第四章 植物的呼吸作用
- 格式:doc
- 大小:104.50 KB
- 文档页数:7
第四章呼吸作用一、名词解释1、呼吸作用:生物体内的有机物质通过氧化还原而产生CO2,同时释放能量的过程。
2、有氧呼吸:指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出CO2并形成水,同时释放能量的过程。
3、三羧酸循环:丙酮酸在有氧条件下由细胞质进入线粒体逐步氧化分解,最终生成水和二氧化碳。
4、生物氧化:指有机物质在生物体内进行氧化分解,生成CO2和H2O,放出能量的过程。
5、呼吸链:呼吸代谢中间产物的电子和质子,沿着一系列有序的电子传递体组成的电子传递途径,传递到氧分子的总轨道。
6、氧化磷酸化:在生物氧化过程中,电子经过线粒体的呼吸链传递给氧(形成水分子),同时使ADP被磷酸化为ATP的过程。
7、呼吸商:又称呼吸系数。
是指在一定时间内,植物组织释放CO2的摩尔数与吸收氧的摩尔数之比。
8.糖酵解:胞质溶胶中的己糖在无氧或有氧状态下分解成丙酮酸的过程。
二、填空题1、呼吸作用的糖的分解代谢途径中,糖酵解和戊糖磷酸途径在细胞质中进行;三羧酸循环途径在线粒体中进行。
三羧酸循环是英国生物化学家Krebs 首先发现的。
2、早稻浸种催芽时,用温水淋种和时常翻种,其目的就是使呼吸作用正常进行。
当植物组织受伤时,其呼吸速率加快。
春天如果温度过低,就会导致秧苗发烂,这是因为低温破坏了线粒体的结构,呼吸“空转”,缺乏能量,引起代谢紊乱的缘故。
3.呼吸链的最终电子受体是 O2氧化磷酸化与电子传递链结偶联,将影响_ ATP _的产生。
4.糖酵解是在细胞细胞基质中进行的,它是有氧呼吸和无氧呼吸呼吸的共同途径。
5.氧化磷酸化的进行与 ATP合酶密切相关,氧化磷酸化与电子传递链解偶联将影响__ ATP__的产生。
6.植物呼吸过程中,EMP的酶系位于细胞的细胞基质部分,TCA的酶系位于线粒体的线粒体基质部位,呼吸链的酶系位于线粒体的嵴部位。
7. 一分子葡萄糖经有氧呼吸彻底氧化,可净产生__38__分子ATP,•需要经过__6_底物水平的磷酸化。
第4章植物的呼吸作用基本内容:4 .1 . 呼吸作用的概念及其生理意义呼吸作用是生活细胞在一系列酶的催化下,把作为呼吸底物的有机物进行氧化分解并释放能量的过程。
呼吸作用按照其需氧情况,可分为有氧呼吸和无氧呼吸两大类型。
在正常情况下,有氧呼吸是植物进行呼吸的主要形式,但至今仍保留着无氧呼吸的能力,在缺氧条件下,植物可以进行短暂的无氧呼吸。
呼吸作用是高等植物的重要生理功能。
呼吸作用停止,就意味着生物体的死亡。
1.呼吸作用将植物体内的有机物质不断氧化分解,并将释放出的能量通过氧化磷酸化作用转换成ATP,供植物体内其它生理活动所需要;2.呼吸代谢的许多中间产物是植物体内氨基酸、蛋白质、脂肪、激素、次生代谢物质合成的原料。
所以,呼吸作用是植物体内物质代谢与能量代谢的中心。
3.呼吸作用可以增强植物的抗病能力。
4.提供还原力(NADH 、NADPH),用于物质合成过程等。
4. 2 呼吸代谢多条途径呼吸作用通过多条途径控制其他生理过程的运转,同时,呼吸作用本身又受到基因和环境因素的调控。
呼吸代谢的多样性是植物长期进化过程中形成的一种对多变环境的适应性表现。
呼吸代谢多条路线理论的内容包括三个多样性:1.呼吸化学途径的多样性包括有EMT`、PPP、TCA、GAC等。
EMP-TCA循环是植物体内有机物质氧化分解的重要途径,而PPP途径和抗氰呼吸在植物呼吸代谢中也占有重要地位。
在植物衰老时,PPP会加强,植物感病时、跃变型果实抗氰呼吸会加强。
有氧呼吸和无氧呼吸的共同途径是糖酵解。
2 呼吸链电子传递途径多样性,包括主链细胞色素系统、抗氰支路等。
3 呼吸作用末端氧化系统多样性,包括细胞色素氧化酶、抗氰氧化酶、酚氧化酶、抗坏血酸氧化酶、乙醇酸氧化酶。
植物依赖于呼吸代谢多样性,适应于复杂、多变的环境条件。
4. 3 电子传递与氧化磷酸化呼吸链传递体可以把代谢物脱下的电子有序地传递给氧生成水。
呼吸传递体有两大类:氢传递体(NAD、FMN、FAD、UQ)和电子传递体(细胞色素系统、铁硫蛋白)。
《植物生理学习题集》第四章植物的呼吸作用Ⅰ教学大纲基本要求和知识要点一、教学大纲基本要求了解呼吸作用的概念及其生理意义;了解线粒体的结构和功能;熟悉糖酵解、三羧酸循环和戊糖磷酸循环等呼吸代谢的生化途径;熟悉呼吸链的概念、组成、电子传递多条途径和末端氧化系统的多样性;了解氧化磷酸化、呼吸作用中的能量代谢和呼吸代谢的调控;了解呼吸作用的生理指标及其影响因素;掌握测定呼吸速率的基本方法;了解种子、果实、块根、块茎等器官的呼吸特点和这些器官贮藏保鲜的关系,了解呼吸作用和光合作用的关系。
二、知识要点呼吸作用是一切生活细胞的基本特征。
呼吸作用是将植物体内的物质不断分解的过程,是新陈代谢的异化作用。
呼吸作用为植物体的生命活动提供了所需的能量,其中间产物又能转变为其他重要的有机物(蛋白质、核酸、脂肪等),所以呼吸作用就成为植物体内代谢的中心。
按照需氧状况将呼吸作用分为有氧呼吸和无氧呼吸两大类型。
在正常情况下,有氧呼吸是高等植物进行呼吸的主要形式,在缺氧条件下,植物进行无氧呼吸。
从进化的观点看,有氧呼吸是由无氧呼吸进化而来的。
高等植物的呼吸主要是有氧呼吸,但仍保留无氧呼吸的能力。
高等植物的呼吸生化途径、电子传递途径和末端氧化系统具有多样性。
呼吸代谢的多样性是植物在长期进化中形成的对多变环境适应的一种表现。
EMP-TCA- 细胞色素系统是植物体内有机物质氧化分解的主要途径,而PPP 、GAC 途径和抗氰呼吸在植物呼吸代谢中也占有重要地位。
呼吸底物的彻底氧化包括CO 2 的释放与H 2 O 的产生,以及将底物中的能量转换成ATP 。
EMP-TCA 途径只有CO 2 的释放,没有H 2 O 的形成,绝大部分能量还贮存在NADH 和FADH 2 中。
这些物质所含的氢不能被大气中的氧所氧化,而是要经过一系列可进行迅速氧化还原的呼吸传递体的传递之后,才能与分子氧结合生成水。
而作为生物体内“能量货币”的ATP 就是在与电子传递相偶联的磷酸化过程中大量形成。
第四章植物的呼吸的作用1、有氧呼吸:C6H12O6+6H20+6O2→6CO2+12H2O+能量2、无氧呼吸:C6H12O6→2C2H50H(酒精)+2CO2+能量3、发酵(无氧呼吸的一种):C6H12O6→2CH3CHOHCOOH(乳酸)+能量4、呼吸作用糖的分解代谢途径:糖酵解(EMP途径,胞质溶液)、戊糖磷酸途径(胞质溶液和质体)、三羧酸循环(线粒体)。
5、EMP途径:己糖在有氧或无氧的状态下均能分解丙酮酸的过程。
过程中没有氧分子参与,氧来自于水或被氧化的糖分子,也称内呼吸。
6、EMP途径过程:己糖磷酸化阶段(淀粉或己糖活化,消耗ATP,形成G6P(己糖磷酸),再消耗ATP形成果糖-1,6-二磷酸)、己糖磷酸裂解阶段(己糖磷酸裂解为甘油醛-3-磷酸(PAGld)和二羟丙酮酸,即之间的相互转化)、氧化产能阶段(PGAld氧化释放能量,经甘油酸磷酸、烯醇丙酮酸磷酸(PEP),形成ATP和NADH+和H+,生成丙酮酸的过程)。
7、底物水平磷酸化:底物分子磷酸直接转到ADP生成ATP的过程。
8、EMP方程式:葡萄糖+2NAD++2ADP+2Pi→2丙酮酸+2NADH+2H++2ATP+2H2O9、EMP的生理意义:是有氧和无氧呼吸的共同途径;丙糖磷酸、丙酮酸等中间产物参与不同物质的合成;大多数反应均可逆,为糖异生作用提供基本途径;释放能量供生物体需要(尤其是厌氧生物)。
10、戊糖磷酸途径:PPP途径,是有氧呼吸途径。
分两个阶段:氧化阶段(G6P(己糖磷酸,葡糖-6-磷酸)经过二次脱氢、一次脱羧,生成1个Ru5P(核酮糖-5-磷酸)和2个NADPH,释放CO2的过程)、非氧化阶段(以Ru5P为起点,经一系列反应生成果糖-6-磷酸和甘油醛-3-磷酸(PGAld))。
氧化阶段为可逆反应,非氧化阶段为可逆反应。
11、PPP途径的反应方程:6G6P+12NADP++7H2O→5G6P+6CO2+Pi+12NADPH+12H+11、PPP途径生理意义:合成的NADPH为细胞的合成反应提供主要的还原动力;合成的中间产物为许多重要化合物合成提供原料,如Ru5P是合成甘氨酸的原料;非氧化阶段的中间产物、酶和光合作用的中间产物、酶相同。
第四章植物的呼吸作用一、名词解释。
1、呼吸作用:是植物代谢的中心,是一切生物细胞的共同特征,是将体内的物质不断分解,并释放能量以供给各种生理活动的需要,属于新陈代谢的异化作用方面,包括有氧呼吸和无氧呼吸。
2、有氧呼吸:生活细胞在O2的参与下,把某些有机物彻底氧化分解,放出CO2并形成H2O,同时释放能量的过程。
3、无氧呼吸:在无氧的条件下,细胞把某些有机物分解成为不彻底的氧化物,同时释放能量的过程。
4、P/O比:在以某一底物作为呼吸底物时,每利用一个氧原子、或每对电子通过呼吸链传递给氧所酯化无机磷的分子数,或每消耗一个氧原子有几个ADP被酯化呈A TP。
它是线粒体氧化磷酸化活力的一个重要指标。
5、氧化磷酸化:电子经过线粒体的电子传递链传递给氧的过程中,伴随A TP合酶催化,使ADP和磷酸合成A TP的过程。
6、能荷:说明腺苷酸系统的能量状态,是ATP-ADP-AMP系统中可利用的高能磷酸键的度量。
细胞中的腺苷酸的总量是恒定的,若腺苷酸全部为ATP,则能荷为1.0,细胞充满能量;若腺苷酸全部为ADP,则能荷为0.5;若腺苷酸全部为AMP,则能荷为0,细胞能量完全被放出。
7、能荷调节:通过调节能荷维持细胞内ATP、ADP、AMP三者间的动态平衡。
8、末端氧化酶:指处于生物氧化还原电子传递系统的最末端,最终把电子传递到分子氧并形成水或过氧化氢的酶。
9、巴斯德效应:氧可以降低糖类的分解代谢和减少糖酵解产物的积累,即氧对发酵作用的抑制现象称为巴斯德效应。
10、底物水平磷酸化:由底物的分子磷酸直接转到ADP,最后形成ATP的过程称为底物水平磷酸化。
11、抗氰呼吸:在氰化物存在的条件下,某些植物呼吸不受抑制,把这种呼吸称为抗氰呼吸。
抗氰呼吸电子传递途径在某些条件下与正常的NADH电子传递途径交替进行,因此又称为交替途径。
12、呼吸速率:也称为呼吸强度,是衡量呼吸强弱的生理指标,通常用单位时间内单位鲜重或干重植物组织或原生质释放的CO2的体积或所吸收的O2的体积或有机物质的消耗量来表示。
13、呼吸商:指植物组织在一定的时间内,由于呼吸作用放出CO2的量与吸收O2的量的比值,是表示呼吸底物的性质和氧气供应状态的一种指标,也称呼吸系数。
14、糖酵解:己糖在无氧状态下分解成丙酮酸的过程,通称为糖酵解(EMP途径)。
15、三羧酸循环(TCA循环):在有氧条件下,丙酮酸通过一个包括三羧酸和二羧酸的循环而逐步氧化分解,形成H2O和CO2并释放能量的过程。
16、交替氧化酶:抗氰呼吸电子传递途径的末端氧化酶,将电子从UQ经FP传给O2,对氧的亲和力较高,易受水杨基氧肟酸所抑制,对氰化物不敏感。
17、戊糖磷酸途径:又称为己糖磷酸途径,是指在高等植物中,不经过无氧呼吸生成丙酮酸而进行有氧呼吸的途径。
18、温度系数:温度每升高10℃所引起的呼吸速率增加的倍数,称为温度系数。
19、呼吸跃变:在某些果实成熟过程中,呼吸速率开始略有降低,随之突然升高,然后又突然下降,果实进入成熟,这种果实成熟前呼吸速率突然上升,然后又突然下降的现象称为呼吸跃变。
20、呼吸效率:每消耗1g葡萄糖可合成生物大分子物质的质量。
21、解偶联:呼吸链与氧化磷酸化的偶联遭到破坏的现象。
二、缩写符号。
1、UQ:泛醌2、TCA:三羧酸循环3、RQ:呼吸系数,呼吸商4、HMP:己糖磷酸途径5、PPP:戊糖磷酸途径6、PAL:苯丙氨酸解氨酶7、GSSG:氧化态谷胱甘肽8、FP:黄素蛋白9、FMN:黄素单核苷酸10、FAD:黄素腺嘌呤二核苷酸11、EMP:糖酵解12、CoQ:辅酶Q13、DNP:2,4-二硝基苯酚14、GAC:乙醛酸循环15、DHAP:磷酸二羟丙酮16、GP:甘油-3-磷酸17、P/O比:磷氧比值18、ETS:电子传递系统19、Cyt:细胞色素三、误区警示。
1、有氧呼吸时,O2被还原为糖。
解析:被还原为H2O。
2、糖酵解在线粒体内发生。
解析:在细胞质内发生。
3、三羧酸循环的酶类处于线粒体内膜上。
解析:线粒体衬质。
4、既不耗O2又不释放CO2的呼吸作用是不存在的。
解析:存在,葡萄糖乳酸+能量。
5、戊糖磷酸途径是在线粒体内进行的。
解析:细胞质。
6、戊糖磷酸途径在幼嫩组织中所占比例较大。
解析:较小。
7、植物感病时戊糖磷酸途径所占比例下降。
解析:上升。
8、糖酵解为生命活动提高能量多。
解析:能量少。
9、呼吸跃变是由于果实内脱落酸积累所致。
解析:乙烯积累。
10、对同一植物而言,其呼吸作用的最适温度一般低于光合作用的最适温度。
解析:高于。
11、富含氢的脂肪、蛋白质为呼吸底物时吸收的氧多,RQ大于1。
解析:小于1。
四、填空题。
1、存在于线粒体内膜上的末端氧化酶是细胞色素氧化酶和交替氧化酶。
2、线粒体是进行有氧呼吸的细胞器,在其内膜上进行的是氧化磷酸化,衬质内进行三羧酸循环。
3、糖酵解过程有三个不可逆反应,分别由己糖激酶,磷酸果糖激酶,丙酮酸激酶催化。
4、参与抗氰呼吸的末端氧化酶为交替氧化酶。
5、马铃薯块茎、苹果、梨在削皮或受伤后出现褐色是多酚氧化酶的作用。
6、EMP和PPP的氧化还原辅酶分别为NAD+和NADP+。
7、高等植物在正常呼吸时,主要的呼吸底物是葡萄糖,最终的电子受体是氧气。
8、呼吸抑制剂主要有鱼藤酮,安米妥,抗霉素A,氰化物。
9、糖酵解是在细胞基质中进行的,它是有氧呼吸和无氧呼吸的共同途径。
10、糖酵解的最后产物是丙酮酸。
11、EMP在细胞质中进行,PPP在细胞质中进行,TCA在线粒体中进行,酒精发酵在细胞质中进行。
12、组成呼吸链的传递体可分为氢传递体和电子传递体。
13、在呼吸链中只能传递电子的组分是Fe-S,Cytaa3和Cytb。
14、呼吸作用的指标是呼吸速率和呼吸商。
五、简答与论述。
1、论述呼吸作用的多样性及其意义。
答:呼吸代谢多样性主要表现在三个方面:代谢途径的多样性、呼吸电子传递途径的多样性和末端氧化酶的多样性。
(1)代谢途径多样性。
(2)呼吸电子传递途径多样性。
主路:NADH——FP1——FeS——UQ——Cytb——Cytc——Cyta——Cyta3——O2支路1:NADH——FP2——UQ——Cytb——Cytc——Cyta——Cyta3——O2支路2:NADH——FP3——UQ——Cytb——Cytc——Cyta——Cyta3——O2支路3:NADH——FP4——Cytb5——Cytc——Cyta——Cyta3——O2交替途径:NADH——FP1——UQ——X(交替氧化酶)——O2(3)末端氧化酶多样性(4)呼吸作用多样性的意义呼吸代谢的多样性,是植物在长期进化过程中对不断变化的外界环境的一种适应性表现,以不同方式为植物提供新的物质和能量。
其要点是呼吸代谢(对生理功能)的控制和被控制(酶活性)过程,受到生长发育和不同环境条件的影响。
2、呼吸作用的生理意义。
答:(1)为植物生命活动提供能量。
呼吸氧化有机物,将其中的化学能以ATP形式贮存起来。
当ATP分解时,释放能量以满足各种生理过程的需要。
呼吸放热可提高植物体温,有利种子萌发、开花传粉受精等。
(2)中间产物是合成植物体内重要有机物质的原料。
呼吸产生许多中间产物,其中有些十分活跃,是进一步合成其他有机物的物质基础。
(3)在植物抗病免疫方面有着重要作用。
呼吸作用氧化分解病原微生物分泌的毒素,以消除其毒害。
植物受伤或受到病菌侵染时,通过旺盛的呼吸,促进伤口愈合,加速木质化或栓质化,以减少病菌的侵染。
3、糖酵解的过程和生理意义。
答:(一)过程:1.己糖的活化:己糖在己糖激酶作用下,消耗两个ATP逐步转化成果糖-1,6-二磷酸。
2.己糖裂解:果糖-1,6-二磷酸裂解为2分子磷酸丙糖,即甘油醛-3-磷酸和磷酸二羟丙酮,后者在异构酶作用下可变为甘油醛-3-磷酸。
3.丙糖氧化:甘油醛-3-磷酸氧化脱氢形成磷酸甘油酸,产生1个NADH和1个ATP ,磷酸甘油酸经脱水、脱磷酸形成丙酮酸,并产生1个ATP。
(二)意义。
1.存在于所有生物体中包括原核生物和真核生物。
2.产物丙酮酸的化学性质活跃,可以通过多种代谢途径,生成不同的物质。
3.通过糖酵解,生物体可获得生命活动所需的部分能量。
对于厌氧生物来说,糖酵解是糖分解和获取能量的主要方式。
4.糖酵解途径中,多数反应均可逆转,这就为糖异生作用提供了基本途径。
4、无氧呼吸与有氧呼吸的异同答:1、共同点①分解有机物,为生命活动提供能量和中间产物。
②反应历程都经过糖酵解阶段。
2、不同点:①能量释放有氧呼吸能将底物彻底氧化分解,而无氧呼吸底物氧化分解不彻底,释放能量少。
无氧呼吸过程中形成乙醇或乳酸所需的NADH+H+,一般来自于糖酵解。
因此,将糖酵解过程中形成的2分子NADH和H+被消耗掉。
每分子葡萄糖在发酵时,只净生成2分子ATP,葡萄糖中的大部分能量仍保存在乳酸或乙醇分子中。
发酵作用能量利用效率低,有机物耗损大,依赖无氧呼吸不可能长期维持有氧生物细胞的生命活动。
②中间产物有氧呼吸产生的中间产物多,而无氧呼吸产生的中间产物少,为机体合成作用所能提供的原料也少。
③有毒物质发酵产物的产生和累积,对细胞原生质有毒害作用。
如酒精累积过多,会破坏细胞的膜结构;若酸性的发酵产物累积量超过细胞本身的缓冲能力,也会引起细胞酸中毒。
5、比较光合磷酸化和氧化磷酸化。
答:6、比较光合作用和呼吸作用。
呼吸作用是生物界非常普通的现象,是一切生物细胞的共同特征,它是将体内的物质不断分解,并释放能量供给各种生理活动的需要,属于新陈代谢的异化作用方面。
光合作用是将无机物合成有机物,将光能转变为化学能的过程,属于新陈代谢的同化作用方面。
7、呼吸作用的影响因素。
答:(一)内部因素(1)植物种类:生长快的植物呼吸速率也高。
(2)不同器官或组织:生殖器官>营养器官;生长旺盛的>生长缓慢的;幼嫩器官>成熟器官。
(3)同一器官在不同生长过程中,呼吸速率也有极大变化。
(二)外界条件(1)温度。
呼吸速率随温度变化的曲线呈钟罩形。
呼吸作用最适温度是指能长期维持较高呼吸速率的温度。
呼吸作用最适温度是25℃~35℃,最高温度是35℃~45℃,呼吸作用最低温度则依植物种类不同有较大差异。
(2)氧气。
氧浓度影响呼吸速率和呼吸类型。
呼吸速率一般随氧浓度的增大而增强。
但当氧浓度增至一定程度时,呼吸速率不再增加,这一氧浓度为氧饱和点。
氧饱和点与温度密切相关,一般是温度升高,氧饱和点也相应提高。
(3)二氧化碳。
环境中二氧化碳浓度增高时,脱羧反应减慢,呼吸作用受到抑制。
(4)水分。
整体植物组织的含水量增加,其呼吸速率也升高。
除环境因素影响呼吸强度外,机械损伤可促使呼吸加强;一些矿质元素(如磷、铁、铜、锰等)也影响呼吸;内部因素如呼吸底物的多少也会使呼吸作用加强或减弱。