任务。
四、教学重难点重点:多边形内角和定理与外角和定理的推导及运用。
难点:将多边形的内角和转化为三角形的内角和,找出它们之间的关系。
五、教法:启发式、探索式六、学法:自主探索、合作交流七、创新点、德育点、空白点创新点:(1)将多边形内角和公式的推导,由学生小组合作或独立思考完成,最后由特殊到一般归纳内角和公式。
苏教版四年级数学下册公开课《多边形的内角和》教案一. 教材分析《多边形的内角和》是苏教版四年级数学下册的一章内容。
本节课主要让学生理解多边形的内角和的概念,掌握多边形内角和的计算方法,并能够应用到实际问题中。
教材通过生动的图片和生活实例,引导学生探究多边形的内角和,培养学生的观察能力、思考能力和动手能力。
二. 学情分析四年级的学生已经掌握了基本的平面几何知识,具备了一定的观察和思考能力。
但是他们对于多边形的内角和可能还没有直观的认识,需要通过实例和操作来理解和掌握。
此外,学生的学习兴趣和主动性也需要通过教学活动的设计来激发和保持。
三. 教学目标1.让学生理解多边形的内角和的概念,掌握多边形内角和的计算方法。
2.培养学生的观察能力、思考能力和动手能力。
3.激发学生的学习兴趣,提高学生主动参与学习的积极性。
四. 教学重难点1.重点:理解多边形的内角和的概念,掌握多边形内角和的计算方法。
2.难点:直观地理解多边形的内角和与边数的关系。
五. 教学方法1.情境教学法:通过生动的图片和生活实例,引导学生观察和思考多边形的内角和。
2.动手操作法:让学生通过实际操作,探究多边形的内角和,增强直观感受。
3.小组合作法:引导学生分组讨论和合作,培养学生的团队协作能力。
六. 教学准备1.教学课件:准备与教学内容相关的课件,包括图片、实例和动画等。
2.学生活动材料:准备一些多边形的模板和剪刀,让学生动手操作。
3.教学卡片:准备一些有关多边形内角和的问题卡片,用于巩固和拓展环节。
七. 教学过程导入(5分钟)教师通过展示一些多边形的图片,如正方形、三角形、六边形等,引导学生观察和思考多边形的特征。
然后提出问题:“你们知道多边形有多少个内角吗?它们是如何计算的?”让学生思考并回答。
呈现(10分钟)教师通过课件呈现多边形的内角和的概念,解释多边形的内角和是指多边形所有内角的度数之和。
然后展示一些多边形的内角和计算方法,如正方形的内角和为360度,三角形的内角和为180度等。
《多边形的内角和》教案一、教学目标:1. 让学生理解多边形的内角和的概念。
2. 引导学生通过观察、思考、探究,发现多边形内角和的计算规律。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学内容:1. 多边形的内角和的概念。
2. 多边形内角和的计算规律。
三、教学重点与难点:重点:多边形的内角和的概念,多边形内角和的计算规律。
难点:发现并证明多边形内角和的计算规律。
四、教学方法:1. 采用问题驱动的教学方法,引导学生观察、思考、探究。
2. 利用几何画板软件,直观展示多边形的内角和。
3. 分组讨论,合作学习,培养学生的团队协作能力。
五、教学过程:1. 导入:通过展示一些多边形图片,引导学生关注多边形的内角和。
2. 新课导入:介绍多边形的内角和的概念,让学生理解多边形内角和的意义。
3. 探究活动:引导学生观察、思考多边形内角和的计算规律。
4. 小组讨论:分组讨论,让学生合作探究多边形内角和的计算规律。
5. 成果展示:各小组代表展示探究成果,总结多边形内角和的计算规律。
6. 讲解与示范:讲解多边形内角和的计算方法,并利用几何画板软件进行示范。
7. 练习与巩固:布置一些练习题,让学生运用所学知识解决问题。
8. 总结与反思:对本节课的内容进行总结,引导学生反思学习过程。
9. 课后作业:布置一些课后作业,巩固所学知识。
10. 教学反思:对课堂教学进行总结,反思教学过程中的优点与不足,为下一步教学做好准备。
六、教学评价:1. 评价学生对多边形内角和概念的理解程度。
2. 评价学生是否能运用多边形内角和计算规律解决实际问题。
3. 评价学生在小组讨论中的参与程度及团队协作能力。
七、教学反馈:1. 课后收集学生练习作业,分析学生掌握情况。
2. 课堂观察学生参与度,了解学生对教学内容的兴趣。
3. 听取学生对教学过程的建议和意见,以便改进教学方法。
八、教学拓展:1. 引导学生进一步研究多边形的其他性质,如外角和、对角线等。
多边形的内角和教学教案【优秀4篇】多边形的内角和教案篇一[教学目标]知识与技能:1.会用多边形公式进行计算。
2.理解多边形外角和公式。
过程与方法:经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力。
情感态度与价值观:让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。
[教学重点、难点与关键]教学重点:多边形的内角和。
的应用。
教学难点:探索多边形的内角和与外角和公式过程。
教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决。
[教学方法]本节课采用“探究与互动”的教学方式,并配以真的情境来引题。
[教学过程:](一)探索多边形的内角和活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。
活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?多边形边数分成三角形的个数图形内角和计算规律三角形31180°(3-2)·180°四边形4五边形5六边形6七边形7。
n边形n活动3:把一个五边形分成几个三角形,还有其他的分法吗?总结多边形的内角和公式一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。
巩固练习:看谁求得又快又准!(抢答)例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?(点评:四边形的一组对角互补,另一组对角也互补。
)(二)探索多边形的外角和活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的'和叫做五边形的外角和。
五边形的外角和等于多少?分析:(1)任何一个外角同于他相邻的内角有什系?(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?(3)上述总和与五边形的内角和、外角和有什么关系?解:五边形的外角和=______________-五边形的内角和活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。
多边形的内角和教学教案(优秀6篇)由三条或三条以上的线段首尾顺次连接所组成的平面图形叫做多边形。
下面是小编辛苦为大家带来的多边形的内角和教学教案(优秀6篇),如果对您有一些参考与帮助,请分享给最好的朋友。
多边形的内角和教案篇一教学目标知识与技能:经历探索多边形的外角和公式的过程;会应用公式解决问题;过程与方法:培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力。
情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
教学重点:多边形外角和定理的探索和应用。
教学难点:灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透。
教学准备:多媒体课件教学过程第一环节创设情境,引入新课(5分钟,学生理解情境,思考问题)问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。
(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?(2)他每跑完一圈,身体转过的角度之和是多少?(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5的结果吗?你是怎样得到的?第二环节问题解决(10分钟,小组讨论,合作探究)对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。
然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。
如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。
小亮是这样思考的:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′,OB′,OC′,OD′,OE′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.这样,∠1+∠2+∠3+∠4+∠5=360°问题引申:1.如果广场的形状是六边形那么还有类似的结论吗?2.如果广场的形状是八边形呢?第三环节探索多边形的外角与外角和(10分钟,全班交流,学生理解识记)1.多边形内角的`一边与另一边的反向延长线所组成的角叫做这个多边形的外角。
课题:多边形的内角和
莲美中学
一、教学内容:
华东师大义务教育课程标准实验教科书《数学》,初中一年级(下)第八章第三节。
二、教学目标:
1.经历探索多边形内角和公式的过程,发展学生合情推理的意识,主动探索的习惯,进一步体会数学与现实生活有着密切的联系。
2.探索并了解多边形内角和公式,发展学生的说理和简单推理意识和能力。
3.会用多边形内角和公式解决有关简单计算问题。
三、重点和难点:
教学重点:多边形的内角和公式的探索、归纳及运用公式进行有关计算。
教学难点:如何引导学生参与到探索多边形的内角和公式过程中,通过动手实践、观察分析、归纳总结得出多边形的内角和公式。
四、教材分析:
本节内容是在学习了三角形的内角和的基础上的进一步学习,是三角形内角和公式的延伸与拓展。
本节内容分成三个部分:(1)多边形的有关概念和识别;(2)多边形内角和公式的探索和归纳;(3)多边形内角和公式的简单应用。
对于(2)部分内容是本节课的重点,首先让学生画三到四个不同的多边形,教师应正确引导学生合理地分割图形,从而把多边形问题分割成若干个三角形来解决。
本节内容分两课时,这是第一课时。
五、教学方式:
从整个教学过程来看,先从特殊的四边形入手,求其内角和,再分别求五边形、六边形、七边形的内角和,从中寻找求内角和规律。
从研究的形式来看,主要是以问题的提出,由浅入深,由易到难,结合小组讨论,由学生归纳总结,最后得出内角和公式。
教师本着让每个学生都能参与,让每个学生的思维都得到训练,让每个学生的能力都得到培养和提高,这一教学理念来设置每个问题,每个教学环节。
六、学习方式:
1.通过教师设置的问题情景(拼图游戏),引起学生对研究多边形内角和这一问题的关注。
2.通过复习三角形的概念,由学生类比得出四边形、多边形等概念。
3.通过本组活动,采用分割图形的方法得出四边形、五边形等平面图形的
内角和与边数的关系,逐步升华得出多边形内角和公式。
七、教学过程:
游戏拼图,创设情景
同学们,首先我们来做一个游戏,请每个小组拿出剪好的正方形、正三角形、正五边形、正六边形、正八边形等纸片(每个组员准备一种,同一种图形至少四个,且必须一样大),用同一种图形依次拼凑,观察有哪几种情形可以拼出平整、无空隙象地板一样平整的?有哪几种情形又不能拼成平整、无空隙的?
【设计意图】 通过同学们运用比较熟悉的图形以游戏的方式来进行“摆、拼、凑”等,使学生感到活动比较轻松、有趣,这一活动符合学生年龄特征。
通过初步初步感悟到:不是所有的正多边形都可以拼成平整无空隙的图形的。
同时又培养了学生的动手实践和观察猜想的能力。
接着,教师用多媒体或实物投影仪展示刚才拼出的各种图形(如图1),并提出下列问题:
(图1)
(1) 为什么用以上形状的材料能铺成平整、无空隙的图形呢?
(2)而用以下形状的材料为什么不能铺成平整、无空隙的图形呢?(图2)
(图2)
这里其实涉及到多边形内角和以及拼图的问题,为了说明其中的道理,今天我们首先研究多边形内角和(板书课题)
问题一:什么叫三角形?它的内角和是多少度?
试一试:画出三个不同的多边形,并分别读出它们的名称。
【设计意图】 复习旧知识,挑战新概念。
问题二:根据所画的图形,结合三角形定义,你能学着给四边形、五边形……n 边形定义吗?
【设计意图】 对概念分析和归纳,培养学生的口头表达能力和语言组织能力。
同时渗透类比思想。
想一想:四边形的内角和是多少?怎样求?
问题三:根据四边形的内角和的求法,你能否求出五边形的内角和呢? 学生动手实践,小组讨论、交流,寻找解答方法,并共同进行归纳总结。
估计学生可能有以下几种方法:
方法1:如图3,连结AD 、AC ,五边形的内角和为3×180°=540°。
方法2:如图4,连结AC ,则五边形内角和为360°+180°=540°。
(图3) (图4) (图5)
方法3:如图5,在AB 上任取一点F ,连结FC 、FD 、FE ,则五边形的内角和为4×180°-180°=540°。
方法4:如图6,在五边形内任取一点O ,连结OA 、OB 、OC 、OD 、OE ,则五边形内角和为5×180°-360°=540°。
(图6) (图7)
方法5:如图7,在AB 上任取一点F ,连结FD ,则五边形的内角和为2×360°-180°=540°。
小结:纵观以上各种证明思路,其共同点是通过图形分割,把五边形问题转化为熟悉的三角形、四边形问题来解决。
我们不妨选择方法1求六边形、七边形、八边形……n 边形的内角和,学生【设计意图】由于四边形的内角和易求得,这里采用略讲,而着重研究求五边形的内角和。
为了训练学生思维的灵活性和广阔性,寻求多种不同的分割方法来得出五边形,以激起学生积极参与、尝试、探索。
这既符合新课程教学理念,
又符合学生的认知规律和年龄特征。
同时渗透转化思想。
问题四:(1)表中三角形的个数与边数有怎样的关系?
(2)多边形内角和的度数与三角形的个数有怎样的关系?与边数又有怎样的关系?
通过师生共同分析归纳得到如下等式:
四边形内角和为360°=2×180°=(4-2)×180°
五边形内角和为540°=3×180°=(5-2)×180°
六边形内角和为720°=4×180°=(6-2)×180°
七边形内角和为900°=5×180°=(7-2)×180°
八边形内角和为1080°=6×180°=(8-2)×180°
…
n边形的内角和为:(n-2)×180°
【设计意图】通过对表格中一组数据的填写以及(1)、(2)两个问题的回答,让学生通过观察、分析、归纳、表达以及动脑、动口活动,培养学生的合情推理。
同时渗透由特殊到一般的思想方法。
例题和练习
求八边形的内角和的度数。
解:(n-2)×180°=(8-2)×180°=1080°
练习:填空
1,十边形的内角和为度,正八边形的每个内角为度。
2,已知一个多边形的内角和为1080°,则它的边数为,
3,若一个多边形,则它是十边形。
4,如果一个多边形的边数增加1,则它的内角和将()
A增加90°B增加180° C 增加360°D不变
说明:第3题是一个条件开放型题,答案可填①有十个顶点,②有十个内角,③内角和为1440°。
【设计意图】通过该组练习题的训练,既巩固了新知,又训练了学生思维的灵活性与开阔性。
同时,若发现问题,教师及时做好评讲纠正工作。
八、课堂小结:(由师生共同完成)
1,通过本节课的学习,你学到了哪些知识?有何体会?(多边形的有关概念、正多边形、多边形的内角和定理,并能利用公式进行计算)
2,在学习多边形的有关概念时,我们通过复习三角形的有关概念来类比得出的,这种通过复习旧知识,比较、得出新知识的方法在以往的数学学习中也曾出现过。
3,我们在研究、探索多边形的内角和公式时,首先从具体的、特殊的四边形、五边形入手,来得出多边形的内角和公式。
在研究问题的过程中,把多边形问题通过分割成三角形来研究,即把复杂问题转化为简单问题,这种研究和探索问题的方法都是我们在学习数学过程中,经常要用到的,希同学们要领悟这种思想方法。
作业:1,阅读课本
2,P56 1,2。