高二数学选修4-4单元测试题
- 格式:doc
- 大小:707.50 KB
- 文档页数:6
高二数学极坐标试题答案及解析1.已知直线:(为参数);椭圆:(为参数)(Ⅰ)求直线倾斜角的余弦值;(Ⅱ)试判断直线与椭圆的交点个数.【答案】(1);(2)没有交点.【解析】(1)将参数方程转化为直角坐标系下的普通方程;(2)掌握常见的将参数方程转化为直角坐标系下的普通方程;(3)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式.试题解析:(1)将直线参数方程化为普通方程得:,得斜率为,则倾斜角的余弦值为椭圆的普通方程为:,得:所以没有交点.【考点】(1)参数方程的应用;(2)直线与椭圆相交的综合问题.2.在直角坐标系中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线C2的直角坐标方程为.(1)求曲线C1的直角坐标方程;(2)已知为曲线C2上一点,Q为曲线C1上一点,求P、Q两点间距离的最小值.【答案】(1);(2)【解析】(1)将参数方程转化为直角坐标系下的普通方程,需要根据参数方程的结构特征,选取恰当的消参方法,常见的消参方法有:代入消参法、加减消参法、平方消参法;(2)将参数方程转化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若有范围限制,要标出的取值范围;(3)先转化为普通方程和直角坐标方程后根据题意设点根据点到直线的距离公式.试题解析:解:(1)由得, 3分即,所以直线l的直角坐标方程为; 6分(2)P为上一点,设,其中, 8分则P到直线l的距离,其中所以当时,的最大值为.【考点】(1)参数方程与普通方程的互化;(2)参数方程的应用.3.在平面直角坐标系中,以为极点,轴非负半轴为极轴建立坐标系,已知曲线的极坐标方程为,直线的参数方程为: (为参数),两曲线相交于两点. 求:(1)写出曲线的直角坐标方程和直线的普通方程;(2)若求的值.【答案】(1),x-y-2="0;" (2)【解析】(1) 由得,曲线C的直角坐标方程为,由中两式相减的x-y=2,直线l的普通方程为x-y-2="0;(2)" 将代入得,设M,N对应的参数分别为,则所以试题解析:(1)由得,曲线C的直角坐标方程为,由中两式相减的x-y=2,直线l的普通方程为x-y-2=0(2)将代入得,设M,N对应的参数分别为,则所以.【考点】1.极坐标与直角坐标的互化;2.参数方程与普通方程的互化;3.参数的几何意义4.已知直线的极坐标方程为,圆M的参数方程为。
2021年高二数学第14周第2次小题单(选修2-2、2-3、4-4综合)理一、选择题:(本大题共12小题,每小题5分,共60分,把单项答案填在括号内)1.如图,复平面上的点到原点的距离都相等.若复数所对应的点 为,则复数的共轭复数所对应的点为( ). A . B. C .D .【解析】选C.2.已知,那么n 的值是( )A.12B.13C.14D.15【解析】选C.3.极坐标系中,过点P (1,π)且倾斜角为π4的直线方程为( )A .ρ=sin θ+cos θB .ρ=sin θ-cos θC .ρ=1sin θ+cos θD .ρ=1sin θ-cos θ【解析】 答案D4.在x (1+x )6的展开式中,含x 3项的系数为( )A .30B .20C .15D .10[解析] 答案C x 3的系数就是(1+x )6中的第三项的系数,即C 26=15.设M (ρ,θ) 为直线上任意一点,则在△OPM 中,由正弦定理得ρsinπ4=1sinθ-π4,∴ρ=1sin θ-cos θ.5.将曲线x 23+y22=1按φ:⎩⎪⎨⎪⎧x ′=13x ,y ′=12y变换后的曲线的参数方程为( )x yZ 3Z 1Z 4OZ 2A.⎩⎪⎨⎪⎧x =3cos θy =2sin θ B.⎩⎨⎧x =3cos θy =2sin θC.⎩⎪⎨⎪⎧x =13cos θy =12sin θD.⎩⎪⎨⎪⎧x =33cos θy =22sin θ【解析】答案D x 23+y 22=1→3x ′23+2y ′22=1→(3x ′)2+(2y ′)2=1→⎩⎨⎧3x ′=cos θ,2y ′=sin θ→⎩⎪⎨⎪⎧x ′=33cos θ,y ′=22sin θ即⎩⎪⎨⎪⎧x =33cos θy =22sin θ6.投掷红、蓝两个骰子,事件A=“红骰子出现4点”,事件B=“蓝骰子出现的点数是偶数”, 则P(A|B)= ( ) A.B.C.D.【解析】选A.7..由“若,则”推理到“若,则”是( )A .归纳推理B .类比推理C .演绎推理D .不是推理 【解析】选B.8.某厂采用节能降耗技术后生产某产品的产量x(吨)与消耗的标准煤y(吨)如表所示:x 3 4 5 6 y2.53a4.5根据上表,得到线性回归方程为=0.7x+0.35,则实数a= ( ) A.3B.3.5C.4D.5【解析】选C.由数据可知:==4.5,==,代入=0.7x+0.35,可得=0.7×4.5+0.35,解得a=4.9.已知,则的最大值为( )A .25B .18C .36D .42 [解析] 答案C10.若上是减函数,则的取值范围是( ) A . B . C . D .[解析] 答案C11.把15个相同的小球放入编号为1、2、3的三个不同盒子中,使盒子里的球的个数大于它的编号数,则不同的放法种数是( )A .56B .72C .28D .63[解析] 答案C 先给1号盒子放入1球,2号盒子放入2球,3号盒子放入3球,再将剩余9个小球排成一列,之间形成8个空档,从中任意选取2个空档用插板隔开,依次对应放入1、2、3号盒子中,则不同放法种数为C 28=28种.12.已知二次函数f (x )=ax 2+bx +c 的导数,对于任意实数x 都有,则 的最小值为( )A .3 B.52 C .2 D.32【解析】选C.=2ax +b ,=b >0.又⎩⎪⎨⎪⎧a >0,b 2-4ac ≤0,∴b 2≤4ac ,∴b 4a ≤cb,∴=a +b +c b =1+a b +c b ≥1+a b +b4a ≥1+214=2,当且仅当b =2a ,a =c 时取“=”.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.若没有极值,则的取值范围为 . 【解析】答案14.已知曲线C 的参数方程为⎩⎨⎧x =2cos t ,y =2sin t(t 为参数),C 在点(1,1)处的切线为l .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为________.【解析】答案ρsin(θ+π4)= 2由sin 2t +cos 2t =1得曲线C 的普通方程为x 2+y 2=2,过原点O 及切点(1,1)的直线的斜率为1,故切线l 的斜率为-1,所以切线l 的方程为y -1=-(x -1),即x +y -2=0.把x =ρcos θ,y =ρsin θ代入直线l 的方程可得ρcos θ+ρsin θ-2=0,即2ρsin(θ+π4)-2=0,化简得ρsin(θ+π4)= 2.15.已知,函数定义域中任意的,有如下结论: ①;②;③ ④ 上述结论中正确结论的序号是 . 【解析】答案①③16.幂指函数y=[f(x)]g(x)在求导时,可运用对数法:在函数解析式两边求对数得lny=g(x)·lnf(x),两边同时求导得:,于是y ′=[f(x)]g(x)[g ′(x)lnf(x)+g(x)], 运用此方法可以探求得知y= (x >0)的一个单调递增区间为_ __. 【解析】答案(0,e)对y=两边取对数可得ln y=ln x.两边同时求导可得·y ′=.于是y ′ =.令y ′>0求得0<x<e ,即单调递增区间是(0,e).三、解答题(本题共6个小题,共75分,解答应写出文字说明、证明过程或演算步骤.)17.对于三次函数f(x)=ax 3+bx 2+cx+d(a ≠0),给出定义:设f ′(x)是函数f(x)的导数,f ″(x)是f ′(x)的导数,若方程f ″(x)=0有实数解x 0,则称点(x 0,f(x 0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f(x)=x3-x2+3x-,请你根据这一发现,(1)探讨函数f(x)=x3-x2+3x-的对称中心.(2)计算f+f+f+f+…+f.【解析】(1)f′(x)=x2-x+3,f″(x)=2x-1,令f″(x)=0⇒x=,f()=1.函数f(x)=x3-x2+3x-的对称中心为.(2)由(1)知,计算f+f=2⇒f(x)+f(1-x)=2⇒f+f=2,f+f=2,…所以f+f+f+f+…+f=xx.18.电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女1055合计(2)1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).附:K2=n ad-bc2a+b c+d a+c b+d.P(K2≥k)0.050.01k 3.841 6.635[解析] (1)25人,从而2×2列联表如下:非体育迷体育迷合计男301545女 45 10 55 合计7525100将2×2列联表中的数据代入公式计算,得K 2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2=100×30×10-45×15275×25×45×55=10033≈3.030. 因为3.030<3.841,所以我们没有充分理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率14.由题意知X ~B (3,14),从而X 的分布列为X 0 1 2 3 P27642764964 164E (X )=np =3×14=34. D (X )=np (1-p )=3×4×4=16.19.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2 min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间的分布列及数学期望.[解析] (Ⅰ)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A ,因为事件A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为. (Ⅱ)由题意,可得可能取的值为0,2,4,6,8(单位:min ). 事件“”等价于事件“该学生在路上遇到次红灯”(0,1,2,3,4),∴()()441220,1,2,3,433kkk P k C k ξ-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,∴即的分布列是0 2 4 6 8∴的期望是0246881812781813E ξ=⨯+⨯+⨯+⨯+⨯=.20.某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是13,每次测试通过与否互相独立.规定:若前4次都没有通过测试,则第5次不能参加测试.(1)求该学生考上大学的概率.(2)如果考上大学或参加完5次测试就结束,记该生参加测试的次数为ξ,求ξ的分布列及ξ的数学期望.[解析] (1)记“该学生考上大学”为事件A ,其对立事件为A ,则P (A )=C 14(13)(23)3(23)+(23)4=64243+1681=112243.∴P (A )=1-P (A )=1-112243=131243. (2)该生参加测试次数ξ的可能取值为2、3、4、5.P (ξ=2)=(13)2=19,P (ξ=3)=C 12·13·23·13=427, P (ξ=4)=C 13·13·(23)2·13+(23)4=427+1681=2881,P (ξ=5)=C 14·13·(23)3=3281. 故ξ的分布列为E (ξ)=2×19+3×427+4×2881+5×81=81. 21.设函数f(x)=1+(1+a)x-x 2-x 3,其中a>0. (1)讨论f(x)在其定义域上的单调性.(2)当x ∈[0,1]时,求f(x)取得最大值和最小值时x 的值. 【解析】(1)f(x)的定义域为(-∞,+∞),f ′(x)=1+a-2x-3x 2, 令f ′(x)=0得x 1=,x 2=,x 1<x 2,所以f ′(x)=-3(x-x 1)(x-x 2),当x<x 1或x>x 2时f ′(x)<0; 当x 1<x<x 2时f ′(x)>0.所以f(x)在和内单调递减, 在内单调递增.(2)因为a>0,所以x 1<0,x 2>0.①当a ≥4时,x 2≥1,由(1)知,f(x)在[0,1]上单调递增, 所以f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x 2<1,由(1)知,f(x)在[0,x 2]上单调递增,在[x 2,1]上单调递减. 所以f(x)在x=x 2=处取得最大值.又f(0)=1,f(1)=a, 所以当0<a<1时,f(x)在x=1处取得最小值; 当a=1时,f(x)在x=0和x=1处同时取得最小值; 当1<a<4时,f(x)在x=0处取得最小值.22.已知,其中.(1)若曲线在点P (2,f (2))处的切线方程为y =3x +1,求的解析式; (2)讨论的单调性;(3)若对任意的a ∈,不等式f (x )≤10在上恒成立,求b 的取值范围. 【解析】(1)=1-a x2,∵=3,∴a =-8.由切点P (2,f (2))在y =3x +1上,可得b =9.∴的解析式为=x -8x+9.(2)=1-ax2,当a ≤0时,显然>0(x ≠0),这时在(-∞,0)和(0,+∞)上是增函数;当a >0时,由=0,得x =±a . x (-∞,-a )- a (-a ,0) (0,a ) a (a ,+∞)+ 0 - - 0 +∴在(-∞,-a )和(a ,+∞)上是增函数,在(-a ,0)和(0,a )上是减函数. (3)由(2)知,在上的最大值为与f (1)中的较大者.对任意的a ∈,不等式f (x )≤10在上恒成立,当且仅当⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫14≤10,f 1≤10,即 ⎩⎪⎨⎪⎧b ≤394-4a ,b ≤9-a对任意的a ∈成立,从而得b ≤74. ∴满足条件的b 的取值范围是.(附加)23.在直角坐标系xOy中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),M 是C 1上的动点,P 点满足OP →=2OM →,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.【解】 (1)设P (x ,y ),则由条件知M (x 2,y2).由于M 点在C 1上,所以⎩⎪⎨⎪⎧x2=2cos α,y2=2+2sin α.即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α(α为参数).(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ. 射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3. 所以|AB |=|ρ2-ρ1|=2 3.28241 6E51 湑=30389 76B5 皵 33599 833F 茿40296 9D68 鵨22521 57F9 培+631366 7A86 窆234045 84FD 蓽23414 5B76 孶_。
高中数学人教A 版(新教材)选择性必修第二册4.3.2第2课时 等比数列前n 项和公式的应用一、选择题1.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15 D .162.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( ) A .152 B .314 C .334 D .1723.设各项都是正数的等比数列{a n },S n 为其前n 项和,且S 10=10,S 30=70,那么S 40等于( ) A .150B .-200C .150或-200D .4004.设数列{x n }满足log 2x n +1=1+log 2x n (n ∈N *),且x 1+x 2+…+x 10=10 ,记{x n }的前n 项和为S n ,则S 20等于( ) A .1 025B .1 024C .10 250D .20 2405.已知公差d ≠0的等差数列{a n } 满足a 1=1,且a 2,a 4-2,a 6成等比数列,若正整数m ,n 满足m -n =10,则a m -a n =( ) A .30B .20C .10D .5或406.(多选题)已知S n 是公比为q 的等比数列{a n }的前n 项和,若q ≠1,m ∈N *,则下列说法正确的是( ) A .S 2m S m =a 2ma m +1B .若S 6S 3=9,则q =2C .若S 2m S m =9,a 2m a m =5m +1m -1,则m =3,q =2D .若a 6a 3=9,则q =37.在各项都为正数的数列{a n }中,首项a 1=2,且点(a 2n ,a 2n -1)在直线x -9y =0上,则数列{a n }的前n 项和S n 等于( ) A .3n-1 B .1-(-3)n 2C .1+3n 2D .3n 2+n 2二、填空题8.在数列{a n }中,a n +1=ca n (c 为非零常数),且前n 项和为S n =3n +k ,则实数k =________. 9.等比数列{a n }共有2n 项,它的全部各项的和是奇数项的和的3倍,则公比q =________. 10.设{a n }是公差不为零的等差数列,S n 为其前n 项和.已知S 1,S 2,S 4成等比数列,且a 3=5,则数列{a n }的通项公式为a n =________.11.等比数列{a n }的首项为2,项数为奇数,其奇数项之和为8532,偶数项之和为2116,则这个等比数列的公比q =________,又令该数列的前n 项的积为T n ,则T n 的最大值为________. 12.设数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -1),…的第n 项为a n ,前n 项和为S n ,则a n =________,S n =________. 三、解答题13.一个项数为偶数的等比数列,全部项之和为偶数项之和的4倍,前3项之积为64,求该等比数列的通项公式.14.在等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值.15.设数列{a n }的前n 项和为S n .已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.参考答案一、选择题 1.答案:C解析:由题意得4a 2=4a 1+a 3,∴4a 1q =4a 1+a 1q 2, ∴q =2,∴S 4=1·(1-24)1-2=15.]2.答案:B解析:显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q=7,解得⎩⎪⎨⎪⎧ a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 1(1-q 5)1-q =4⎝⎛⎭⎫1-1251-12=314.]解析:依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列, 因此有(S 20-S 10)2=S 10(S 30-S 20).即(S 20-10)2=10(70-S 20),解得S 20=-20或S 20=30, 又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40, 故S 40-S 30=80,S 40=150.故选A. 4.答案:C解析:∵log 2x n +1=1+log 2x n =log 2(2x n ),∴x n +1=2x n ,且x n >0, ∴{x n }为等比数列,且公比q =2,∴S 20=S 10+q 10S 10=10+210×10=10 250,故选C.] 5.答案:A解析:设等差数列的公差为d ,因为a 2,a 4-2,a 6成等比数列,所以(a 4-2)2=a 2·a 6, 即(a 1+3d -2)2=(a 1+d )·(a 1+5d ),即(3d -1)2=(1+d )·(1+5d ),解得d =0或d =3,因为公差d ≠0,所以d =3,所以a m -a n =a 1+(m -1)d -a 1-(n -1)d =(m -n )d =10d =30,故选A.] 6.答案:ABC解析:[∵q ≠1,∴S 2m S m =a 1(1-q 2m )1-q a 1(1-q m )1-q =1+q m.而a 2m a m =a 1q 2m -1a 1qm -1=q m ,∴A 正确;B 中,m =3,∴S 6S 3=q 3+1=9,解得q =2.故B 正确;C 中,由S 2m S m =1+q m =9,得q m =8.又a 2ma m =q m =8=5m +1m -1,得m =3,q =2,∴C 正确;D 中,a 6a 3=q 3=9,∴q =39≠3,∴D 错误,故选ABC.]7.答案:A解析:由点(a 2n ,a 2n -1)在直线x -9y =0上,得a 2n -9a 2n -1=0,即(a n +3a n -1)(a n -3a n -1)=0,又数列{a n }各项均为正数,且a 1=2,∴a n +3a n -1>0,∴a n -3a n -1=0,即a n a n -1=3,∴数列{a n }是首项a 1=2,公比q =3的等比数列,其前n 项和S n =a 1(1-q n )1-q =2×(3n -1)3-1=3n-1.]二、填空题解析:由a n +1=ca n 知数列{a n }为等比数列.又∵S n =3n +k , 由等比数列前n 项和的特点S n =Aq n -A 知k =-1.] 9.答案:2解析:设{a n }的公比为q ,则奇数项也构成等比数列,其公比为q 2,首项为a 1, S 2n =a 1(1-q 2n )1-q ,S 奇=a 1[1-(q 2)n ]1-q 2.由题意得a 1(1-q 2n )1-q =3a 1(1-q 2n )1-q 2,∴1+q =3,∴q =2.10.答案:2n -1解析:设等差数列{a n }的公差为d ,(d ≠0), 则S 1=5-2d ,S 2=10-3d ,S 4=20-2d ,因为S 22=S 1·S 4,所以(10-3d )2=(5-2d )(20-2d ),整理得5d 2-10d =0,∵d ≠0,∴d =2, a n =a 3+(n -3)d =5+2(n -3)=2n -1.] 11.答案:122解析:设数列{a n }共有2m +1项,由题意得S 奇=a 1+a 3+…+a 2m +1=8532,S 偶=a 2+a 4+…+a 2m =2116,S 奇=a 1+a 2q +…+a 2m q =2+q (a 2+a 4+…+a 2m )=2+2116q =8532, ∴q =12,∴T n =a 1·a 2·…·a n =a n 1q 1+2+…+n -1=232n -n 22,故当n =1或2时,T n取最大值,为2.] 12.答案:2n -1 2n +1-n -2 解析:因为a n =1+2+22+…+2n -1=1-2n 1-2=2n-1, 所以S n =(2+22+23+…+2n )-n =2(1-2n )1-2-n =2n +1-n -2. 三、解答题13.解:设数列{a n }的首项为a 1,公比为q ,全部奇数项、偶数项之和分别记为S 奇,S 偶, 由题意,知S 奇+S 偶=4S 偶,即S 奇=3S 偶. ∵数列{a n }的项数为偶数,∴q =S 偶S 奇=13.又a 1·a 1q ·a 1q 2=64,∴a 31·q 3=64,得a 1=12.故所求通项公式为a n =12×⎝⎛⎭⎫13n -1.14.解:(1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ a 1+d =4,(a 1+3d )+(a 1+6d )=15,解得⎩⎪⎨⎪⎧a 1=3,d =1.所以a n =a 1+(n -1)d =n +2. (2)由(1)可得b n =2n +n , 所以b 1+b 2+b 3+…+b 10=(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =2(1-210)1-2+(1+10)×102=(211-2)+55 =211+53=2 101.15.解:(1)由题意得⎩⎪⎨⎪⎧ a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n ,故a n =3n -1(n ≥2,n ∈N *),又当n =1时也满足a n =3n -1, 所以数列{a n }的通项公式为a n =3n -1,n ∈N *. (2)设b n =|3n -1-n -2|,n ∈N *,b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3. 设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3.n ≥3时,T n =3+9(1-3n -2)1-3-(n -2)(3+n +4)2=3n -n 2-5n +112.∴T n=⎩⎪⎨⎪⎧2, n =1,3, n =2,3n-n 2-5n +112,n ≥3.高中数学选修2-1《常用逻辑用语》单元过关平行性测试卷(A 卷)一.单项选择题:本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)“x <0”是“ln(x +1)<0”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件(2)下列命题正确的是( )A . “x =y ”是“sinx =siny ”的充分不必要条件;B . 命题“p ∧q ”为假命题,则命题p 与命题q 都是假命题;C . “am 2<bm 2”是“a <b ”成立的必要不充分条件;D . 命题“存在x 0∈R ,使得x 02+x 0+1<0”的否定是:“对任意x ∈R ,均有x 2+x +1<0”.(3)对任意实数a ,b ,c ,给出下列命题: ①“a b =”是“ac bc =”的充要条件②“5a +是无理数”是“a 是无理数”的充要条件; ③“a b >”是“22a b >”的充分不必要条件 ④“5a <”是“3a <”的必要不充分条件, 其中真命题的个数为( )A .1B .2C .3D .4(4)有下列结论: ①命题 p:∀x ∈R ,x 2>0为真命题 ;②设p:x x+2>0 ,q:x 2+x −2>0,则 p 是 q 的充分不必要条件 ;③已知实数0x >,0y >,则“1xy <”是“1133log log 0x y +>”的充要条件;④非零向量a ⃑与b ⃑⃑满足|a ⃑|=|b ⃑⃑|=|a ⃑−b ⃑⃑|,则a ⃑与a ⃑+b⃑⃑的夹角为300. 其中正确的结论有( )A . 3个B . 2个C . 1个D . 0个(5)命题p :若a <b ,则ac 2<bc 2;命题q ;∃x 0>0,使得ln x 0=1−x 0,则下列命题中为真命题的是( ;A . p ∧qB . p ∨(¬q )C . (¬p )∧qD . (¬p )∧(¬q )(6)设x ∈R ,若“log 2(x −1)<1”是“x >2m 2−1”的充分不必要条件,则实数m 的取值范围是( )A . [−√2,√2]B . (−1,1)C . (−√2,√2)D . [−1,1] 二.多项选择题:本大题共2小题,每小题4分,共8分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分.(7) 下列说法正确的是( ) A.x >3是x 2>4的充分不必要条件 B.命题“∃x 0∈R , x 0+1x 0≥2"的否定是“∀x ∈R , x +1x>2”C.若tan (π+α)=2,则sin2α=±45D.定义在[a,b ]上的偶函数f (x )=x 2+(a +5)x +b 的最大值为30 (8)下列说法正确的有( )A.已知a,b ∈R ,且a −3b +6=0,则2a +18b 的最小值为14B.函数y =sin (2x +π5)的图象向右平移π10个单位长度,得到的函数在区间[34π,54π]上单调递增C.命题“∀x ≥1,x −1≥0”的否定形式为“∃x ≥1,x −1≤0”D.函数y =log a (x +1)(a >0且a ≠1)恒过定点(1,0) 三、填空题:本大题共4题,每小题4分,共16分.(9)已知:40p x m -<,:22q x -≤≤,若p 是q 的一个必要不充分条件,则m 的取值范围为___________.(10)“a =1”是“直线ax −y +2a =0与直线(2a −1)x +ay +a =0互相垂直”的___________条件(填“必要不充分”“充分不必要”“充要”或“既不充分又不必要”). (11)已知x ∈R ,则“|x −1|<2成立”是“x x−3<0成立”的_________条件.(请在“充分不必要.必要不充分.充分必要”中选择一个合适的填空).(12)有下列命题: ;“x >2且y >3”是“x +y >5”的充要条件;;“b 2−4ac <0”是“一元二次不等式ax 2+bx +c <0的解集为R”的充要条件; ;“a =2”是“直线ax +2y =0平行于直线x +y =1”的充分不必要条件; ;“xy =1”是“lgx +lgy =0”的必要不充分条件.其中真命题的序号为____________.四、解答题:本大题共3小题,共52分,解答应写出文字说明,证明过程或演算步骤. (13)(本小题满分16分)已知幂函数f(x)=(m−1)2x m2−4m+2在(0,+∞)上单调递增,函数g(x)=2x−k.(I)求m的值;(II)当x∈[−1,2]时,记f(x),g(x)的值域分别为集合A,B,设命题p:x∈A,命题q:x∈B,若命题p是q成立的必要条件,求实数k的取值范围.(14)(本小题满分18分)设命题p:a>0;命题q:关于x的不等式a−x≥0对一切x∈[−2,−1]均成立。
依兰县高级中学2011-2012学年度下学期期中考试高二数学试题(文科)考试时间120分钟,满分150分一、选择题(共12道题,每题5分,共60分)1.复数设i 为虚数单位,则5-i1+i=( )A .-2-3iB .-2+3iC .2-3iD .2+3i 2.已知x 与y 之间的一组数据:x0 1 2 3 y1357则y 与x 的线性回归方程为∧∧∧+=a x b y 必过点( ) A .(2,2) B. (1.5 ,4) C.(1.5 ,0) D.(1,2)3.实数系的结构图为右图所示其中1、2、3三个方格中的内容分别为( )A. 有理数、整数、零B. 有理数、零、整数C. 零、有理数、整数D. 整数、有理数、零4.用反证法证明命题“220,0(a b a a +=∈若则、b 全为、b R)”,其反设正确的是( )A. 0a b 、至少有一个为B. 0a b 、至少有一个不为C. 0a b 、全不为D. 0a b 、中只有一个为5.若复数i a a a z )3()32(2++-+=为纯虚数(i 为虚数单位),则实数a 的值是( )A .3-B .3-或1C .3 或1-D .16.设有一个回归方程为y=2-3x ,变量x 增加1个单位时,则y 平均( ) A.增加2个单位 B.减少2个单位 C.增加3个单位 D.减少3个单位 7.设点P 对应的复数为i 33+-,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标可能为( ) A. (3,π43) B. (3,π45) C. (23,π43) D. (23,π45)8. 极坐标系中,以(9,3π)为圆心,9为半径的圆的极坐标方程为( ) A. )(θπρ-3cos 18= B. )(θπρ-3cos 18-=C. )(θπρ-3sin 18= D. )(θπρ-3cos 9= 9. 曲线⎩⎨⎧==θθsin 4cos 5y x (θ为参数)的焦距是 ( ) A.3 B.6 C. 8 D. 1010.在同一坐标系中,将曲线x y 3sin 2=变为曲线x y sin =的伸缩变换是( )⎪⎩⎪⎨⎧==''23.A y y x x ⎪⎩⎪⎨⎧==y y x x 23.B ''⎪⎩⎪⎨⎧==y y x x 213.C '' ⎪⎩⎪⎨⎧==''213.D yy x x 11.若实数y x 、 满足:221169x y +=,则x+y+10的取值范围是( ) A .[5,15] B .[10,15] C .[ -15,10] D .[ -15,35] 12.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即 [k]={5n+k 丨n ∈Z},k=0,1,2,3,4。
高二数学练习题一、选择题(每小题5分,共60分)1.设1z i =+(i 是虚数单位),则22z z+= ( ) A .1i -- B .1i -+ C .1i - D . 1i +2.曲线23-+=x x y 上一点0P 处的切线平行于直线41y x =+,则点0P 一个的坐标是 ( ) A .(0,-2) B. (1, 1) C. (-1, -4) D. (1, 4) 3.设y x ,为正数, 则)41)((yx y x ++的最小值为 ( )A. 6B.9C.12D.154.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切线的 倾斜角为 ( ) A .90° B .0° C .锐角 D .钝角5.如图,用与底面成30︒角的平面截圆柱得一椭圆截线,则该椭圆的 离心率为 A .12B.3C.2D .非上述结论[]326y 2x 3x 12x 50,3=--+.函数在上的最大值与最小值分别是 ( )A.5 , -15B.5 , 4C.-4 , -15D.5 , -168、已知{}n b 为等比数列,52b =,则99212=⋅⋅⋅b b b 。
若{}n a为等差数列,第5题图52a =,则{}n a 的类似结论为( )A 99212=⋅⋅⋅a a aB 99212=+++a a a C 92921⨯=⋅⋅⋅a a a D 92921⨯=+++a a a 9.已知曲线3lnx 4xy 2-=的一条切线的斜率为21,则切点的横坐标为( )A. 3B. 2C. 1D. 1210.设R a ∈,若函数x e y ax3+=,R x ∈有大于零的极值点,则( )A .3->a B. 3-<a C. 31->a D. 31-<a()2111.f x ln(2)b 2x b x =-++∞若在(-1,+)上是减函数,则的取值范围是( )A.[-1,+∞]B.(-1,+∞)C.(]1,-∞- D.(-∞,-1)12.如右图,求阴影部分的面积是( ) A. 32 B. 329- C.332 D. 335二、填空题(每小题4分,共16分)121)3(z z i -12、若复数z =4+29i,z =6+9i,则复数的实部为 。
2018-2019高二下期末试题(选修2-3+4-4)一、选择题1.在极坐标系中,以极点为坐标原点,极轴为x 轴正半轴,建立直角坐标系,点M (2,)的直角坐标是( ) A .(2,1) B .(,1) C .(1,) D .(1,2)2.把语文、数学、物理、历史、外语这五门课程安排在一天的五节课里,如果数学必须比历史先上,则不同的排法有 A .48 B .24 C .60 D .1203.*N n ∈且55n <,则乘积(55)(56)(69)n n n ---等于 ( )A .5569n n A --B .1569n A -C .1555n A -D .1469n A -4.设(1+x )3+(1+x )4+(1+x )5+…+(1+x )50=a 0+a 1x +a 2x 2+a 3x 3+…+a 50x 50,则a 3的值是 ( )A .C 450B .2C 350 C .C 351D .C 451 5. 在二项式251()x x-的展开式中,含x 4的项的系数是( )A-10 B.10 C.-5 D.56.某地区空气质量监测资料表明,一天的空气质量为优良的概率为0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B.0.75C. 0.6D.0.457.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A13 B 12 C 23 D 348.学校足球赛决赛计划在周三、周四、周五三天中的某一天进行,如果这一天下雨则推迟至后一天,如果这三天都下雨则推迟至下一周,已知这三天下雨的概率均为,则这周能进行决赛的概率为A. B. C. D.9.10个球中有一个红球,有放回的抽取,每次取出一球,直到第n 次才取得()k k n ≤次红球的概率为A .2191010n k-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭B .191010k n k-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C .11191010kn kk n C---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .111191010k n kk n C----⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭10 投篮测试中,每人投3次,至少投中2次才能通过测试。
高二数学 选修4-4 期末综合练习1. 已知点M 的极坐标为-⎛⎝ ⎫⎭⎪53,π,下列所给出的四个坐标中能表示点M 的坐标有( )个。
53,-⎛⎝ ⎫⎭⎪π 543,π⎛⎝ ⎫⎭⎪ 523,-⎛⎝ ⎫⎭⎪π --⎛⎝ ⎫⎭⎪553,π A. 1B. 2C. 3D. 42. 点()22,-的极坐标为()3. 圆心为C 36,π⎛⎝ ⎫⎭⎪,半径为3的圆的极坐标方程为( )4. 极坐标方程为cos 0ρθθ-=表示的圆的半径为( )5.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A .线段 B .双曲线的一支 C.圆 D.射线6. 若A 33,π⎛⎝ ⎫⎭⎪,B -⎛⎝⎫⎭⎪36,π,则|AB|=___________,S AOB ∆=___________。
(其中O 是极点)7. 极点到直线()cos sin ρθθ+=_____________。
8. 极坐标方程2sin 2cos 0ρθθ-⋅=表示的曲线是____________。
9. 若圆C 的方程是2sin a ρθ=,则它关于极轴对称的圆心方程为____________,它关于直线θπ=34对称的圆的方程为____________。
10. 方程sec 0cos x a ab y b θθθ=⎧≠⎨=⎩(为参数,)表示的曲线是____________。
11. 直线x x ty y t =+=-⎧⎨⎩003(t 为参数)上任一点P 到()P x y 000,的距离为__________。
12. 直线2211216x t t x y A B y ⎧=+⎪⎪+=⎨⎪=-⎪⎩为参数)与圆交于、两点,则AB 的中点 坐标为__________。
13. 22121212516x y F F P x PF F G +=∆若、是椭圆的焦点,为椭圆上不在轴上的点,则的重心的轨迹方程为____________。
高二数学选修4-4《极坐标与参数方程》测试题(时间:120分钟,总分:150分) 姓名: 学号:一.选择题(每小题5分,共50分)1.曲线的极坐标方程θρsin 4=化为直角坐标为( )。
A.4)2(22=++y xB. 4)2(22=-+y xC. 4)2(22=+-y xD. 4)2(22=++y x 2.已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线方程是( )。
A.1=ρ B. θρcos = C. θρcos 1-= D. θρcos 1= 3.直线12+=x y 的参数方程是( )。
A.⎩⎨⎧+==1222t y t x B.⎩⎨⎧+=-=1412t y t x C. ⎩⎨⎧-=-=121t y t x D. ⎩⎨⎧+==1sin 2sin θθy x 4.方程⎪⎩⎪⎨⎧=+=21y t t x 表示的曲线是( )。
A.一条直线 B.两条射线 C.一条线段 D.抛物线的一部分5.参数方程⎩⎨⎧+-=+=θθ2cos 1sin 22y x (θ为参数)化为普通方程是( )。
A.042=+-y xB. 042=-+y xC. 042=+-y x ]3,2[∈xD. 042=-+y x]3,2[∈x6.设点P 对应的复数为-3+3i ,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为( ) A.(23,π43) B. (23-,π45) C. (3,π45) D. (-3,π43) 7.直线l :02=++kx y 与曲线C :θρcos 2=相交,则k 的取值范围是( )。
A.43-≤k B. 43-≥k C. R k ∈ D. R k ∈但0≠k 8.在极坐标系中,曲线)3sin(4πθρ-=关于( )。
A.直线3πθ=对称 B.直线65πθ=对称 C.点(2,3π)中心对称 D.极点中心对称9.若圆的方程为⎩⎨⎧+=+-=θθsin 23cos 21y x ,直线的方程为⎩⎨⎧-=-=1612t y t x ,则直线与圆的位置关系是( )。
第二讲测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.若直线l 的参数方程为{x =2017+3t ,y =2016-t (t 为参数),则直线l 的斜率等于()A.3B.-3C.1D.-13l 的斜率k=-13=-13.2.直线3x-4y-9=0与圆:{x =2cosθ,y =2sinθ(θ为参数)的位置关系是()A.相切B.相离C.直线过圆心D.相交但直线不过圆心(0,0),半径为2,圆心到直线3x-4y-9=0的距离d=95<2,故直线与圆相交但直线不过圆心.3.参数方程为{x =t +1t ,y =2(t 为参数)表示的曲线是()A.一条直线B.两条直线C.一条射线D.两条射线2表示一条平行于x 轴的直线,而由x=t+1t知x ≥2或x ≤-2,所以参数方程表示的曲线是两条射线.4.已知椭圆的参数方程为{x =2cost ,y =4sint(t 为参数),点M 在椭圆上,对应参数t=π3,点O 为原点,则直线OM的斜率为() A.√3 B.-√33C.2√3D.-2√3t=π3时,x=1,y=2√3,则M (1,2√3),所以直线OM 的斜率k=2√3. 5.已知圆的渐开线{x =r (cosφ+φsinφ),y =r (sinφ-φcosφ)(φ为参数)上一点的坐标为(3,0),则渐开线对应的基圆的面积为()A.πB.3πC.4πD.9π(3,0)代入参数方程得{3=r (cosφ+φsinφ), ①0=r (sinφ-φcosφ),②由②得φ=tan φ,即φ=0.再代入①得r=3,即基圆的半径为3,故其面积为9π.6.已知直线l 的参数方程为{x =a +t ,y =b +t (t 为参数),l 上的点P 1对应的参数是t 1,则点P 1与点P (a ,b )之间的距离是() A.|t 1| B.2|t 1| C.√2|t 1|D.√22|t 1|P 1的坐标为(a+t 1,b+t 1),则点P 1与点P 之间的距离为√t 12+t 12=√2|t 1|.7.直线{x =1+12t ,y =-3√3+√32t(t 为参数)和圆x 2+y 2=16相交于A ,B 两点,则线段AB 中点的坐标为() A.(3,-3) B.(3,-√3) C.(√3,-3)D.(-√3,3)(1+12t)2+(-3√3+√32t)2=16,得t 2-8t+12=0.设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=8,t 1+t 22=4.所以线段AB 的中点的坐标满足{x =1+12×4,y =-3√3+√32×4, 即{x =3,y =-√3.故所求的中点坐标为(3,-√3).8.已知经过曲线{x =3cosθ,y =4sinθ(θ为参数,0≤θ≤π)上的一点P 与原点O 的直线PO ,若它的倾斜角为π4,则点P 的极坐标为() A.(3,π4) B.(3√22,π4) C.(-125,π4)D.(12√25,π4)将曲线化成普通方程为x 29+y 216=1(y ≥0),将其与直线PO :y=x 联立可得点P 的坐标为(125,125).利用直角坐标与极坐标的互化公式可得点P 的极坐标为(12√25,π4).9.与普通方程x 2+y-1=0等价的参数方程是() A.{x =sint ,y =cos 2t (t 为参数) B.{x =tanφ,y =1-tan 2φ(φ为参数) C.{x =√1-t ,y =t (t 为参数) D.{x =cosθ,y =sin 2θ(θ为参数)A 中,由于普通方程x 2+y-1=0中x 可以取得一切实数,但A 中x 大于等于-1,小于等于1,故错误;选项B 中,结合正切函数的图象可知,满足题意;选项C 中,由偶次根式的定义可知,x 不可能取得一切实数,故错误;选项D 中,结合余弦函数的有界性可知x 不能取得一切实数,错误.故选B .10.已知直线l :{x =√3t ,y =2-t (t 为参数)和抛物线C :y 2=2x ,l 与C 分别交于点P 1,P 2,则点A (0,2)到P 1,P 2两点的距离之和是() A.4+√3 B.2(2+√3) C.4(2+√3)D.8+√3{x =-√32t ',y =2+12t '(t'为参数,t'=-2t ),将其代入y 2=2x ,得t'2+4(2+√3)t'+16=0. 设t'1,t'2分别为方程的根,则t'1+t'2=-4(2+√3),t'1t'2=16>0,由此可知t'1,t'2均小于零,则|AP 1|+|AP 2|=|t'1|+|t'2|=|t'1+t'2|=4(2+√3).11.若曲线C 的参数方程为{x =2+3cosθ,y =-1+3sinθ(θ为参数),直线l 的方程为x-3y+2=0,则曲线C 上到直线l的距离为7√1010的点的个数为() A.1B.2C.3D.4C 的普通方程为(x-2)2+(y+1)2=9,它表示以(2,-1)为圆心,半径为3的圆,其中圆心(2,-1)到直线x-3y+2=0的距离d=√10=7√1010,且3-7√1010<7√1010, 故过圆心且与l 平行的直线与圆交于两点,满足题意的点即为该两点.12.导学号73574066过抛物线{x =2t 2,y =√3t (t 为参数)的焦点的弦长为2,则弦长所在直线的倾斜角为() A.π3 B.π3或2π3 C.π6D.π6或5π6y 2=32x ,它的焦点坐标为(38,0).设弦所在直线的方程为y=k (x -38),由{y 2=32x ,y =k (x -38)消去y ,得64k 2x 2-48(k 2+2)x+9k 2=0.设弦的两个端点的坐标为(x 1,y 1),(x 2,y 2),则|x 1-x 2|=√(x 1+x 2)2-4x 1x 2=√(34·k 2+2k 2)2-916=√1+k2,解得k=±√3.故倾斜角为π3或2π3.二、填空题(本大题共4小题,每小题5分,共20分)13.在平面直角坐标系xOy 中,若直线l 1:{x =2s +1,y =s (s 为参数)和直线l 2:{x =at ,y =2t -1(t 为参数)平行,则常数a 的值为.1的普通方程为x=2y+1,l 2的普通方程为x=a ·y+12,即x=a2y+a2,因为l 1∥l 2,所以2=a2,故a=4.14.设P (x ,y )是圆C :(x-2)2+y 2=4上的动点,记以射线Ox 为始边、以射线OP 为终边的最小正角为θ,则以θ为参数的圆C 的参数方程为.C 的圆心坐标为(2,0),半径为2,如图,由圆的性质知以射线Cx 为始边、以射线CP 为终边的最小正角为2θ,所以圆C 的参数方程为{x =2+2cos2θ,y =2sin2θ(θ为参数).x =2+2cos2θ,y =2sin2θ(θ为参数)15.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线{x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB|=.ρcos θ=4化为直角坐标方程是x=4,而由曲线的参数方程消参得x 3=y 2,所以y 2=43=64, 即y=±8.所以|AB|=|8-(-8)|=16.16.若直线{x =tcosα,y =tsinα(t 为参数)与圆{x =4+2cosα,y =2sinα(α为参数)相切,则此直线的倾斜角α=.y=x ·tan α,圆(x-4)2+y 2=4,如图所示,sin α=24=12,则α=π6或α=5π6.5π6三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)把下列参数方程化为普通方程,并说明它们各表示什么曲线: (1){x =7cosφ,y =4sinφ(φ为参数);(2){x =1-5t ,y =7t (t 为参数).因为{x =7cosφ,y =4sinφ,所以{x7=cosφ,y4=sinφ.两边平方相加,得x 249+y 216=cos 2φ+sin 2φ=1,故所求的普通方程为x 249+y 216=1,它表示焦点在x 轴上,且长轴长为14,短轴长为8,中心在原点的椭圆. (2)因为{x =1-5t ,y =7t ,所以将t=y 7代入x=1-5t ,得x=1-5·y7,即7x+5y-7=0.故所求的普通方程为7x+5y-7=0, 它表示过(0,75)和(1,0)的一条直线.18.(本小题满分12分)已知直线l 1的方程为{x =1+t ,y =-5+√3t (t 为参数),直线l 2的方程为x-y-2√3=0.求直线l 1和直线l 2的交点P 的坐标及点P 与点Q (2√3,-5)间的距离.{x =1+t ,y =-5+√3t代入x-y-2√3=0,得t=2√3,∴点P 的坐标为(1+2√3,1).又点Q 为(2√3,-5),∴|PQ|=√12+62=√37.19.(本小题满分12分)在平面直角坐标系xOy 中,圆C 的参数方程为{x =1+3cost ,y =-2+3sint (t 为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为√2ρsin (θ-π4)=m (m ∈R ).(1)求圆C 的普通方程及直线l 的直角坐标方程; (2)设圆心C 到直线l 的距离等于2,求m 的值.消去参数t ,得圆C 的普通方程为(x-1)2+(y+2)2=9.由√2ρsin (θ-π4)=m , 得ρsin θ-ρcos θ-m=0.所以直线l 的直角坐标方程为x-y+m=0. (2)依题意,圆心C 到直线l 的距离等于2, 即2=2,解得m=-3±2√2.20.(本小题满分12分)已知在平面直角坐标系xOy 中,圆C 的参数方程为{x =3+2cosθ,y =-4+2sinθ(θ为参数).(1)以原点为极点,x 轴的正半轴为极轴建立极坐标系,求圆C 的极坐标方程; (2)若A (-2,0),B (0,2),圆C 上任意一点M (x ,y ),求△ABM 面积的最大值.因为圆C 的参数方程为{x =3+2cosθ,y =-4+2sinθ(θ为参数),所以其普通方程为(x-3)2+(y+4)2=4.将x=ρcos θ,y=ρsin θ代入,得(ρcos θ-3)2+(ρsin θ+4)2=4,化简得ρ2-6ρcos θ+8ρsin θ+21=0.故圆C 的极坐标方程为ρ2-6ρcos θ+8ρsin θ+21=0.(2)由题意知直线AB 的方程为x-y+2=0,点M (x ,y )到直线AB :x-y+2=0的距离d=√2,△ABM 的面积S=12×|AB|×d=|2cos θ-2sin θ+9|=|2√2sin (π4-θ)+9|.所以△ABM 面积的最大值为9+2√2. 21.导学号73574067(本小题满分12分)在平面直角坐标系xOy 中,曲线C 1:{x =tcosα,y =tsinα(t 为参数,t ≠0),其中 0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=2√3cos θ. (1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB|的最大值.曲线C 2的直角坐标方程为x 2+y 2-2y=0,曲线C 3的直角坐标方程为x 2+y 2-2√3x=0.联立{x 2+y 2-2y =0,x 2+y 2-2√3x =0,解得{x =0,y =0或{x =√32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和(√32,32).(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π.因此点A 的极坐标为(2sin α,α),点B 的极坐标为(2√3cos α,α).所以|AB|=|2sin α-2√3cos α|=4|sin (α-π3)|.当α=5π6时,|AB|取得最大值,且最大值为4. 22.导学号73574068(本小题满分12分)已知曲线C 1的参数方程是{x =2cosφ,y =3sinφ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,π3). (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上的任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值X 围.由已知可得A ,B ,C ,D 的直角坐标分别为A (2cos π3,2sin π3),B (2cos (π3+π2),2sin (π3+π2)), C (2cos (π3+π),2sin (π3+π)),D (2cos (π3+3π2),2sin (π3+3π2)),即A (1,√3),B (-√3,1),C (-1,-√3),D (√3,-1).(2)设P (2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2, 则S=16cos 2φ+36sin 2φ+16=32+20sin 2φ. 因为0≤sin 2φ≤1,所以S 的取值X 围是[32,52].。
高二数学(文科)选修4-4单元测试题(二)班级______________姓名______________1.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧+==ααsin 1cos y x (α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 .2.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s=+⎧⎨=-⎩(s 为参数)和C :22,x t y t =+⎧⎨=⎩(t 为参数),若l 与C 相交于A 、B 两点,则AB = .3.在直角坐标系xoy 中, 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,则直线2()1x t t y t=-+⎧⎨=-⎩为参数截圆22cos 30ρρθ+-=的弦长等于__________.4.化参数方程⎪⎩⎪⎨⎧==ty tx 22sin cos ,0(∈t ,]2π为普通方程为 .5.直线2()1x tt y t=-+⎧⎨=-⎩为参数被圆35cos 15sin x y θθ=+⎧⎨=-+⎩ ()θθπ∈为参数,[0,2)所截得的 弦长为 .6.已知直线l :40x y -+=与圆C :12cos 12sin x y θθ=+⎧⎨=+⎩(θ为参数),则C 上各点到l 的距离的最小值为___________.7.已知直线112:2x tl y kt=-⎧⎨=+⎩(t 为参数),2,:12.x s l y s =⎧⎨=-⎩(s 为参数),若1l //2l ,则k = ;若12l l ⊥,则k = .8.直线3470x y +-=截曲线cos ,1sin x y αα=⎧⎨=+⎩(α为参数)的弦长为___________.9.已知两曲线参数方程分别为()πθθθ<≤⎩⎨⎧==0sin cos 5y x 和 ⎪⎩⎪⎨⎧==ty tx 245(t R ∈),它们的交点坐标为 .10.已知直线314x aty t=+⎧⎨=-+⎩(t 为参数),则该直线恒过定点__________.11.两直线2)4sin(=+πθρ与1)4sin(=-πθρ的位置关系是 .12. 球坐标(2,,)63ππ对应的点的直角坐标是 ___,对应点的柱坐标是 _ __.13.自极点O 向直线l 作垂线,垂足为(2,)3H π,则直线l 的极坐标方程是 .14.极坐标方程 24sin 3θ= 化为直角坐标方程是 ;它表示的图形是 .15.在极坐标系中,曲线4sin ρθ=-和cos 1ρθ=相交于点,A B 两点,则线段AB 的长度 为 .16.在直角坐标系中圆C 的参数方程为⎩⎨⎧+==θθsin 22cos 2y x (θ为参数),则圆C 的普通方程为 __ __,以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则 圆C 的圆心极坐标为 __ _.17.参数方程⎩⎨⎧-==αα2cos 2cos 2y x (α是参数)表示的曲线的普通方程是_________________.18.参数方程sin cos sin 2x y θθθ=-⎧⎨=⎩(θ为参数)化为普通方程是 .19.若直线340x y m ++=与圆⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)相切,则实数m 的值是 .20.已知曲线sin (11cos 222y x θθθ=⎧⎪⎨=-⎪⎩为参数)与直线x a =有两个不同的公共点,则实数a 的取值范围是_________________.21.已知圆C 的参数方程为cos 1sin x y θθ=+⎧⎨=⎩(θ为参数), 则点()4,4P 与圆C 上的点的最远距离是 .22.在直角坐标系中,曲线1C 的参数方程为],0[sin ,cos πθθθ∈⎩⎨⎧==y x ,以x 轴的正半轴为极轴建立极坐标系,曲线2C 在极坐标系中的方程为θθρcos sin -=b.若曲线1C 与2C 有两个不同的交点,则实数b 的取值范围是 .23.已知圆锥曲线2cos x y θθ=⎧⎪⎨=⎪⎩(θ是参数)和定点A(0),F 1、F 2是圆锥曲线的左、右焦点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则直线AF 2的极坐标方程为__________________________.24.若直线⎩⎨⎧+=-=,32,21t y t x (t 为参数)与直线14=+ky x 垂直,则常数k =__ __.25.已知椭圆:C cos ,()2sin x y θθθ=⎧∈⎨=⎩R 经过点1(,)2m ,则m =______,离心率e =______.26. (2012深圳二模文)在极坐标系中,直线:cos l t ρθ=(常数0)t >)与曲线:2sin C ρθ=相切,则t = .27. (2012深圳二模理)在极坐标系中,已知直线l :(sin cos )a ρθθ-=把曲线C :2cos ρθ= 所围成的区域分成面积相等的两部分,则常数a 的值是 .28. (2012广州二模文、理)在极坐标系中,若等边三角形ABC (顶点A ,B ,C 按 顺时针方向排列)的顶点A ,B 的极坐标分别为(2,6π),(2,76π),则顶点C 的极 坐标为 .参考答案1.θρsin 2=2 3.44.1=+y x (10≤≤x )56.2 7.4;1- 8.1659.(1,510.(3,1)- 11.垂直12.1(2;(1,3π13.cos()23πρθ-=14.x y 3±=(或223x y =) ; 两条直线(或两条相交直线) 15.3216.22(2)4x y +-=; )2,2(π17.322+-=x y (2||≤x )18.21,x y x ⎡=-∈⎣19.10或0 20.01a <≤ 21.622.1b ≤<23.sin cos ρθθ=24.-625.415±,226.1 27.1-28.2)3π;或))(232,32(Z k k ∈+ππ。
2024年统编版2024高二数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四总分得分评卷人得分一、选择题(共6题,共12分)1、抛物线y=ax2(a≠0)的焦点坐标是()A.B.C.D.2、已知三边长分别为3、4、5的△ABC的外接圆恰好是球O的一个大圆,P为球面上一点,若点P到△ABC的三个顶点的距离相等,则三棱锥P-ABC的体积为()A. 5B. 10C. 20D. 303、设二次函数f(x)=x2-x+a,若f(-t)<0,则f(t+1)的值()A. 是正数B. 是负数C. 是非负数D. 正负与t有关4、高三年级有文科;理科共9个备课组;每个备课组的人数不少于4个,现从这9个备课组中抽出l2人,每个备课组至少1人,组成“年级核心组”商议年级的有关事宣.则不同的名分配方案共有()A. 129种。
B. 148种。
C. 165种。
D. 585种。
5、已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立;则称集合M是“垂直对点集”.给出下列四个集合:①M={};②M={(x;y)|y=sinx+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x-2}.其中是“垂直对点集”的序号是()A. ①②B. ②③C. ①④D. ②④6、设变量x、y满足约束条件则目标函数的最大值和最小值分别为A. 1,-5B. -1, -5C. 5, -1D. 1,5评卷人得分二、填空题(共7题,共14分)7、若等差数列{a n}的前5项和S5=25,且a2=3,则a7=____.8、设若则9、【题文】是虚数单位,计算_________.10、宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“茭草形段”第一个问题“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.问底子(每层三角形边茭草束数,等价于层数)几何?”中探讨了“垛枳术”中的落一形垛(“落一形”即是指顶上1束,下一层3束,再下一层6束,,成三角锥的堆垛,故也称三角垛,如图,表示第二层开始的每层茭草束数),则本问题中三角垛底层茭草总束数为____11、一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60°处;行驶4h后,船到达C处,看到这个灯塔在北偏东15°处.这时船与灯塔的距离为____km.12、已知函数g(x)=(a+1)x-2+1(a>0)的图象恒过定点A,且点A又在函数f(x)=log3(x+a)的图象上.则实数a= ______ .13、设i是虚数单位,若复数z满足z(1+i)=1-i,则|z|= ______ .评卷人得分三、作图题(共6题,共12分)14、用斜二测画法画出五棱锥P-ABCDE的直观图,其中底面ABCDE是正五边形,点P在底面的投影是正五边形的中心O(尺寸自定).15、函数y=-2-x-2的图象经过____象限.16、已知区域D满足,那么区域D内离坐标原点O距离最远的点P的坐标为____.17、对于每一个实数x,f(x)是2-x与x中的较小者,则函数f(x)的值域是____.18、如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是____.19、已知正方体ABCD-A1B1C1D1的棱长为1,E,F,G分别是AB,BC,B1C1的中点.下列命题正确的是____(写出所有正确命题的编号).①以正方体的顶点为顶点的三棱锥的四个面最多只有三个面是直角三角形;②P在直线FG上运动时;AP⊥DE;③Q在直线BC1上运动时,三棱锥A-D1QC的体积不变;④M是正方体的面A1B1C1D1内到点D和 C1距离相等的点,则M点的轨迹是一条线段.评卷人得分四、解答题(共1题,共8分)20、选修4-4:坐标系与参数方程已知极坐标系和直角坐标系中极点与坐标原点重合,极轴与x轴半轴重合,点P的直角坐标为直线l过点P且倾斜角为曲线C的极坐标方程是设直线l与曲线C交于A;B两点.①写出直线l的参数方程;②求|PA|+|PB|的值.参考答案一、选择题(共6题,共12分)1、C【分析】【分析】先把抛物线方程整理成标准方程,进而根据抛物线的性质可得焦点坐标.【解析】【解答】解:当a≠0时,整理抛物线方程得x2= y;p=∴焦点坐标为(0,).抛物线y=ax2(a≠0)的焦点坐标为:(0,).故选:C2、A【分析】【分析】由题意可知△ABC为直角三角形,则其外接圆的圆心在AB的中点上,再由P到三个顶点的距离相等可得P在面ABC上的射影为球的球心,然后直接利用棱锥的体积公式求解.【解析】【解答】解:如图;在△ABC中;不妨设AB=5,AC=3,BC=4.则∠ACB=90°;∴△ABC的外接圆的圆心为AB的中点;即球的球心为AB的中点;又P到△ABC的三个顶点的距离相等;∴P在平面ABC上的射影到A;B、C的距离相等;∴O为P在平面ABC上的射影;则OP⊥面ABC;又P在球面上,∴OP为球的半径,∴OP= .∴= .故选:A.3、B【分析】【分析】根据二次函数解析式,得出f(t+1)=t2+t+a=f(-t),再结合题意即可得到f(t+1)的值为负数.【解析】【解答】解:∵f(x)=x2-x+a;∴f(t+1)=(t+1)2-(t+1)+a=t2+t+a;又∵f(-t)=t2+t+a;且f(-t)<0;∴f(t+1)<0;即f(t+1)为负数.故选:B4、C【分析】根据题意;只须将把12个名额分成9份,每份至少一个名额即可,分别对应8个备课组;选用隔板法;即将12个名额排成一列,共11个间隔即空位,从其11个空位中,选取8个,插入隔板就符合题意;即C118=C113=165;故选C.【解析】【答案】根据题意;只须将把12个名额分成8份,每份至少一个名额即可,分别对应12个备课组,选用隔板法,分析可得答案.5、D【分析】对于①y=是以x,y轴为渐近线的双曲线,渐近线的夹角是90°,所以在同一支上,任意(x1,y1)∈M,不存在(x2,y2)∈M,满足好集合的定义;在另一支上对任意(x1,y1)∈M,不存在(x2,y2)∈M,使得x1x2+y1y2=0成立;所以不满足“垂直对点集”的定义,不是“垂直对点集”.对于②M={(x,y)|y=sinx+1},对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立;例如(0,1);(π,0),满足“垂直对点集”的定义,所以M是“垂直对点集”;正确.对于③M={(x,y)|y=log2x};取点(1,0),曲线上不存在另外的点,使得两点与原点的连线互相垂直,所以不是“垂直对点集”.对于④M={(x,y)|y=e x-2},如下图红线的直角始终存在,对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立;例如取M(0,-1),则N(ln2,0),满足“垂直对点集”的定义,所以是“垂直对点集”;正确.所以②④正确.故选D.【解析】【答案】对于①利用渐近线互相垂直;判断其正误即可.对于②;③、④通过函数的定义域与函数的值域的范围,画出函数的图象,利用“垂直对点集”的定义,即可判断正误;6、A【分析】【解析】【答案】A二、填空题(共7题,共14分)7、略【分析】依题意可得d=2,a1=1∴a7=1+6×2=13故答案为:13【解析】【答案】根据等差数列的求和公式和通项公式分别表示出S5和a2,联立方程求得d和a1;最后根据等差数列的通项公式求得答案.8、略【分析】试题分析:因为所以所以考点:1分段函数;2定积分。
模块测试题本检测题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a >b >0,则下列不等式中一定成立的是( ) A .a +1b >b +1a B.b a >b +1a +1C .a -1b >b -1a D.2a +b a +2b >a ba >b >0⇒1b >1a >0,∴a +1b >b +1a . 故应选A. A2.已知a ,b ,c ,d ∈R ,且ab >0,-c a <-db ,则下列各式恒成立的是( )A .bc <adB .bc >adC. a c >b dD. a c <b d对-c a <-db 两边同乘以-ab ,由-ab <0,得bc >ad . B3.若a ,b ,x ,y ∈R ,则⎩⎪⎨⎪⎧ x +y >a +b ,(x -a )(y -b )>0是⎩⎪⎨⎪⎧x >a ,y >b ,成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件若⎩⎨⎧x +y >a +b , ①(x -a )(y -b )>0. ②由②知x -a 与y -b 同号;又由式①得 (x -a )+(y -b )>0.∴x -a >0,y -b >0,即x >a 且y >b . 故充分性成立.若⎩⎨⎧x >a ,y >b ,则⎩⎨⎧x -a >0,y -b >0,∴⎩⎨⎧x +y >a +b ,(x -a )(y -b )>0.故必要性亦成立.综合(1)(2)知,应选C. C4.已知a >b >0且ab =1,设c =2a +b ,P =logc a ,N =log c b ,M =log c ab ,则( )A .P <M <NB .M <P <NC .N <P <MD .P <N <M 方法一:因为a >b >0且a ·b =1,所以a >1,0<b <1,a +b >2ab =2,c =2a +b <1.所以log c a <log c ab <log c b ,即P <M <N .故选A. 方法二(特值法):令a =2,b =12,所以c =22+12=45.A5.使不等式|x -4|+|3-x |<a 有解的条件是( ) A .0<a <110 B .0<a ≤1C.110<a <1 D .a >1 要使不等式成立,需 a >(|x -4|+|3-x |)min .由|x -4|+|3-x |的几何意义,知数轴上动点x 到定点(4,3)的距离和的最小值为1,所以a >1.故应选D. D6.给出三个条件:①ac 2>bc 2;②a c >bc ;③a 2>b 2.其中能成为a >b 的充分条件的个数为( )A .0B .1C .2D .3 ①ac 2>bc 2⇒a >b ,而a >b ⇒/ac 2>bc 2,故ac 2>bc 2是a >b 的充分条件;②a c >bc ⇒/a >b ,故不合题意;③a 2>b 2⇒/a >b ,也不合题意,综上所述只有①适合题意,故选B.B 7.已知a1-a>0,且x >1,则下列不等式成立的是( ) A .a x <x 1a <log a x B .log a x <a x <x 1aC .log 1a x <x 1a <a xD .a x <log a x <x 1a由a 1-a >0,x >1得0<a <1,且log a x <0<a x<1<x 1a . B8.若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( )A.3-1B.3+1 C .23+2 D .23-2 由a (a +b +c )+bc =4-23, 得(a +b )(a +c )=4-2 3. ∵a ,b ,c >0,∴(a +c )(a +b )≤(2a +b +c2)2(当且仅当a +c =b +a ,即b =c 时取“=”号).∴2a +b +c ≥24-23=2(3-1)=23-2.故应选D. D9.如果实数x ,y 满足|tan x |+|tan y |>|tan x +tan y |,且y ∈(π,3π2),则|tan x -tan y |等于( )A .tan x -tan yB .tan y -tan xC .tan x +tan yD .|tan y |-|tan x |由|tan x |+|tan y |>|tan x +tan y |,得tan x 和tan y 异号;且y ∈(π,3π2),得tan y >0. 所以|tan x -tan y |=tan y -tan x . 故应选B. B10.设a 1,a 2,…,a 5都是正数,b 1,b 2,…,b 5是a 1,a 2,…,a 5的任一排列,则a 1b -11+a 2b -12+…+a 5b -15的最小值是( )A .1B .5C .25D .无法确定设a 1≥a 2≥…≥a 5>0.可知a -15≥a -14≥…≥a -11,由排序原理,得a 1b -11+a 2b -12+…+a 5b -15≥a 1a -11+a 2a -12+…+a 5a -15≥5. 故应选B. B11.若k 棱柱有f (k )个对角面,则k +1棱柱有对角面的个数为( )A.2f(k) B.k-1+f(k)C.f(k)+k D.f(k)+2由n=k到n=k+1时增加的对角面的个数与底面上由n=k 到n=k+1时增加的对角线一样,设底面为a1a2…a k,n=k+1时底面为a1a2a3…a k a k+1,增加的对角线为a2a k+1,a3a k+1,a4a k+1,…,a k-1a k+1,a1a k,共有k-1条,因此,对角面也增加了k-1个.B12.记满足下列条件的函数f(x)的集合为M,当|x1|≤1,|x2|≤1时,|f(x1)-f(x2)|≤4|x1-x2|,又令g(x)=x2+2x-1,则g(x)与M的关系是()A.g(x)M B.g(x)∈MC.g(x)∉M D.不能确定g(x1)-g(x2)=x21+2x1-x22-2x2=(x1-x2)(x1+x2+2),|g(x1)-g(x2)|=|x1-x2|·|x1+x2+2|≤|x1-x2|(|x1|+|x2|+2)≤4|x1-x2|,所以g(x)∈M.故应选B.B第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.若x≥1,y≥1,z≥1,xyz=10,且x lg x·y lg y·z lg z≥10,则x+y +z =__________.lg(x lg x ·y lg y ·z lg z )≥1⇒lg 2x +lg 2y +lg 2z ≥1,而lg 2x +lg 2y +lg 2z =(lg x +lg y +lg z )2-2(lg x lg y +lg y lg z +lg z lg x )=[lg(xyz )]2-2(lg x lg y +lg y lg z +lg z lg x ) =1-2(lg x lg y +lg y lg z +lg z lg x )≥1, 即lg x lg y +lg y lg z +lg z lg x ≤0, 而lg x ,lg y ,lg z 均不小于0, ∴lg x lg y +lg y lg z +lg z lg x =0.此时,lg x =lg y =0,或lg y =lg z =0,或lg z =lg x =0. ∴x =y =1,z =10或y =z =1,x =10,或x =z =1,y =10, ∴x +y +z =12. 1214.要挖一个面积为432 m 2的矩形鱼池,周围两侧分别留出宽分别为 3 m,4m 的堤堰,要想使占地总面积最小,此时鱼池的长为__________,宽为__________.设长为x ,宽为432x ,占地面积为S ,则S =(8+x )(432x +6),用基本不等式求解.24 m 18 m15.已知0<α<π2,0<β<π2,M =1cos 2α+1sin 2α·sin 2β·cos 2β,则M 的取值范围是__________.M ≥916.下列四个命题:①a +b ≥2ab ;②sin 2x +4sin 2x≥4;③设x ,y 都是正数,若1x +9y =1,则x +y 的最小值是12;④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε.其中所有真命题的序号是__________.①不正确,a ,b 符号不定;②不正确,sin 2x ∈(0,1],利用函数y =x +4x 的单调性可求得sin 2x +4sin 2x ≥5;③不正确,(x +y )(1x +9y )=10+y x +9xy ≥10+6=16;④正确,|x -y |=|x -2+2-y |≤|x -2|+|2-y |<ε+ε=2ε.④三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)已知a 、b 、c ∈R +,求证:b +c -a a +c +a -b b +b +a -cc ≥3. ∵a 、b 、c ∈R +,b +c -a a +c +a -b b +b +a -c c =b a +c a -1+c b +a b -1+b c +a c -1≥2·3-3=3, 当且仅当a =b =c 时等号成立. 18.(本小题满分12分) 设函数f (x )=|2x +1|-|x -5|. (1)解不等式f (x )>2; (2)求函数y =f (x )的最小值.(1)令y =|2x +1|-|x -5|,则y =⎩⎪⎨⎪⎧-x -6,x ≤-12,3x -4,-12<x <5,x +6,x ≥5.作出函数y =|2x +1|-|x -5|的图象,它与直线y =2的交点为(-8,2)和(2,2).所以|2x +1|-|x -5|>2的解集为(-∞,-8)∪(2,+∞). (2)由函数y =|2x +1|-|x -5|的图象可知, 当x =-12时,y =|2x +1|-|x -5|取得最小值-112.19.(本小题满分12分)设a 、b ∈(0,+∞)且1a +1b =1,求证:对于任何n ∈N +,有(a +b )n -a n -b n ≥22n -2n +1成立.①n =1时,原不等式显然成立; ②设n =k 时原不等式成立,即(a +b )k -a k -b k ≥22k -2k +1, 则n =k +1时, (a +b )k +1-a k +1-b k +1=(a +b )[(a +b )k -a k -b k ]+ab k +a k b ≥(a +b )(22k -2k +1)+ab k +a k b , 由1=1a +1b ≥2ab,可得ab ≥4,a +b ≥2ab ≥4. ∴ab k +a k b ≥2a k +1b k +1≥2(4)k +12=2k +2.∴(a +b )k +1-a k +1-b k +1 ≥(a +b )(22k -2k +1)+ab k +a k b ≥4(22k -2k +1)+2k +2 =22(k +1)-2(k +1)+1,即n =k +1时原不等式成立.由①②可知,对于任何n ∈N +原不等式成立. 20.(本小题满分12分)某自来水厂要制作容积为500 m 3的无盖长方体水箱,现有三种不同规格的长方形金属制箱材料(单位:m):①19×19;②30×10;③25×12.请你选择其中的一种规格材料,并设计出相应的制作方案(要求:①用料最省;②简便易行).设无盖长方体水箱的长、宽、高分别为a、b、c.由题意,可得abc=500,长方体水箱的表面积为S=2bc+2ac+ab.由平均值不等式,知S=2bc+2ac+ab≥332bc·2ac·ab=334×5002=300,当且仅当2bc=2ca=ab,即a=b=10,c=5时,S=2bc+2ca+ab=300为最小,这表明将无盖长方体的尺寸设计为10×10×5(即2∶2∶1)时,其用料最省.如何选择材料并设计制作方案?就要研究三种供选择的材料,哪一种更易制作成长方体水箱的平面展开图.逆向思维,先将无盖长方体展开成平面图:图(1)进一步剪拼成图(2)的长30 m,宽10 m(长∶宽=3∶1)的长方形.因此,应选择规格30×10的制作材料,制作方案如图(3).(1)(2)(3)可以看出,图(3)这种“先割后补”的方案不但可使用料最省,而且简便易行.21.(本小题满分12分)设x 1,x 2,x 3,…,x n 都是正实数,且x 1+x 2+x 3+…+x n =S .求证:x 21S -x 1+x 22S -x 2+…+x 2nS -x n ≥S n -1.方法1:根据柯西不等式,得 左边=x 21S -x 1+x 22S -x 2+…+x 2n S -x n=[(S -x 1)+(S -x 2)+…+(S -x n )]×1(n -1)S (x 21S -x 1+x 22S -x 2+…+x 2n S -x n) =1(n -1)S[(S -x 1)2+(S -x 2)2+…+(S -x n )2]×[(x 1S -x 1)2+(x 2S -x 2)2+…+(x nS -x n )2]≥1(n -1)S [(S -x 1×x 1S -x 1)+(S -x 2×x 2S -x 2)+…+(S -x n×x n S -x n)]2=1(n -1)S (x 1+x 2+…+x n )2=1(n -1)S ×S 2=Sn -1=右边.∴原不等式成立.方法2:∵a ∈R +,则a +1a ≥2,∴a ≥2-1a .∴x 2iS -x i =x i n -1×(n -1)x i S -x i ≥x i n -1×[2-S -x i (n -1)x i ]=2x i n -1-S -x i (n -1)2. n 个式子相加,有x 21S -x 1+x 22S -x 2+…+x 2nS -x n ≥2x 1n -1+2x 2n -1+…+2x n n -1-[S -x 1(n -1)2+S -x 2(n -1)2+…+S -x n(n -1)2] =2S n -1-nS -S (n -1)2=S n -1. ∴原不等式成立.方法3:x 2iS -x i +1(n -1)2(S -x i ) ≥2x 2iS -x i ·1(n -1)2(S -x i )=2x i n -1.∴x 2iS -x i ≥2x i n -1-S -x i (n -1)2, ∴∑ni =1 x 2iS -x i ≥∑n i =1 2x i n -1-∑n i =1 S -x i (n -1)2=2S n -1-(n -1)S (n -1)2=S n -1. ∴原不等式成立. 22.(本小题满分12分)已知数列{a n }的各项都是正数,且满足:a 0=1,a n +1=12a n (4-a n ),n ∈N.(1)求证:a n <a n +1<2,n ∈N ; (2)求数列{a n }的通项公式a n . (1)证法1:用数学归纳法证明: ①当n =0时,a 0=1,a 1=12a 0(4-a 0)=32,∴a 0<a 1<2,命题正确.②假设n =k (k ∈N +)时,有a k -1<a k <2,则n =k +1时,a k -a k +1=12a k -1(4-a k -1)-12a k (4-a k )=2(a k -1-a k )-12(a k -1-a k )(a k -1+a k )=12(a k -1-a k )(4-a k -1-a k ). 而a k -1-a k <0,4-a k -1-a k >0, ∴a k -a k +1<0.又a k +1=12a k (4-a k )=12[4-(a k -2)2]<2,∴n =k +1时命题正确.由①和②可知,对一切n ∈N 时都有a n <a n +1<2. 证法2:用数学归纳法证明:①当n =0时,a 0=1,a 1=12a 0(4-a 0)=32,∴0<a 0<a 1<2;②假设n =k (k ∈N +)时,有a k -1<a k <2成立,令f (x )=12x (4-x ),由f (x )在[0,2]上单调递增,所以由假设有f (a k -1)<f (a k )<f (2),即12a k-1(4-a k -1)<12a k (4-a k )<12×2×(4-2),也即当n =k +1时,a k <a k+1<2成立.所以对一切n ∈N ,有a n <a n +1<2.(2)a n +1=12a n (4-a n )=12[-(a n -2)2+4],所以2(a n +1-2)=-(a n -2)2, 令b n =a n -2,则b n =-12b 2n -1=-12(-12b 2n -2)2=-12·(12)2b 22n -2=…=-(12)1+2+…+2n -1b 22n,又b 0=-1,所以b n =-(12)2n-1即a n =2+b n =2-(12)2n-1.。
统考作业题目——4-46.21.在平面直角坐标系xOy 中,直线l 的参数方程为12,(2x t t y t =+⎧⎨=-⎩为参数),以原点O 为极点,以x 轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位。
曲线C 的极坐标方程为22cos 4sin 40ρρθρθ+++=. (1)求l 的普通方程和C 的直角坐标方程;(2)已知点M 是曲线C 上任一点,求点M 到直线l 距离的最大值.2.已知极坐标的极点在平面直角坐标系的原点O 处,极轴与O 轴的正半轴重合,且长度单位相同。
直线O 的极坐标方程为:O =√2sin (O −O4),点P (2cos O ,2sin O +2),参数O ∈[0,2O ].(I )求点O 轨迹的直角坐标方程; (Ⅱ)求点O 到直线O 距离的最大值.1、【详解】(1)12,2x t y t =+⎧⎨=-⎩10x y ∴+-= 因为222,cos ,sin x y x y ρρθρθ=+==,所以222440x y x y ++++=,即22(1)(2)1x y +++=(2)因为圆心(1,2)--到直线10x y +-==,所以点M 到直线l 距离的最大值为 1.r = 2、解:(Ⅰ)设P (O ,O ),则{O =2cos O O =2sin O +2,且参数O ∈[0,2O ],消参得:O 2+(O −2)2=4所以点O 的轨迹方程为O 2+(O −2)2=4 (Ⅱ)因为O =√2sin (O −O4)所以O √2sin (O −O4)=10 所以O sin O −O cos O =10,所以直线O 的直角坐标方程为O −O +10=0 法一:由(Ⅰ)点O 的轨迹方程为O 2+(O −2)2=4 圆心为(0,2),半径为2. d =√22=4√2,O 点到直线O 距离的最大值等于圆心到直线O 距离与圆的半径之和,所以O 点到直线O 距离的最大值4√2+2. 法二:d =√22=√2|cos O −sin O +4|=√2|√2cos (O +O4)+4|当O =74O 时,O max =4√2+2,即点O 到直线O 距离的最大值为4√2+2.6.33.在平面直角坐标系xOy 中,已知曲线O 1的参数方程为{O =cos O O =√3sin O(O 为参数),曲线O 2的参数方程为{O =4−√22OO =4+√22O(O ∈O ,t 为参数).(1)求曲线O 1的普通方程和曲线O 2的极坐标方程;(2)设P 为曲线O 1上的动点,求点P 到O 2上点的距离的最小值,并求此时点P 的坐标. 4.在直角坐标系xOy 中曲线1C的参数方程为cos x y αα=⎧⎪⎨=⎪⎩ (α为参数,以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.3、【详解】(1)对曲线O 1:cos 2O =O 2,sin 2O =O 23, ∴曲线O 1的普通方程为O 2+O 23=1.对曲线O 2消去参数O 可得O =(4−O )×√2,且O =(O −4)×√2, ∴曲线O 2的直角坐标方程为O +O −8=0.又∵O =O cos O ,O =O sin O ,∴O cos O +O sin O −8=√2O sin (O +O4)−8=0从而曲线O 2的极坐标方程为O =4√2sin (O +O 4)。
高二数学选修4-4单元测试题(一)1.极坐标方程分别是cos ρθ=和sin ρθ=的两个圆的圆心距是.2.已知圆的极坐标方程2cos ρθ=,直线的极坐标方程为cos 2sin 70ρθρθ-+=, 则圆心到直线的距离为_________. 3.在极坐标系下,直线cos()14πρθ+=与圆2=ρ的公共点个数是_______.4.在极坐标系中,过圆6cos ρθ=的圆心,且垂直于极轴的直线的极坐标方程为. 5.在极坐标系中,圆C 的极坐标方程是)6cos(4πθρ+=.现以极点为原点,以极轴为x轴的正半轴建立直角坐标系,则圆C 的半径是,圆心的直角坐标是.6.在极坐标系中,若过点)0,3(A 且与极轴垂直的直线交曲线θρcos 4=于A 、B 两点,则=||AB _________.7. 设M 、N 分别是曲线2sin 0ρθ+=和22)4sin(=+πθρ上的动点,则M 、N 的最小距离是.8.已知曲线1C 、2C 的极坐标方程分别为3cos =θρ,θρcos 4=(20,0πθρ<≤≥).则曲线1C 与2C 交点的极坐标为.9.在极坐标系中,过点4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的极坐标方程是. 10.在极坐标系下,已知直线l 的方程为21)3cos(=-πθρ,则点)2,1(πM 到直线l 的距离为__________.11.在极坐标系中,点)23,2(πP 到直线l :3sin 4cos 3=-θρθρ的距离为__________. 12.过点(2,)3π且平行于极轴的直线的极坐标方程为.13.在极坐标系中,点A 的坐标为4π⎛⎫⎪⎝⎭,曲线C 的方程为θρcos 2=,则OA (O 为极点)所在直线被曲线C 所截弦的长度为.14.在极坐标系下,圆2ρ=的圆心到直线sin 2cos 1ρθρθ+=的距离是.15.已知直线的极坐标方程为sin()42πρθ+=,则点(0,0)到这条直线的距离是.16.在极坐标系中,曲线3=ρ截直线1)4cos(=+πθρ所得的弦长为.17.在极坐标系中,点()M ρθ,关于极点的对称点的极坐标是.18.若直线2sin()42πρθ+=与直线31x ky +=垂直,则常数k =. 19.在直角坐标系中,曲线C 的极坐标方程为2cos 4sin ρθθ=-,写出曲线C 的直角坐标方程________.20.在极坐标系中,已知两点A 、B 的极坐标分别为3,3π⎛⎫ ⎪⎝⎭,4,6π⎛⎫⎪⎝⎭,则△AOB (其中 O 为极点)的面积为.21.在极坐标系中,曲线4(sin cos )ρθθ=+截直线()2R πθρ=∈所得的弦长等于.22.在极坐标系(ρ,θ)(02θπ≤<)中,曲线2sin ρθ=与cos 1ρθ=-的交点的极坐标为______________.23.点M ,N 分别是曲线sin 22cos ρθρθ==和上的动点,则|MN|的最小值是. 24.在极坐标系中, 圆2ρ=上的点到直线3)3cos(=-πθρ的距离的最大值是.25.在极坐标系中,直线02)sin (cos =+-θθρ被曲线C :2=ρ所截得弦的中点的极坐标为.26.以极坐标系中的点(2,)2π为圆心,2为半径的圆的直角坐标方程是.27. 圆C 的极坐标方程2cos ρθ=化为直角坐标方程为,该圆的 面积为.28.同时给出极坐标系与直角坐标系,且极轴为OX ,则极坐标方程cos()26πρθ-=化为对应的直角坐标方程是.29.在极坐标系中,直线l 的方程为4cos =θρ,则点)3,2(π到直线l 的距离为__.30.在极坐标系中,点P (2,0)与点Q 关于直线3πθ=对称,则||PQ =____________.31.在极坐标系中,圆2cos ρθ=的圆心的极坐标是,它与方程(0)4πθρ=>所表示的图形的交点的极坐标是.32.在极坐标系中,点A 和点B 的极坐标分别为)3,2(π和)0,3(,O 为极点,则OAB ∆的面积=.33.在极坐标系中,和极轴垂直相交的直线l 与圆4ρ=相交于A 、B 两点,若||4AB =,则直线l 的极坐标方程为.34.已知直线的极坐标方程为22)4sin(=+πθρ,则点)47,2(π到这条直线的距离为____. 35.两直线2008)4sin(=+πθρ,2009)4sin(=-πθρ的位置关系是__________.(判断垂直或平行或斜交)36.在极坐标系中,4sin ρθ=是圆,则点A (4,)6π到圆心C 的距离是.37.在极坐标系中,曲线2sin ρθ=的中心与点()1,π的距离为.38.在极坐标系下,圆θρcos 2= 与圆 2=ρ的公切线条数为 .39.在极坐标系),(θρ)20(πθ<≤中,曲线1)cos (sin =+θθρ与1)cos (sin =-θθρ 的交点的极坐标为.40.在极坐标系中,直线l 的方程为sin 3ρθ=,则点(2,)6π到直线l 的距离为.高二数学选修4-4单元测试题(二)1.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧+==ααsin 1cos y x (α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为.2.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s=+⎧⎨=-⎩(s 为参数)和C :22,x t y t=+⎧⎨=⎩(t 为参数),若l 与C 相交于A 、B 两点,则AB =. 3.在直角坐标系xoy 中, 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,则直线2()1x t t y t=-+⎧⎨=-⎩为参数截圆22cos 30ρρθ+-=的弦长等于__________. 4.化参数方程⎪⎩⎪⎨⎧==ty tx 22sin cos ,0(∈t ,]2π为普通方程为. 5.直线2()1x tt y t=-+⎧⎨=-⎩为参数被圆35cos 15sin x y θθ=+⎧⎨=-+⎩()θθπ∈为参数,[0,2)所截得的弦长为.6.已知直线l :40x y -+=与圆C :12cos 12sin x y θθ=+⎧⎨=+⎩(θ为参数),则C 上各点到l 的距离的最小值为___________. 7.已知直线112:2x t l y kt =-⎧⎨=+⎩(t 为参数),2,:12.x s l y s =⎧⎨=-⎩(s 为参数),若1l //2l ,则k =;若12l l ⊥,则k =.8.直线3470x y +-=截曲线cos ,1sin x y αα=⎧⎨=+⎩(α为参数)的弦长为___________.9.已知两曲线参数方程分别为()πθθθ<≤⎩⎨⎧==0sin cos 5y x 和 ⎪⎩⎪⎨⎧==ty tx 245(t R ∈),它们的交点坐标为 .10.已知直线314x aty t =+⎧⎨=-+⎩(t 为参数),则该直线恒过定点__________.11.两直线2)4sin(=+πθρ与1)4sin(=-πθρ的位置关系是. 13.自极点O 向直线l 作垂线,垂足为(2,)3H π,则直线l 的极坐标方程是.14.极坐标方程 24sin3θ=化为直角坐标方程是;它表示的图形是.15.在极坐标系中,曲线4sin ρθ=-和cos 1ρθ=相交于点,A B 两点,则线段AB 的长度 为.16.在直角坐标系中圆C 的参数方程为⎩⎨⎧+==θθsin 22cos 2y x (θ为参数),则圆C 的普通方程为,以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的圆心极坐标为.17.参数方程⎩⎨⎧-==αα2cos 2cos 2y x (α是参数)表示的曲线的普通方程是_________________.18.参数方程sin cos sin 2x y θθθ=-⎧⎨=⎩(θ为参数)化为普通方程是.19.若直线340x y m ++=与圆⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)相切,则实数m 的值是.20.已知曲线sin (11cos 222y x θθθ=⎧⎪⎨=-⎪⎩为参数)与直线x a =有两个不同的公共点,则实数a 的取值范围是_________________.21.已知圆C 的参数方程为cos 1sin x y θθ=+⎧⎨=⎩(θ为参数), 则点()4,4P 与圆C 上的点的最远距离是.22.在直角坐标系中,曲线1C 的参数方程为],0[sin ,cos πθθθ∈⎩⎨⎧==y x ,以x 轴的正半轴为极轴建立极坐标系,曲线2C 在极坐标系中的方程为θθρcos sin -=b.若曲线1C 与2C 有两个不同的交点,则实数b 的取值范围是.23.已知圆锥曲线2cos x y θθ=⎧⎪⎨=⎪⎩(θ是参数)和定点A(0),F 1、F 2是圆锥曲线的左、右焦点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则直线AF 2的极坐标方程为__________________________. 24.若直线⎩⎨⎧+=-=,32,21t y t x (t 为参数)与直线14=+ky x 垂直,则常数k =____.25.已知椭圆:C cos ,()2sin x y θθθ=⎧∈⎨=⎩R 经过点1(,)2m ,则m =______,离心率e =______.26.在极坐标系中,直线:cos l t ρθ=(常数0)t >)与曲线:2sin C ρθ=相切,则t =. 27.在极坐标系中,已知直线l :(sin cos )a ρθθ-=把曲线C :2cos ρθ=所围成的区域分成面积相等的两部分,则常数a 的值是.28.在极坐标系中,若等边三角形ABC (顶点A ,B ,C 按顺时针方向排列)的顶点A ,B 的极坐标分别为(2,6π),(2,76π),则顶点C 的极坐标为.2010级高二数学(文科)选修4-4单元测试题(一)参考答案1.22.53.24.cos 3ρθ=5.2; )1,3(-6.32718.)6π9.cos 2ρθ=10.213-11.112.sin ρθ=14.5515.216.2417.),(θπρ+18.3-19.22(1)(2)5x y -++=(或22240)x y x y +-+=20.321.422.3)4π23.124.525.)43,2(π26.22(2)4x y +-=(或0422=-+y y x )27.1)1(22=+-y x (或2220x y x +-=); π2840y +-=29.330..(1,0); )4π32.23333.cos ρθ=.235.垂直36.38.1 39.)2,1(π40.22010级高二数学(文科)选修4-4单元测试题(二)参考答案1.θρsin 2=23.44.1=+y x (10≤≤x )5.27.4;1-8.1659.10.(3,1)-11.垂直12.1(2;(1,3π13.cos()23πρθ-= 14.x y 3±=(或223x y =) ; 两条直线(或两条相交直线)15.3216.22(2)4x y +-=; )2,2(π17.322+-=x y (2||≤x )18.21,x y x ⎡=-∈⎣19.10或020.01a <≤21.622.1b ≤<.sin cos ρθθ=24.-625.415±26.127.1-28.2)3π;或))(232,32(Z k k ∈+ππ。