传感器复习提纲
- 格式:doc
- 大小:307.00 KB
- 文档页数:12
传感器原理及应用复习资料第一章传感器概述1.什么是传感器?传感器由哪几个部分组成?试述它们的作用和相互关系。
(1)传感器定义:广义的定义:一种能把特定的信息(物理、化学、生物)按一定的规律转换成某种可用信号输出的器件和装置。
广义传感器一般由信号检出器件和信号处理器件两部分组成;狭义的定义:能把外界非电信号转换成电信号输出的器件。
我国国家标准对传感器的定义是:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置。
以上定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。
(2)组成部分:传感器由敏感元件,转换元件,转换电路组成。
(3)他们的作用和相互关系:敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。
2.传感器的总体发展趋势是什么?现代传感器有哪些特征,现在的传感器多以什么物理量输出?(1)发展趋势:①发展、利用新效应;②开发新材料;③提高传感器性能和检测范围;④微型化与微功耗;⑤集成化与多功能化;⑥传感器的智能化;⑦传感器的数字化和网络化。
(2)特征:由传统的分立式朝着集成化。
数字化、多动能化、微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。
(3)输出:电量输出。
3.压力、加速度、转速等常见物理量可用什么传感器测量?各有什么特点?4(1)按传感器检测的量分类,有物理量、化学量,生物量;(2)按传感器的输出信号性质分裂,有模拟和数字;(3)按传感器的结构分类,有结构性、物性型、复合型;(4)按传感器功能分类,单功能,多功能,智能;(5)按传感器转换原理分类,有机电、光电、热电、磁电、电化学;(6)按传感器能源分类,有有源和无源;根据我国的传感器分类体系表,主要分为物理量传感器、化学量传感器、生物量传感器三大类。
复习提纲第1章 传感器概述1 构成信息技术的三大支柱是什么?它们各自起到什么作用2 什么是传感器?(传感器定义,包括广义和狭义)3 传感器由哪几个部分组成?分别起到什么作用?4 了解传感器的分类方法。
按检测的量分类有哪三大类?5 了解传感器的图形符号,其中符号代表什么含义。
第2章 传感器特性1 什么是传感器的静态特性?静态特性参数有哪些?(线性度、迟滞、重复性、灵敏度、分辨率、稳定性),各种参数代表什么意义,描述了传感器的哪些特征?特别要注意区分灵敏度和分辨力。
2 什么是传感器的动态特性?动态误差的理解。
3 传递函数的定义是什么?一阶系统和二阶系统的传递函数的表达式。
第3章 应变式传感器1 什么是应变效应?金属电阻丝应变片的灵敏度系数的表达式为: 0//12R Rk ρρμεε∆∆==++,其主要由材料的几何尺寸决定的。
2 什么是压阻效应?半导体应变片的灵敏度系数的表达式为: 0012100(12)k E k E μππμ=++≈>>+,50,因此,:,主要是由电阻率的变化所决定的。
3 电阻应变片测量电路,直流电桥电压灵敏度的定义:()021=/1u U n K E R R n =⋅∆+及其讨论(P28), 4 比较电阻应变片组成的单桥、半桥、全桥电路,讨论各电路输出电压灵敏度、非线性误差补偿及温度补偿。
掌握半桥电路和全桥电路的应变片的布置方式。
5 典型的例子:有一吊车的拉力传感器如图所示,电阻应变片R 1、R 2、R 3、R 4粘贴在等截面轴上,已知R 1~R 4标称阻值为120Ω,桥路电压2V ,物重M 引起R 1、R 2变化增量为1.2Ω。
请连接出应变片电桥电路,计算出测得的输出电压和电桥的输出灵敏度,说明R 3、R 4可以起到什么作用?6 应变式传感器的应用(主要用于测力、压力和加速度的测量)。
第4章 电容式传感器1 电容传感器的工作原理及其结构类型?2 变极距型电容传感器的工作原理及其灵敏度定义(000/1C C k δδ∆==∆)及其讨论(P46),非线性误差的表达式。
《传感器检测技术》复习提纲Chap. 1传感器的用途(非电量电量)传感器是将各种非电量(包括物理量、化学量、生物量等)按一定规律转换成便于处理和传输的另一种物理量(一般为电量)的装置。
现代信息产业的三大支柱随着科学技术的发展,传感器技术、通信技术和计算机技术构成了现代信息产业的三大支柱产业,分别充当信息系统的“感官”、“神经”和“大脑”,他们构成了一个完整的自动检测系统。
应用领域传感器几乎渗透到所有的技术领域。
如工业生产、宇宙开发、海洋探索、环境保护、资源利用、医学诊断、生物工程、文物保护等等广泛领域,并逐渐深入到人们的生活中。
传感器命名规则传感器产品的名称,应由主题词及四级修饰语构成。
(1)主题词——传感器。
(2)第一级修饰语——被测量,包括修饰被测量的定语。
(3)第二级修饰语——转换原理,一般可后续以“式”字。
(4)第三级修饰语——特征描述,指必须强调的传感器结构、性能、材料特征、敏感元件及其他必须的性能特征,一般可后续以“型”字。
(5)第四级修饰语——主要技术指标(量程、精确度、灵敏度等)。
本命名法在有关传感器的统计表格、图书索引、检索以及计算机汉字处理等特殊场合使用。
例1 传感器,绝对压力,应变式,放大型,1~3500kPa;例2 传感器,加速度,压电式,±20g。
在技术文件、产品样书、学术论文、教材及书刊的陈述句子中,作为产品名称应采用与上述相反的顺序。
例1 1~3500kPa 放大型应变式绝对压力传感器;例2 ±20g 压电式加速度传感器。
静态特性曲线优劣性比较传感器的静态性能指标:线性度、灵敏度、精确度、迟滞、重复性、零点漂移、温漂、分辨率和阈值灵敏度的定义:灵敏度是传感器在稳态下输出增量与输入增量的比值。
Chap. 2力的测量原理(静力效应,动力效应)力的计量单位为牛顿。
电桥(单臂、双臂、全桥,需要会推导输出表达式)如下图所示为恒压源供电的直流电桥测量电路。
其特点是,当被测量无变化时,电桥平衡时输出为零。
传感器复习提纲第0章绪论【没有大题】1.什么是传感器?(传感器定义)国家标准定义:能感受规定的被测量(包括物理量,化学量、生物量等)并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。
2.传感器由哪几个部分组成?分别起到什么作用?1.敏感元件:直接感受被测量(一般为非电量)并将其转换为与被测量有确定关系的易变成电量(包括电量)的其他元件。
2.转换元件:它能将物理量直接转换为有确定关系的电量的元件。
3.测量电路:把转换元件输出的电信号变为便于处理显示,记录控制的可用电信号的电路。
4.辅助电源:供给转换能量。
3.了解传感器的分类方法。
1.按基本效应分:物理型、化学型、生物型2.按传感机器分:结构型、物性型3.按能量关系分:能量转换型(自源型)能量控制型(外源型)4.按作用原理分:应变式,电容式,压电式,热电式5.按功能性质分:力敏,热敏,磁敏,气敏6.按功能材料分:固态(半导体,半导瓷,电介质)光纤,膜,超导等7.按输入量:位移,压力、温度、流量、气体8、按输出量:模拟式、数字量4.传感器的基本要求。
1、足够的容量2、灵敏度高、精度适当3、响应速度快,工作稳定、可靠性好4、适用性和适应性强5.使用经济第1章传感器技术基础【没有大题】1 衡量传感器静态特性的主要指标有哪些?说明它们的含义。
1.线性度:表征传感器输出-输入校准曲线与所选定的拟合直线(作为工作直线)之间的吻合(或偏离)程度的指标。
2.回差:反映传感器正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度的指标。
3.重复性:衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线一致性程度的指标4.灵敏度:传感器输出量增量与输入量增量之比。
5.分辨力:传感器在规定测量范围内所能检测出的被测输入量的最小变化量6.阈值:能使传感器输出端产生可测变化量的最小被测输入量值。
7.稳定性:传感器在相当长时间内保持其性能的能力8.漂移:在一定时间间隔内,传感器输出量存在着与被测输入量无关的,不需要的变化9.静态误差:指传感器在满量程内任一点输出值相对其理论值的可能偏离(逼近)程度。
传感器原理及应用复习提纲绪论一. 传感器及其作用二. 传感器的组成及其各部分的功能(什么是敏感元件,什么是转换元件,什么是测量电路,作用是什么?)三. 传感器的分类方法1.解释按输入量分类。
2.解释按测量原理分类。
四. 传感器技术的三要素是什么?第一章传感器的一般特性一. 传感器的静态特性1.牢固掌握传感器的主要静态特性指标及其定义:线性度、灵敏度、精确度、最小检测量和分辨率、迟滞、重复性、零点漂移、温漂。
2.牢固掌握精度等级的意义和应用。
二. 传感器的动态特性1.数学模型(0、1、2阶微分方程描述方法)2.传递函数(零阶特性,一阶特性,二阶特性。
)3.工程实际传感器动态指标的表示方法第二章应变式传感器1.金属应变片式传感器的特点(6点)。
精度高,测量范围广;频率响应特性较好;结构简单,尺寸小,重量轻;可在恶劣条件下正常使用;价格低廉,品种多样,便于选择。
金属应变片式传感器的原理(应变效应)2.金属应变片的主要特性:灵敏度系数的定义及物理意义。
什么是金属应变片的横向效应。
解释什么是机械滞后。
解释什么是应变极限。
研究金属应变片的动态特性的目的是什么。
3.温度误差及补偿温度怎样造成金属应变片式传感器的测量误差。
了解怎样用单丝自补偿应变片了解怎样用双丝组合自补偿应变片掌握用电桥补偿应变片的温度误差的原理4.测量电路固掌握分析、计算应变片式传感器组成的电桥电路。
了解等臂电桥,单臂电桥,输入和输出的关系(应变ε与电桥输出电压)。
了解什么是第一对称电桥,什么是第二对称电桥,输入和输出的关系。
5.什么是应变效应。
6. 什么是压阻效应。
半导体应变片的工作原理是基于半导体材料的亚阻效应。
7.什么是固态压阻器件。
8.应变片式传感器可以检测哪些物理量,可以应用在哪些领域。
怎样构成加速度传感器?9. 半导体应变片的特点10. 金属应变片式传感器和固态压阻器件都是应变片式传感器,区别是什么。
11.半导体应变片的工作原理是基于半导体材料的亚阻效应。
第一章测试的基础知识1、计量的概念:实现测量单位统一和量值准确传递2、测量的概念:测量是以确定被测对象的量值3、测试的概念:测试则是具有试验性质的测量第二章信号分析基础1、信号分为:连续、离散、能量、功率、确定(周期、非周期)、随机(平稳、非平稳)信号2、周期信号的频谱有以下特点:离散性、谐波性、收敛性第三章测试系统的特性1、对测试系统的基本要求是实现不失真的测试2、理想的测试系统应该具有:单一性、输入与输出关系3、测试系统的静态特性指标:灵敏度(输入与输出之比)、线性度、回程误差(迟滞误差)、重复性、精度、稳定性和漂移(稳定度、环境影响)、分辨力、可靠性第四章传感器技术概论1、传感器的组成:敏感组件、变换组件、信号调理电路、(Extra :辅助电源提供转换能量)2、弹性敏感组件的基本特性:● 刚度:外力作用时抵抗变形的能力(k=dF/dx )● 灵敏度:外力作用下产生变形的大小(S=1/k=dx/dF )● 弹性滞后原因:分子间存在内摩擦)● 弹性后效与载荷、时间有关)● 温度特性:αt 表示膨胀系数、0L 表示温度为0t °C 时的长度则t °C 时的长度为]t -t 1[0t 0)(α+=L L ● 固有频率:em k 21f π= (k :刚度e m :振动质量)机械品质因数:Q 值越大,弹性敏感组件消耗的能量越少,储能效率越高,工作频带越窄3、弹性敏感组件的要求:极限强度高、滞后温度小、抗氧化绝缘耐腐蚀第五章电阻应变式传感器1、电阻应变片的结构:敏感栅、基底、引线、覆盖层、粘合剂、电极2、电阻应变片原理:电阻应变效应、压阻效应3、电阻应变效应:电阻值随机械变形而变化的物理现象4、压阻效应:受到载荷应力作用,电阻产生变化5、公式:AL R ρ=(L :长度A :截面积(4d 2π=A )ρ:电阻率) 6、电阻应变片种类:丝式、箔式、半导体、薄膜应变片7、电阻应变片材料要求:灵敏度、电阻率高而稳、电阻系数小热稳定、抗氧化耐腐蚀、无机械滞后8、测量电桥:电桥是电阻(电感或电容)所组成的一个四端网络,参与测量的桥臂数越多,电桥的灵敏度越高计算方法:图,详见书46页当L R →∞时,电桥输出电压为)(4332110R R R R R R U U I +-+= 当电桥平衡时,0U =0则有:1R 4R =2R 3R 或4321R R R R = 结论:电桥若平衡,相对两臂的乘积相等,或相邻两臂电阻的比值必定相等 半桥单臂:I U RR U ∆=410只有一个电阻工作,其他都为0 半桥双臂:I U RR U ∆=210只有两个电阻工作,其他都为0 全臂:I U RR U ∆=0所有电阻都相等 第六章电感式传感器1、电感式传感器分为:自感、互感、电涡流式2、自感式(线圈、铁心、衔铁组成):变气隙式、变面积式、螺管式、差动式自感传感器变间隙型:图详见53页:m2R N L =(N 为线圈匝数,m R 磁路总电阻)差动式自感传感器:两个结构相同的自感线圈组合在一起形成差动式电感传感器,提高灵敏度,减少测量误差3、互感式电感传感器:即差动变压器工作原理类似变压器,但接线方式是差动的,用来测量被测量转化为互感系数M 的变化4、电涡流式传感器:根据电磁感应定律,块状金属在变化的磁场或做切割磁感线运动时,导体内将产生旋涡状的感应电流,称为电涡流电涡流式传感器结构简单、频率响应宽、灵敏度高、测量范围大、干扰能力强第七章电容式传感器1、电容式传感器工作原理和结构:d AC ε=(12-100.9⨯=ε为介电常数A 为面积d为间距)两块平行金属板组成的平板电容器。
传感器原理复习提纲第一章 绪论1. 检测系统的组成。
传感器 测量电路 输出单元把被测非电量转换成为与之有确定对应关系,且便于应用的某些物理量(通常为电量)的测量装置。
把传感器输出的变量变换成电压或电流信号,使之能在输出单元的指示仪上指示或记录仪上记录;或者能够作为控制系统的检测或反馈信号。
指示仪、记录仪、累加器、报警器、数据处理电路等。
2. 传感器的定义及组成。
定义 能感受被测量并按一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。
组成 敏感元件转换元件 转换电路 直接感受被测量,并输出与被测量成确定关系的物理量。
敏感元件的输出就是它的输入,抟换成电路参量。
上述电路参数接入基本转换电路,便可转换成电量输出。
3. 传感器的分类。
工作机理 物理型、化学型、生物型构成原理 结构型(物理学中场的定律)、物性型:物质定律 能量转换 能量控制型、能量转换型物理原理 电参量式传感器、磁电传感器、压电式传感器 用途位移、压力、振动、温度4. 什么是传感器的静态特性和动态特性。
静特性 输入量为常量,或变化极慢 动特性 输入量随时间较快地变化时5. 列出传感器的静态特性指标,并明确各指标的含义。
230123n ny a a x a x a x a x =+++++x 输入量,y 输出量,a 0零点输出,a 1理论灵敏度,a 2非线性项系数灵敏度传感器在稳态下,输出的变化量与引起该变化量的输入变化量之比。
表征传感器对输入量变化的反应能力线性传感器 非线性传感器迟滞正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。
产生迟滞的原因:由于传感器敏感元件材料的物理性质和机械另部件的缺陷 所造成的,如弹性敏感元件弹性滞后、 运动部件摩擦、 传动机构的间隙、 紧固件松动等。
线性度传感器的实际输入-输出曲线的线性程度。
4种典型特性曲线k y x=∆∆%1002max⨯∆=FSH Y H γ非线性误差%100max⨯∆±=FSL Y L γ,ΔLmax ——最大非线性绝对误差,YFS ——满量程输出值。
检测与转换技术复习提纲一、传感器的基本概念1、传感器的定义、地位、作用和发展方向。
传感器的定义:传感器是一种以一定的精确度把被测量转换为与之有对应关系的、便于应用的某些物理量的测量装置。
传感器的作用:传感器是获取自然领域中信息的主要手段,在检测和自动控制系统中,相当于人的五官。
传感器的地位:传感器位于自控系统的最前端,是实现自动检测和自动控制的首要环节,是现代信息技术的三大基础之一(即信息采集技术)。
自动化程度越高,对传感器的依赖越大;检测系统越先进,设备的生命力越强传感器技术是“顶天立地”的技术,是社会技术进步的标志。
检测与转换技术:它是一门以研究自动检测系统中的信息提取、信息转换、信息处理的理论和技术为主要内容的一门应用技术学科。
2、了解传感器的分类:电量传感器、电参数传感器3、传感器的基本特性静特性:线性度(要求掌握端基线性度的拟和直线)、迟滞 、重复性、 灵敏度等动特性4、测量误差的概念和分类P4掌握测量技术中的部分名词测量误差,按表示方法可被分为绝对误差、相对误差,重点要求掌握绝对误差、各种相对误差的基本概念和用法。
应用见作业题。
例:传感器A 测温范围0~100 0C , 精度为1级, 问其测20 0C ,50 0C ,800C 时的示值相对误差分别为多少?结论? 另外,如有传感器B 的测温范围50~550 0C,精度为0.5级, 如要求测温50~90 0C, 误差不超过10C, 应选择何种传感器? 如果要量0~200 0C ,要求测量示值相对误差不大于 ±1%, 问选用量程为300 0C 测温表,其精度应为哪一级?要求掌握系统误差、随机误差的基本概念及与准确度、精密度、精确度的关系。
四、电阻应变传感器1、概念:电阻应变计是将被测量的力(压力、荷重、扭力等)通过它所产生的金属弹性变形转换成电阻变化的敏感元件。
它是由电阻应变片和测量线路两部分组成。
2、特点:参量类——R 、L 、C ),属无源式。
传感器复习提纲
第一章:
1.传感器一般由哪几部分组成?其各部分分别的作用是什么?
2.传感器分类有哪几种?它们各适合在什么情
况下使用?
3.什么是传感器的静态特性?它由哪些主要性
能指标来描述?
4.什么是传感器的动态特性?常用什么方法来
分析?
5.传感器的标定有哪两种?标定的目的是什
么?
6.灵敏度的定义?如何计算灵敏度大小,如:某
线性位移测量仪,当被测位移X由3.0mm变到
4.0mm时,位移测量仪的输出电压V由3.0V减
至2.0V,求该仪器的灵敏度。
•第一章小结:
•1.传感器是指能够感受规定的被测量并按
照一定规律转换成电学量输出的测量装置。
一般由敏感元件、转换元件、测量电路和辅
助电源四部分组成。
•2.传感器的分类方法很多,一般可按被测
物理量、工作原理、能量关系和输出信号性质来分类。
•3.传感器的输出—输入关系特性是传感器的基本特性,有静态特性和动态特性之分。
所谓静态特性,是指传感器在稳态信号作用下,输出—输入之间的关系特性;而传感器的动态特性是指传感器在测量动态信号时,对激励(输入)的响应(输出)特性。
衡量传感器静态特性的主要性能指标是线性度、灵敏度、迟滞和重复性。
一个动态特性好的传感器总是希望随时间变化的输出曲线能同时再现随时间变化的输入曲线,常通过阶跃响应来研究传感器的动态特性。
一阶传感器的阶跃响应最重要的动态特性指标是时间常数,一般希望它越小越好;二阶传感器的阶跃响应典型的动态性能指标包括上升时间、峰值时间、响应时间和最大超调量等,一般也希望它们的数值越小越好。
•4.传感器的标定分为静态标定和动态标定两种。
静态标定的目的是确定传感器静态特性指标,如线性度、灵敏度、迟滞和重复性等;动态标定的目的是确定传感器的动态特
S 1—线圈 ,2—铁心,3—衔铁 123δδ∆±图4—1变隙式电感传感器结构原理图
性参数,如一阶传感器的时间常数,二阶传
感器的固有频率和阻尼比等。
第二章:
1.说明电阻应变片的组成、规格及分类。
2.什么叫应变效应?利用应变效应解释金属电阻应变片工作原理。
3.电阻丝的应变灵敏系数K s 与应变片的灵敏系数K 有何异同?
4.什么叫横向效应?
5.何谓半导体的压阻效应?
书P31:2.2; 2.5; 2.6; 2.8; 2.9;
第三章:电感式传感器
1.概述变间隙式自感式传感
器工作原理
2.电涡流传感器的优点:
(1)电涡流式传感器可本身
不与被测物体接触
(2)传感器对被测对象不产
生附加阻力
3.电涡流传感器的原理
一个线圈中通以高频电流,该线圈就产生了较大的阻抗,当用一金属片接近此线圈时,金属表面
会产生涡流,同时可产生一个交变磁场,方向相反,两种磁场相互作用,使线圈内的电感量发生变化。
4.电涡流式传感器的低频透射性
频率f越低,磁通穿透能力越强,在接受线圈上感应的电压也就越高,频率较低时,线性越好。
测薄板应选用f较高的信号源频率。
书P47:3.1; 3.2; 3.7
小结:
1.变隙式自感式传感器
结构(4-1图)
线圈,铁心,衔铁
原理
传感器工作时,衔铁与被测体连接,当被测体按图示方向产生±△δ的位移时,衔铁与其同步移动,引起磁路中气隙的磁阻发生相应的变化,从而导致线圈电感的变化。
因此,只要测出电感量的变化,就能确定衔铁(即被测体)位移量的大小和方向。
输出特性
当被测体产生位移时±△δ
00δδ∆-=∆L L 灵敏度为:0
01L L k σσ
==∆ 说明:
1) 线圈的初始电感L 0 越大,初始气隙δ0 越小,则灵敏度越高。
但气隙长度也不宜太小,否则测量范围过窄,而且δ0 太小还会引起较大的非线性误差。
2) 为了扩大测量范围和减少非线性误差,通常采用差动结构形式,采用这种形式不仅使灵敏度提高一倍,而且其非线性也得到明显改善。
第四章:电容式传感器
1.电容式传感器是把被测量转换为电容量变化的一种传感器,其工作原理可用平板电容器表达式说明。
根据这个原理,可将电容式传感器分为变间隙式、变面积式和变介电常数式三种。
2.当忽略边缘效应时,变面积式和变介电常数式电容传感器具有线性的输出特性,变间隙式电容传感器的输出特性是非线性的,为此可采用差动结构以减小非线性。
3.电容式传感器的输出电容值非常小,所以需要借助测量电路将其转换为相应的电压、电流或
频率等信号。
常用的测量电路有运算放大器式电路、电桥电路、调频电路、谐振电路以及脉冲宽度调制电路等。
4.如图3-20所示正方形平板电容器,极板长度a =4cm ,极板间距离d =0.2mm 。
若用此变面积式传感器测量位移x ,试计算该传感器的灵敏度。
已知极板间介质为空气。
5、变间隙式电容传感器的测量电路为运算放大器式电路(见图3-7)。
传感器的起始电容量Cx0=C0=20pF ,定动极板距离d 0=1.5mm 。
假设集成运算放大器为理想放大器,输入电压u s=5sin ωt V 。
求当电容传感器动极板上输入一位移量△x =0.15mm 使d 0减小时,此时电路输出电压u o 为多少?
提示:
s
o U C U d
S ε⋅⋅=-
第五章:压电式传感器
1什么是压电效应?试以石英晶体为例,说明压电晶体是怎样产生压电效应的。
2工业上常用的压电材料有哪些?它们各有何特点?
3压电式传感器能否用于重力的测量?为什么? 4根据图5-15(a )所示石英晶体切片的受力和产生电荷的方向,标出图5.15(b)、(c)、(d)晶体切片上产生电荷的符号。
第五章小结: x F x x y
y y y
+
x F y F y F ++---
1、当电介质沿一定方向受到外力的作用产生变形时,内部会产生极化现象,同时在其表面产生电荷,当外力去掉后,又重新回到不带电状态,这种现象称为压电效应。
具有压电效应的材料称为压电材料,常见的压电材料有:压电晶体、压电陶瓷和高分子压电材料。
2、压电式传感器就是运用材料的压电效应这一性质,将被测量“力”转换成对表面电荷(电势)进行测量的。
压电材料受力作用表面产生电荷这一过程较为复杂,并且各种压电材料构成压电效应的机理也不相同。
3、压电元件当其表面产生电荷后,可以等效为一个电荷源与电容并联电路,也可以等效为一个电压源和一个电容串联电路。
不论是并联等效电路,还是串联等效电路,要想保持电容上的电荷不变,则要求后续电路的输入阻抗为无穷大,但这是不可能的,因此压电式传感器不能用于静态测量。
4、压电式传感器输出信号非常微弱,且传感器的内阻极高,故测量时需要有一内阻非常高的放大器与之匹配,实际应用时大多采用电荷放大器作为压电式传感器的前置放大器。
一、压电效应
正压电效应:某些电介质物质在沿一定方向上受到外力的作用产生变形时,内部会产生极化现象,同时在其表面产生电荷。
当外力去掉后,又重新回到不带电状态,这种现象称为压电效应。
逆压电效应:反之,在电介质的极化方向上施加交变电场,它会产生机械变形,当去掉外加电场,电介质变形随之消失,这种现象称为逆压电效应或叫做电致伸缩效应。
二、压电材料
压电元件材料常见的有三类:一类是压电晶体,另一类是经过极化处理的压电陶瓷,第三类是高分子压电材料。
三、压电式传感器的等效电路
等效电路:
1)压电元件等效为一个电荷源与一个电容并联的电荷等效电路,如图5-4(a )所示。
电容器上的电压U a ,电荷量Q 和电容C a 三者关系为
a a C Q
U
2)压电元件也可以等效为一个电压源和一
个电容串联表示的电压等效电路,如图5-4(b )所示。
(b) 电压等效电路 (a )电荷等效电路
图5-4压电式传感器的等效电路
四、压电元件的串并联使用
在压电式传感器的使用中,为了提高灵
敏度,常常把几片同型号的压电元件叠在一
起使用。
并联:图5-7(a)是两个压电片的负极
粘在一起,中间插入的金属电极成为两压电
片的负极,正电极在两边的电极上。
从电路
上看,这是并联接法,类似两个电容的并联。
所以,外力作用下正负电极上的电荷量增加
一倍,电容量也增加一倍,输出电压与单片Ca Ua
Q Ca
Ua Uo
时相同。
串联:图5-7(b)是两压电片不同极性端粘在一起,电路上是串联的。
两压电片中
间粘接处正负电荷中和,上、下极板的电荷
量与单片时相同,总电容量为单片的一半,输出电压增大一倍。
(a)
(b)
图5—7 压电元件连接方式。