2010年高考数学浙江卷理科全解析
- 格式:doc
- 大小:1.04 MB
- 文档页数:13
绝密★考试结束前2010年普通高等学校招生全国统一考试(浙江卷)数 学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至2页,非选择题部分3至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A 、B 互斥,那么 柱体的体积公式 P (A +B )=P (A )+P (B ) Sh V =如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高P (A ·B )=P (A )·P (B ) 锥体的体积公式如果事件A 在一次试验中发生的概率是P ,那么n Sh V 31=次独立重复试验中恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高k n k kn n P P C k P --=)1()(),,2,1,0(n k = 球的表面积公式台体的体积公式 24R S π= )(312211S S S S h V ++= 球的体积公式其中S 1,S 2分别表示台体的上、下底面积 334R V π=h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设P={x ︱x <4},Q={x ︱2x <4},则( )(A )p Q ⊆ (B )Q P ⊆(C )Rp Q C ⊆(D )RQ P C ⊆解析:{}22<<x x Q -=,可知B 正确,本题主要考察了集合的基本运算,属容易题(2)某程序框图如图所示,若输出的S=57,则判断框内位( ) (A ) k >4? (B )k >5? (C ) k >6? (D )k >7?解析:选A ,本题主要考察了程序框图的结构,以及与数列有关的简 单运算,属容易题(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =( ) (A )11 (B )5 (C )8- (D )11-解析:解析:通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 解析:因为0<x <2π,所以sinx <1,故x sin 2x <x sinx ,结合x sin 2x 与x sinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) (A )2z z y -= (B )222z x y =+ (C )2z z x -≥ (D )z x y ≤+解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 2222+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。
绝密★考试结束前2010年普通高等学校招生全国统一考试数 学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至2页,非选择题部分3至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A 、B 互斥,那么 柱体的体积公式 P (A +B )=P (A )+P (B ) Sh V =如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高P (A ·B )=P (A )·P (B ) 锥体的体积公式如果事件A 在一次试验中发生的概率是P ,那么n Sh V 31=次独立重复试验中恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高kn kkn n P P C k P )1()(=),,2,1,0(n k = 球的表面积公式台体的体积公式 .ξE )(312211S S S S h V ++=球的体积公式其中S 1,S 2分别表示台体的上、下底面积 3π34R V =h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设}4|{},4|{2<=<=x x Q x x P(A )Q P ⊆(B )P Q ⊆(C )Q C P R ⊆(D )P C Q R ⊆(2)某程序框图如图所示,若输出的S=57,则判断框内为 (A )?4>k (B )?5>k (C )?6>k (D )?7>k (3)设n S 为等比数列}{n a 的前n 项和,0852=+a a ,则=25S S(A )11 (B )5 (C )-8(D )-11(4)设2π0<<x ,则“1sin2<x x ”是“1sin <x x ”的(A )充分而不必不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)对任意复数i R y x yi x z ),∈,(+=为虚数单位,则下列结论正确的是(A )y z z2||= (B )222y x z += (C )x z z2≥|| (D )||||≤||y x z + (6)设m l ,是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若α⊥,α⊂,⊥l m m l 则 (B )若α⊥,//,α⊥m m l l 则(C )若m l m l //,α⊂,α//则(D )若m l m l //,α//,α//则(7)若实数y x ,满足不等式组++,0≥1,0≤32,0≥33my xyxyx 且y x +的最大值为9,则实数=m(A )-2 (B )-1(C )1(D )2(8)设F 1,F 2分别为双曲线)0,0(12222>>=b a by ax 的左、右焦点。
2010-2023历年普通高等学校招生全国统一考试理科数学(浙江卷带解析)第1卷一.参考题库(共20题)1.(2011•浙江)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为,则α和β的夹角θ的范围是_________ .2.(2011•浙江)设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是_________ .3.(2011•浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为P,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)= _________ .4.(2013•浙江)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有_________ 种(用数字作答)5.(2013•浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于_________ .6.(2011•浙江)设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{ S},{T}分别为集合S,T 的元素个数,则下列结论不可能的是()A.{S}=1且{T}=0B.{S}=1且{T}=1C.{S}=2且{T}=2D.{S}=2且{T}=37.(2011•浙江)在△ABC中,角A,B,C,所对的边分别为a,b,c.已知sinA +sinC=psinB(p∈R).且ac=b2.(1)当p=,b=1时,求a,c的值;(2)若角B为锐角,求p的取值范围.8.(2013•浙江)设二项式的展开式中常数项为A,则A=_________ .9.(2013•浙江)某程序框图如图所示,若该程序运行后输出的值是,则()A.a=4B.a=5C.a=6D.a=710.(2011•浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n项和为S n,且,,成等比数列.(1)求数列{a n}的通项公式及S n;(2)记A n=+++…+,B n=++…+,当n≥2时,试比较A n与B n的大小.11.(2011•浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是()A.B.C.D.12.(2011•浙江)若0<α<,﹣<β<0,cos(+α)=,cos(﹣)=,则cos(α+)=()A.B.﹣C.D.﹣13.(2011•浙江)把复数z的共轭复数记作,i为虚数单位.若z=1+i,则(1+z)•=()A.3﹣iB.3+iC.1+3iD.314.(2013•浙江)如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.15.(2013•浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.,求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,求a:b:c.16.(2011•浙江)设F1,F2分别为椭圆+y2=1的焦点,点A,B在椭圆上,若=5;则点A的坐标是_________ .17.(2013•浙江)已知,则tan2α=()A.B.C.D.18.(2013•浙江)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,a n;(2)若d<0,求|a1|+|a2|+|a3|+…+|a n|.19.(2011•浙江)若函数f(x)=x2﹣|x+a|为偶函数,则实数a= _________ .20.(2013•浙江)设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(∁R S)∪T=()A.(﹣2,1]B.(﹣∞,﹣4]C.(﹣∞,1]D.[1,+∞)第1卷参考答案一.参考题库1.参考答案:[30°,150°],或[]2.参考答案:3.参考答案:4.参考答案:4805.参考答案:26.参考答案:D7.参考答案:(1)a=1,c=或a=,c=1 (2)<p<8.参考答案:﹣10.9.参考答案:A10.参考答案:(1)a n=na(2)当a>0时,A n<B n;当a<0时,A n>B n11.参考答案:D12.参考答案:C13.参考答案:A14.参考答案:(1)(2)15.参考答案:(1)ξ23456P(2)3:2:116.参考答案:(0,±1)17.参考答案:C18.参考答案:(1)d=﹣1或d=4;所以a n=﹣n+11或a n=4n+6;(2)|a1|+|a2|+|a3|+…+|a n|=.19.参考答案:20.参考答案:C。
2010年普通高等学校招生全国统一考试(浙江卷)理科数学一. 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四项中,只有一项是符合题目要求的.1.设{4}P x x =<,2{4}Q x x =<,则 ( ) A .P Q ⊆ B .Q P ⊆ C .p Q ⊆R ð D .Q P ⊆R ð 【测量目标】集合间的关系.【考查方式】给出两集合,求集合间的关系. 【难易程度】容易 【参考答案】B 【试题解析】P ={x 4x <},{}{}2422Q x x x x =<=-<<,Q P ∴⊆,故B 正确.2.某程序框图如图所示,若输出的S =57,则判断框内为 ( ) A . k >4? B .k >5? C . k >6? D .k >7?第2题图【测量目标】循环结构的程序框图.【考查方式】给出循环结构的程序框图,根据输出结果,求出所缺条件. 【难易程度】容易 【参考答案】A【试题解析】程序在运行过程中变量值变化如下表: k s 是否继续循环 循环前 1 1第一圈 2 4 是 第二圈 3 11 是 第三圈 4 26 是 第四圈 5 57 否故退出循环的条件应为k >4.故选答案A.3.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S = ( ) A .11 B .5 C .8- D .11- 【测量目标】等比数列的通项公式与等比数列前n 项和公式.【考查方式】给出等比数列两项之间的关系式,求出公比,根据等比数列前n 项和公式求解. 【难易程度】容易 【参考答案】D【试题解析】由2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,所以55221111S q S q-==--.故选A. 4.设π02x <<,则“2sin 1x x <”是“sin 1x x <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【测量目标】充分、必要条件.【考查方式】给出两不等式,判断两者之间的关系. 【难易程度】容易 【参考答案】B【试题解析】因为0<x <2π,所以0<sin 1x <,故2sin sin x x x x <,结合x sin 2x 与x sin x 的取值范围相同,可知“2sin 1x x <”是“sin 1x x <”的必要而不充分条件.5.对任意复数()i ,z x y x y =+∈R ,i 为虚数单位,则下列结论正确的是 ( ) A .2z z y -= B .222z x y =+ C .2z z x -… D .z x y +…【测量目标】复数代数形式的四则运算,共轭复数. 【考查方式】根据复数代数形式的四则运算及共轭复数的概念判断. 【难易程度】容易 【参考答案】D【试题解析】可对选项逐个检查,A 项,2z z y -…,故A 错,B 项,2222i z x y xy =-+,故B 错,C 项,2z z y -…,故C 错,故选D .6.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,l m ∥,则m α⊥ C .若l α∥,m α⊂,则l m ∥ D .若l α∥,m α∥,则l m ∥ 【测量目标】线面平行与垂直的判定.【考查方式】给出两条直线与平面,根据线面平行与垂直的定理判断位置关系. 【难易程度】容易 【参考答案】B【试题解析】A :根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确; C :lα,,m α⊂则lm 或两线异面,故不正确;D :平行于同一平面的两直线可能平行、异面、相交,故不正确;B :由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面,故正确.7.若实数x ,y 满足不等式组330,230,10x y x y x my +-⎧⎪--⎨⎪-+⎩………,且x y +的最大值为9,则实数m =( )A .2-B .1-C .1D .2 【测量目标】二元线性规划求目标函数的最值.【考查方式】给出不等式组,给出目标函数的最大值,逆向求出系数大小. 【难易程度】中等 【参考答案】C【试题解析】先根据约束条件画出可行域,设z x y =+,将最大值转化为y 轴上的截距,当直线z x y =+经过直线230x y --=的交点A (4,5)时,z 值最大,将m 等价为斜率的倒数,数形结合,将点A 的坐标代入10x my -+=得1m =,故选C.第7题图8.设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为 ( ) A .340x y ±= B .350x y ±= C .430x y ±= D .540x y ±= 【测量目标】双曲线的简单几何性质.【考查方式】给出双曲线上一点与两焦点距离的关系,根据双曲线的性质求解其渐近线方程. 【难易程度】中等 【参考答案】C【试题解析】依题意212PF F F =,可知三角形21PF F 是一个等腰三角形,2F 在直线1PF 的投影是其中点,由勾股定理可知14PF b ==.(步骤1) 根据双曲线定义可知422b c a -=,整理得2c b a =-,代入222c a b =+整理得2340b ab -=,求得43b a =,∴双曲线渐近线方程为430x y ±=.故选C. (步骤2)9.设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是 ( ) A .[]4,2-- B .[]2,0- C .[]0,2 D .[]2,4 【测量目标】函数零点的求解与判断,三角函数图象的变换.【考查方式】给出函数解析式求零点,将其转化为一元一次函数与三角函数图象的交点问题求解.【难易程度】中等【参考答案】A【试题解析】在同一坐标系中画出()4sin(21)g x x =+与()h x x =的图象,由图可知()4sin(21)g x x =+与()h x x =的图象在区间[]4,2--上无交点,由图可知函数()4sin(21)f x x x =+-在区间[]4,2--上没有零点.故选A.第9题图10.设函数的集合211()log (),0,,1;1,0,122P f x x a b a b ⎧⎫==++=-=-⎨⎬⎩⎭,平面上点的集合11(,),0,,1;1,0,122Q x y x y ⎧⎫==-=-⎨⎬⎩⎭,则在同一直角坐标系中,P 中函数()f x 的图象恰好..经过Q 中两个点的函数的个数是 ( ) A .4 B .6 C .8 D .10 【测量目标】集合的基本运算,对数函数的图象与性质.【考查方式】给出一个函数集合与一个点集,判断两集合的交集个数. 【难易程度】较难 【参考答案】B【试题解析】将数据代入验证知:当a =0,b =0;a =0,b =1;a =21,b =0; a =21,b =1;a =1,b =-1;a =1,b =1时满足题意,故答案选B.二、填空题:本大题共7小题,每小题4分,共28分.11.函数2π()sin(2)4f x x x =--的最小正周期是__________________ . 【测量目标】两角和与差的正弦,三角函数的周期性.【考查方式】给出三角函数解析式,利用两角和与差的正弦将其化为同名三角函数再求周期. 【难易程度】中等 【参考答案】π【试题解析】 2π()sin(2)4f x x x =--=2πsin(2)2sin )4x x -+-(步骤1)=πsin(2)24x x -+πsin(2)4x +2) 2ω=,故最小正周期为πT =,故答案为:π.12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是___________3cm .第12题图【测量目标】平面图形的直观图与三视图,柱、锥、台的体积.【考查方式】给出三视图,判断空间几何体的直观图,判断其构成,在根据体积公式求解. 【难易程度】容易【参考答案】144【试题解析】图为一四棱台和长方体的组合体的三视图,由公式计算得体积为13(166********⨯⨯++⨯=,故答案为:144. 14.设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________. 【测量目标】抛物线的定义,抛物线的简单几何性质.【考查方式】利用抛物线的定义求出p ,根据抛物线的性质求出B 到准线的距离. 【难易程度】容易【参考答案】4【试题解析】依题意可知F 坐标为(,0)2p ,B ∴的坐标为(,1)4p代入抛物线方程得212p =,解得p =,∴抛物线准线方程为2x =-,所以点B 到抛物线准线的距离为14.设112,,(2)(3)23n nn n x x ∈+-+N …2012n n a a x a x a x =+++⋅⋅⋅+,将(0)k a kn 剟的最小值记为n T ,则2345335511110,,0,,,,2323n T T T T T ==-==-⋅⋅⋅⋅⋅⋅其中n T =__________________ . 【测量目标】合情推理.【考查方式】给出前几项,归纳推理出第n 项,考查学生的推理能力. 【难易程度】中等【参考答案】011,23nn n n ⎧⎪⎨-⎪⎩,为偶数为奇数 【试题解析】根据n T 的定义,列出n T 的前几项:01233345556011162301123011230T T T T T T T ===-==-==-=由此规律,我们可以判断:011,23n n n n T n ⎧⎪=⎨-⎪⎩,为偶数为奇数 故答案:011,23n nn n ⎧⎪⎨-⎪⎩,为偶数为奇数. 15.设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=,则d 的取值范围是__________________ .【测量目标】等差数列前n 项和.【考查方式】给出关于等差数列前n 项和的等式,求出公差的范围. 【难易程度】中等【参考答案】(),22,⎡-∞-+∞⎣【试题解析】因为56150S S +=,所以11(510)(615)150a d a d +++=,整理得2211291010a a d d +++=,(步骤1) 此方程可看作关于1a 的一元二次方程,它一定有根,故有222(9)42(101)80,d d d ∆=-⨯⨯+=-…整理得28d …,解得d …或d -…,则d的取值范围是(),22,⎡-∞-+∞⎣,故答案为:(),22,⎡-∞-+∞⎣.(步骤2)16.已知平面向量,(,)≠≠0αβααβ满足1=β,且a 与-βα的夹角为120,则α的取值范围是__________________ .【测量目标】平面向量线性运算、平面向量在平面几何中的应用和正弦定理.【考查方式】根据平面向量的三角形法则判断两向量的夹角,再利用正弦定理求解. 【难易程度】中等 【参考答案】 【试题解析】如图,设,OA OB ==αβ,则AB =-βα,∵a 与-βα的夹角为120,即OA 与AB 的夹角为120,∴60OAB ∠=.由正弦定理可得:sin sin OA OB BA=,即sin sin BA=αβ,(步骤1)∴sin sin sin sin 60BB B A===βα,∵0120B <<,∴sin (0,1]B ∈,∴(0,3∈α. (步骤2)第16题图17.有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、 “台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握 力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共 有______________种(用数字作答). 【测量目标】排列组合及其应用.【考查方式】通过实际生活的实例,求出不同的安排方式. 【难易程度】较难 【参考答案】264【试题解析】先安排4位同学参加上午的“身高与体重”、“立定跳远”、“肺活量”、 “台阶”测试,共有44A 种不同安排方式;(步骤1) 接下来安排下午的“身高与体重”、“立定跳远”、“肺活量”、“握力”测试,假设A B C 、、同学上午分别安排的是“身高与体重”、“立定跳远”、“肺活量”测试,若D 同学选择“握力”测试,安排A B C 、、同学分别交叉测试,有2种;(步骤2) 若D 同学选择“身高与体重”、“立定跳远”、“肺活量”测试中的1种,有13A 种方式,安排A B C 、、同学进行测试有3种;根据计数原理共有安排方式的种数为4143A (2A 3)264+⨯=.(步骤3)三、解答题:本大题共5小题.共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分l4分)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,已知1cos 24C =- (Ⅰ)求sin C 的值;(Ⅱ)当a =2,2sin sin A C =时,求b 及c 的长. 【测量目标】二倍角,正弦定理,余弦定理.【考查方式】给出二倍角化简求解;给出两角正弦值之间的关系及三角形一边,结合正弦定理求一条边长,再应用余弦定理求另一边.【难易程度】中等【试题解析】(Ⅰ)因为21cos 212sin 4C C =-=-,及0πC <<,所以sin C =.(步骤1)(Ⅱ)当2a =,2sin sin A C =时,由正弦定理sin sin a cA C=,得4c =,(步骤2)由21cos 22cos 14C C =-=-,及0<πC <得cos C =.由余弦定理2222cos c a b ab C =+-,得2120b -=.解得b =所以4b c ⎧=⎪⎨=⎪⎩4b c ⎧=⎪⎨=⎪⎩.(步骤3) 19.(本题满分l4分)如图,一个小球从M 处投入,通过管道自上而下落A 或B 或C .已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A ,B ,C ,则分别设为l ,2,3等奖. (I )已知获得l ,2,3等奖的折扣率分别为50%,70%,90%.记随机变量ξ为获得k (k =1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望E ξ;(II)若有3人次(投入l 球为l 人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求(2)P η=.第19题图【测量目标】离散型随机变量的分布列与期望,二项分布.【考查方式】结合实际问题,列出随机变量求其分布列,由公式求期望;判断二项分布,求概率.【难易程度】中等【试题解析】(Ⅰ)由题意得ξ的分布列为则337350%70%90%168164E ξ=⨯+⨯+⨯=.(步骤1) (Ⅱ)由(Ⅰ)可知,获得1等奖或2等奖的概率为316+38=916.由题意得9~(3,)16η.则223991701(2)C ()(1)16164096P η==-=.(步骤2)20.(本题满分15分)如图,在矩形ABCD 中,点,E F 分别在线段,AB AD 上,243AE EB AF FD ====.沿直线EF 将AEF △翻折成A EF '△,使平面A EF '⊥平面BEF .(Ⅰ)求二面角A FD C '--的余弦值;(Ⅱ)点,M N 分别在线段,FD BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与A '重合,求线段FM 的长.第20题图【测量目标】二面角,平面图形的折叠问题,空间向量的应用.【考查方式】根据条件建立空间直角坐标系设向量求解;由空间线面垂直判定找出二面角求解.【难易程度】较难【试题解析】(Ⅰ)取线段EF 的中点H ,连结A H ',因为A E '=A F '及H 是EF 的中点,所以A H EF '⊥,又因为平面A EF '⊥平面BEF .如图建立空间直角坐标系A xyz -则(22A ',,(1080)C ,,,(400)F ,,,(1000)D ,,.故(22FA '=-,u u u r ,(6,0,0)FD =uu u r . (步骤1)设(,,)x y z =n 为平面A FD '的一个法向量,所以220,60x y x ⎧-++=⎪⎨=⎪⎩,取z =,则(0,=-n .又平面BEF 的一个法向量(0,0,1)=m ,故3cos ,3〈〉==n m n m n m .所以二面角的余弦值为3. (步骤2)第20题图 (1)(Ⅱ)设,FM x =则(4,0,0)M x +,因为翻折后,C 与A '重合,所以CM A M '=,故 222222(6)80=22x x -++--++()(,得214x =, 经检验,此时点N 在线段BC 上,所以214FM =. (步骤3) 方法二:(Ⅰ)取线段EF 的中点H ,AF 的中点G ,连结,,A G A H GH ''. 因为A E '=A F '及H 是EF 的中点,所以A H EF '⊥又因为平面A EF '⊥平面BEF ,所以A H '⊥平面BEF ,(步骤1) 又AF ⊂平面BEF ,故A H '⊥AF ,又因为G 、H 是AF 、EF 的中点,易知GH AB ∥,所以GH ⊥AF ,于是AF ⊥面A GH ', 所以A GH '∠为二面角A DF C '--的平面角, (步骤2)在Rt A GH '△中,A H '=,GH =2,A G '=所以cos 3A GH '∠=.故二面角A DF C '--的余弦值为3. (步骤3) (Ⅱ)设FM x =,因为翻折后,C 与A '重合,所以CM A M '=,而222228(6)CM DC DM x =+=+-,222222A M A H MH A H MG GH '''=+=++22(2)4x =+++,22CM A M '=,∴214x =, 经检验,此时点N 在线段BC 上,所以214FM =. (步骤4)第20题图(2)21.(本题满分15分)已知1m >,直线2:02m l x my --=,椭圆222:1x C y m+=,12F F ,分别为椭圆C 的左、右焦点.(Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F △, 12BF F △的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.第21题图【测量目标】直线的方程,椭圆的简单几何性质,直线与椭圆的位置关系,圆锥曲线中的范围问题.【考查方式】给出直线与椭圆的含参方程,通过对两者之间的位置关系求解出参数;联立方程,根据点与圆的关系求解参数范围.【难易程度】较难【试题解析】(Ⅰ)因为直线:l 202m x my --=经过2F ,22m =,得22m =,又因为1m >,所以m =,故直线l 的方程为10x --=.(步骤1)(Ⅱ)设1122(,),(,)A x y B x y由222221m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩,消去x 得,222104m y my ++-= 则由2228(1)804m m m ∆=--=-+>,知28m < 且有212121,282m m y y y y +=-=-.(步骤2)由于12(,0),(,0),F c F c -故O 为12F F 的中点,由2,2AG GO BH HO ==,可知1122(,),(,),3333x y x y G H 2221212()()99x x y y GH --=+ 设M 是GH 的中点,则1212(,)66x x y y M ++, 由题意可知2,MO GH <即222212121212()()4[()()]6699x x y y x x y y ++--+<+ 即12120x x y y +<,而2212121212()()22m m x x y y my my y y +=+++ 221(1()82m m =+-)(步骤3) 所以21082m -<,即24m <. 又因为1m >且0∆>,所以12m <<. 所以m 的取值范围是(1,2).(步骤4)22.(本题满分14分)已知a 是给定的实常数,设函数2()()()e xf x x a x b =-+,b ∈R ,x a =是()f x 的一个极大值点.(Ⅰ)求b 的取值范围;(Ⅱ)设123,,x x x 是()f x 的3个极值点,问是否存在实数b ,可找到4x ∈R ,使得1234,,,x x x x 的某种排列1234,,,i i i i x x x x (其中{}1234,,,i i i i ={}1,2,3,4)依次成等差数列?若存在,求所有的b 及相应的4x ;若不存在,说明理由.【测量目标】导数的运算,利用导数求函数的极值,等差数列的性质.【考查方式】给出函数解析式与极大值点,求参数的求参数的范围,间接考查了利用导数求 函数的极值;结合等差数列性质判断所求值. 【难易程度】较难【试题解析】(Ⅰ)2()e ()(3)2,x f x x a x a b x b ab a '⎡⎤=-+-++--⎣⎦令2()(3)2g x x a b x b ab a =+-++--,则22(3)4(2)(1)80,a b b ab a a b ∆=-+---=+-+>(步骤1)于是,假设12,x x 是()0g x =的两个实根,且12x x <.(1) 当1x a =或2x a =时,则x a =不是()f x 的极值点,此时不合题意. (2) 当1x a ≠且2x a ≠时,由于x a =是()f x 的极大值点,故12x a x <<. 即()0g a <即2(3)20a a b a b ab a +-++--< 所以b a <-所以b 的取值范围是()a -∞-,.(步骤2) (Ⅱ)由(Ⅰ)可知,假设存在b 及4x 满足题意,则 ⑴当21x a a x -=-时,则422x x a =-或412x x a =-, 于是1223a x x a b =+=--.即3b a =--.此时4223x x a a b =-=--+a a =+或4223x x a a b =-=--a a =-3)⑵当21x a a x -=-时,则212()x a a x -=-或122()a x x a -=-, ①若212()x a a x -=-,则242a x x +=,于是1232a x x =+=3(3)a b =-++,于是1a b +-=92--,此时242a x x +=2(3)3(3)4a ab a b +---++=3b =--a = (步骤4) ②若122()a x x a -=-,则242a x x +=于是2132a x x =+=3(3)a b =++,于是1a b +-=,此时42(3)3(3)13242a x a ab a b x b a ++---++===--=+(步骤5) 综上所述,存在b 满足题意,当3b a =--时,4x a =±当72b a +=--时,412x a +=+,当b a =-4x a =+.(步骤6)。
2010年普通高等学校招生全国统一考试数学理试题(浙江卷,解析版)【名师简评】浙江卷理整份试卷考查都是主干知识,没有一些偏题,比较怪的知识。
同时,试卷难度偏较大,区分度比较明显,有很大的梯度。
试题有新意,对知识的能解程度、知识与能力综合运用要求较高,创新性的问题如第10、17题。
试卷坚持“源于课本、高于课本、稳中求变、应用创新”的原则,以现行教材为依据求实、求变、求新、求活。
试题多以课本上的典型例(练习)题为原形经过精心设计和包装,恰当迁移,综合创新的新颖试题。
难题无法下手,特别是选择题第8、9、10,填空题第16、17,以及解答题的第22题,学生整体做下来困难也比较多。
试卷注重思维能力与应用意识的培养,把比较多的实际问题融合到试卷中,如第17题,第19题,有比较好的应用与趣味性。
总体来说浙江理科卷是一份不错的试卷,能比较好考查出学生的真实水平。
本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至2页,非选择题部分3至5页。
满分150分,考试时间120分钟。
请考生按规定用笔讲所有试题的答案涂、写在答题纸上。
选择题部分(共50分)主要事项:考生在答题前请认真阅读本注意事项及各题答题要求1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A 、B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+ V Sh =如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高()()()P A B P A P B =g g 锥体的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率其中S 表示锥体的底面积,h 表示锥体的高()(1)(0,1,2,)k kn k n n P k C p p k n -=-=… 球的表面积公式台体的体积公式 24S R π=()112213V h S S S S =++ 球的体积公式其中12,S S分别表示台体的上、下底面积,343V Rπ=h 表示台体的高其中R表示球的半径一. 选择题:本大题共10小题,每小题5分,共50分。
2010年普通高等学校招生全国统一考试(浙江卷)数学理解析一. 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四项中,只有一项是符合题目要求的。
(1)设P={x ︱x <4},Q={x ︱2x <4},则 (A )p Q ⊆ (B )Q P ⊆ (C )Rp Q C⊆(D )RQ P C⊆解析:{}22<<x x Q -=,可知B 正确,本题主要考察了集合的基 本运算,属容易题(2)某程序框图如图所示,若输出的S=57,则判断框内位 (A ) k >4? (B )k >5? (C ) k >6? (D )k >7?解析:选A ,本题主要考察了程序框图的结构,以及与数列有关的简 单运算,属容易题(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =(A )11 (B )5 (C )8- (D )11-解析:解析:通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 解析:因为0<x <2π,所以sinx <1,故x sin 2x <x sinx ,结合x sin 2x 与x sinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是(A )2z z y -= (B )222z x y =+ (C )2z z x -≥ (D )z x y ≤+解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 2222+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。
仅提供了答案与解析,具体过程,还是要按照思路自己动手做的!数学(理科)一、选择题1-10 BCDBC ACDCC1、【解析】对于,因此.2、【解析】对于“ 且”可以推出“ 且”,反之也是成立的3、【解析】对于4、【解析】对于,对于,则的项的系数是5、【解析】取BC的中点E,则面,,因此与平面所成角即为,设,则,,即有.6、【解析】对于,而对于,则,后面是,不符合条件时输出的.7、【解析】对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.8、【解析】对于振幅大于1时,三角函数的周期为,而D不符合要求,它的振幅大于1,但周期反而大于了.9、【解析】对于,则直线方程为,直线与两渐近线的交点为B,C,,则有,因.10、【解析】对于,即有,令,有,不妨设,,即有,因此有,因此有.二、填空题11、答案:15【解析】对于12、答案:18【解析】该几何体是由二个长方体组成,下面体积为,上面的长方体体积为,因此其几何体的体积为1813、答案:4【解析】通过画出其线性规划,可知直线过点时,14、答案:【解析】对于应付的电费应分二部分构成,高峰部分为;对于低峰部分为,二部分之和为15、答案:【解析】这是一种需类比推理方法破解的问题,结论由二项构成,第二项前有,二项指数分别为,因此对于,16、答案:336【解析】对于7个台阶上每一个只站一人,则有种;若有一个台阶有2人,另一个是1人,则共有种,因此共有不同的站法种数是336种.w.w.w.k.s.5.u.c.o.m 17、答案:【解析】此题的破解可采用二个极端位置法,即对于F位于DC的中点时,,随着F点到C点时,因平面,即有,对于,又,因此有,则有,因此的取值范围是三、解答题18、解析:(I)因为,,又由,得,w.w.w.k.s.5.u.c.o.m(II)对于,又,或,由余弦定理得,w.w.w.k.s.5.u.c.o.m19、解析:(I)记“这3个数恰有一个是偶数”为事件A,则;w.w.w.k.s.5.u.c.o.m (II)随机变量的取值为的分布列为0 1 2P所以的数学期望为w.w.w.k.s.5.u.c.o.m20、证明:(I)如图,连结OP,以O为坐标原点,分别以OB、OC、OP所在直线为轴,轴,轴,建立空间直角坐标系O ,w.w.w.k.s.5.u.c.o.m则,由题意得,因,因此平面BOE的法向量为,得,又直线不在平面内,因此有平面(II)设点M的坐标为,则,因为平面BOE,所以有,因此有,即点M的坐标为,在平面直角坐标系中,的内部区域满足不等式组,经检验,点M 的坐标满足上述不等式组,所以在内存在一点,使平面,由点M的坐标得点到,的距离为.w.w.w.k.s.5.u.c.o.m21、解析:(I)由题意得所求的椭圆方程为,w.w.w.k.s.5.u.c.o.m(II)不妨设则抛物线在点P处的切线斜率为,直线MN的方程为,将上式代入椭圆的方程中,得,即,因为直线MN与椭圆有两个不同的交点,所以有,设线段MN的中点的横坐标是,则,w.w.w.k.s.5.u.c.o.m设线段PA的中点的横坐标是,则,由题意得,即有,其中的或;当时有,因此不等式不成立;因此,当时代入方程得,将代入不等式成立,因此的最小值为1.22、解析:(I)因,,因在区间上不单调,所以在上有实数解,且无重根,由得w.w.w.k.s.5.u.c.o.m,令有,记则在上单调递减,在上单调递增,所以有,于是,得,而当时有在上有两个相等的实根,故舍去,所以;w.w.w.k.s.5.u.c.o.m(II)当时有;当时有,因为当时不合题意,因此,下面讨论的情形,记A ,B= (ⅰ)当时,在上单调递增,所以要使成立,只能且,因此有,(ⅱ)当时,在上单调递减,所以要使成立,只能且,因此,综合(ⅰ)(ⅱ);当时A=B,则,即使得成立,因为在上单调递增,所以的值是唯一的;同理,,即存在唯一的非零实数,要使成立,所以满足题意.。
绝密★考试结束前2010年普通高等学校招生全国统一考试数 学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至2页,非选择题部分3至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A 、B 互斥,那么 柱体的体积公式 P (A +B )=P (A )+P (B ) Sh V =如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高 P (A ·B )=P (A )·P (B ) 锥体的体积公式 如果事件A 在一次试验中发生的概率是P ,那么n Sh V 31=次独立重复试验中恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高 k n kk n n P P C k P --=)1()(),,2,1,0(n k = 球的表面积公式台体的体积公式 24R S π= )(312211S S S S h V ++= 球的体积公式其中S 1,S 2分别表示台体的上、下底面积 334R V π=h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设}4|{},4|{2<=<=x x Q x x P (A )Q P ⊆ (B )P Q ⊆(C )QC P R ⊆(D )P C Q R ⊆(2)某程序框图如图所示,若输出的S=57,则判断框内为 (A )?4>k (B )?5>k(C )?6>k(D )?7>k(3)设n S 为等比数列}{n a 的前n 项和,0852=+a a ,则=25S S (A )11 (B )5(C )-8(D )-11(4)设20π<<x ,则“1sin 2<x x ”是“1sin <x x ”的 (A )充分而不必不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)对任意复数i R y x yi x z ),,(∈+=为虚数单位,则下列结论正确的是(A )y z z 2||=- (B )222y x z += (C )x z z 2||≥- (D )||||||y x z +≤(6)设m l ,是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若αα⊥⊂⊥l m m l 则,, (B )若αα⊥⊥m m l l 则,//,(C )若m l m l //,,//则αα⊂(D )若m l m l //,//,//则αα(7)若实数y x ,满足不等式组⎪⎩⎪⎨⎧≥+-≤--≥-+,01,032,033m y x y x y x 且y x +的最大值为9,则实数=m(A )-2(B )-1(C )1(D )2(8)设F 1,F 2分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点。
第 1 页 共 13 页2010年普通高等学校招生全国统一考试(浙江卷)数学理解析一. 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四项中,只有一项是符合题目要求的。
(1)设P={x ︱x <4},Q={x ︱2x <4},则 (A )p Q ⊆ (B )Q P ⊆(C )Rp Q C ⊆(D )RQ P C ⊆解析:{}22<<x x Q -=,可知B 正确,本题主要考察了集合的基本运算,属容易题(2)某程序框图如图所示,若输出的S=57,则判断框内位 (A ) k >4? (B )k >5? (C ) k >6? (D )k >7?解析:选A ,本题主要考察了程序框图的结构,以及与数列有关的简 单运算,属容易题(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S = (A )11 (B )5 (C )8- (D )11-解析:解析:通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题 (4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 解析:因为0<x <2π,所以sinx <1,故x sin 2x <x sinx ,结合x sin 2x 与x sinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是第 2 页 共 13 页(A )2z z y -= (B )222z x y =+ (C )2z z x -≥ (D )z x y ≤+解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 2222+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。
本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥ (C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m //解析:选B ,可对选项进行逐个检查。
本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题(7)若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9,则实数m =(A )2- (B )1- (C )1 (D )2解析:将最大值转化为y 轴上的截距,将m 等价为斜率的倒数,数形结合可知答案选C ,本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题(8)设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为(A )340x y ±= (B )350x y ±= (C )430x y ±= (D )540x y ±=解析:利用题设条件和双曲线性质在三角形中寻找等量关系,得出a 与b 之间的等量关系,可知答案选C ,本题主要考察三角与双曲线的相关知识点,突出了对计算能力和综合运用知识能力的考察,属中档题(9)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是 (A )[]4,2-- (B )[]2,0- (C )[]0,2 (D )[]2,4第 3 页 共 13 页解析:将()x f 的零点转化为函数()()()x x h x x g =+=与12sin 4的交点,数形结合可知答案选A ,本题主要考察了三角函数图像的平移和函数与方程的相关知识点,突出了对转化思想和数形结合思想的考察,对能力要求较高,属较难题 (10)设函数的集合211()log (),0,,1;1,0,122P f x x a b a b ⎧⎫==++=-=-⎨⎬⎩⎭,平面上点的集合11(,),0,,1;1,0,122Q x y x y ⎧⎫==-=-⎨⎬⎩⎭,则在同一直角坐标系中,P 中函数()f x 的图象恰好..经过Q 中两个点的函数的个数是 (A )4 (B )6 (C )8 (D )10 解析:当a=0,b=0;a=0,b=1;a=21,b=0; a=21,b=1;a=1,b=-1;a=1,b=1时满足题意,故答案选B ,本题主要考察了函数的概念、定义域、值域、图像和对数函数的相关知识点,对数学素养有较高要求,体现了对能力的考察,属中档题二、填空题:本大题共7小题,每小题4分,共28分。
(11)函数2()sin(2)22sin 4f x x x π=--的最小正周期是__________________ . 解析:()242sin 22-⎪⎭⎫⎝⎛+=πx x f 故最小正 周期为π,本题主要考察了三角恒等变换及相 关公式,属中档题(12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是___________3cm .解析:图为一四棱台和长方体的组合体的三视图,由卷中所给公式计算得体积为144,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题 (13)设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,第 4 页 共 13 页则B 到该抛物线准线的距离为_____________。
解析:利用抛物线的定义结合题设条件可得出p 的值为2,B 点坐标为(142,)所以点B题(14)设112,,(2)(3)23nnn n N x x ≥∈+-+2012n n a a x a x a x =+++⋅⋅⋅+,将(0)k a k n ≤≤的最小值记为n T ,则2345335511110,,0,,,,2323n T T T T T ==-==-⋅⋅⋅⋅⋅⋅ 其中n T =__________________ .解析:本题主要考察了合情推理,利用归纳和类比进行简单的推理,属容易题 (15)设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=,则d 的取值范围是__________________ . 解析:(16)已知平面向量,(0,)αβααβ≠≠满足1β=,且α与βα-的夹角为120°, 则α的取值范围是__________________ .解析:利用题设条件及其几何意义表示在三角形中,即可迎刃而解,本题主要考察了平面向量的四则运算及其几何意义,突出考察了对问题的转化能力和数形结合的能力,属中档题。
(17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共有______________种(用数字作答).解析:本题主要考察了排列与组合的相关知识点,突出对分类讨论思想和数学思维能力的考察,属较难题三、解答题:本大题共5小题.共72分。
解答应写出文字说明、证明过程或演算步骤。
(18)(本题满分l4分)在△ABC中,角A、B、C所对的边分别为a,b,c,已知1 cos24C=-(I)求sinC的值;(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.解析:本题主要考察三角变换、正弦定理、余弦定理等基础知识,同事考查运算求解能力。
(Ⅰ)解:因为cos2C=1-2sin2C=14-,及0<C<π所以10(Ⅱ)解:当a=2,2sinA=sinC时,由正弦定理a csin A sin C=,得c=4由cos2C=2cos2C-1=14-,J及0<C<π得cosC=6由余弦定理c2=a2+b2-2abcosC,得b26b-12=0解得6或6所以6b=6c=4 或c=4(19)(本题满分l4分)如图,一个小球从M处投入,通过管道自上而下落A或B或C。
已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.(I)已知获得l,2,3等奖的折扣率分别为50%,70%,第 5 页共 13 页第 6 页 共 13 页90%.记随变量ξ为获得k (k =1,2,3)等奖的折扣 率,求随机变量ξ的分布列及期望ξE ; (II)若有3人次(投入l 球为l 人次)参加促销活动,记随机 变量η为获得1等奖或2等奖的人次,求)2(=ηP . 解析:本题主要考察随机事件的概率和随机变量的分布列、数学期望、二项分布等概念,同时考查抽象概括、运算求解能力和应用意识。
(Ⅰ)解:由题意得ξ的分布列为ξ 50% 70% 90%p31638 716则Εξ=16×50%+8×70%+1690%=4.(Ⅱ)解:由(Ⅰ)可知,获得1等奖或2等奖的概率为316+38=916. 由题意得η~(3,916) 则P (η=2)=23C (916)2(1-916)=17014096.(20)(本题满分15分)如图, 在矩形ABCD 中,点,E F 分别 在线段,AB AD 上,243AE EB AF FD ====.沿直线EF 将 AEF V 翻折成'A EF V ,使平面'A EF BEF ⊥平面.(Ⅰ)求二面角'A FD C --的余弦值;(Ⅱ)点,M N 分别在线段,FD BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与'A 重合,求线段FM 的长。
解析:本题主要考察空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同事考查空间想象能力和运算求解能力。
第 7 页 共 13 页(Ⅰ)解:取线段EF 的中点H ,连结'A H ,因为'A E ='A F 及H 是EF 的中点,所以'A H EF ⊥, 又因为平面'A EF ⊥平面BEF . 如图建立空间直角坐标系A-xyz 则'A (2,2,22),C (10,8,0), F (4,0,0),D (10,0,0).故'FA →=(-2,2,22),FD →=(6,0,0). 设n →=(x,y,z )为平面'A FD 的一个法向量, -2x+2y+22z=0 所以6x=0.取2z =,则(0,2,2)n =-r。