2021—2022学年人教版九年级数学下册《第二十六章反比例函数》单元测试题(含答案)
- 格式:docx
- 大小:315.69 KB
- 文档页数:7
人教版数学九年级第二十六章 反比例函数单元卷一、选择题1.在同一直角坐标系中,函数y =和y =kx -3的图象大致是()k x2.已知点P (-3,2),点Q (2,a )都在反比例函数y =(k ≠0)的图象上,过点Q 分别作两坐标轴的垂线,两垂线与两坐标轴围成的矩形面积为()A .3B .6C .9D .12k x3.已知一次函数y 1=x -3和反比例函数y 2=的图象在平面直角坐标系中交于A 、B 两点,当y 1>y 2时,x 的取值范围是()A .x <-1或x >4B .-1<x <0或x >4C .-1<x <0或0<x <4D .x <-1或0<x <44x4.如图是反比例函数y 1=和一次函数y 2=mx +n 的图像,若y 1<y 2,则相应的x 的取值范围是().A .1<x <6B .x <1C .x <6D .x >1k x5.已知关于x 的方程(x +1)2+(x -b )2=2有唯一的实数解,且反比例函数y =的图象在每个象限内y 随x 的增大而增大,那么反比例函数的关系式为()A .y =-B .y =C .y =D .y =-1+b x3x1x2x2x6.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =(x >0)的图象上,若AB =2,则k 的值为()kxA .4B .2C .2D .2–√2–√7.如图,A 、B 两点在双曲线y =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2=()A .3B .4C .5D .64x8.如图,在平面直角坐标系中,菱形ABCD 的顶点A 、B 在反比例函数y =(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴.若菱形ABCD 的面积为,则k 的值为()A .B .C .4D .5k x452541549.如图,一次函数y =2x 与反比例函数y =(k >0)的图象交于A ,B 两点,点P 在以C (-2,0)为圆心,1为半径的⊙C 上,Q 是AP 的中点,已知OQ 长的最大值为,则k 的值为()A .B .C .D .kx 3249322518322598二、填空题10.如图,B (3,-3),C (5,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为 .11.已知P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点.若x 2=x 1+2,且=+,则这个反比例函数的表达式为 .1y 21y 11212.在平面直角坐标系中,我们把横,纵坐标均为整数的点叫做整点,已知反比例函数y =(m <0)与y =x 2-4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m 的取值范围为 .m x 13.如图,已知等边△OA 1B 1,顶点A 1在双曲线y =(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2A 3∥B 1A 2交双曲线于点A 3,过A 3作A 3B 3∥A 2B 2交x 轴于点B 3,得到第三个等边△B 2A 3B 3;……以此类推,则点B 6的坐标为 .3√x 三、解答题14.如图,反比例函数y =(x >0)的图象过格点(网格线的交点)P .(1)求反比例函数的解析式;(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O ,点P ;②矩形的面积等于k 的值.k x15.如图,在平面直角坐标系中,直线y 1=kx +b (k ≠0)与双曲线y 2=(a ≠0)交于A 、B 两点,已知点A (m ,2),点B (-1,-4).a x(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.16.如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(-,2),B(n,-1).(1)求直线与双曲线的表达式;(2)点P在x轴上,如果S△ABP =3,求点P的坐标.mx1217.一次函数y=kx+b的图象经过点A(-2,12),B(8,-3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.m x人教版数学九年级第二十六章 反比例函数单元卷【含参考答案】一、选择题1.在同一直角坐标系中,函数y =和y =kx -3的图象大致是()【参考答案】答案:B .解:k >0时,一次函数y =kx -3的图象经过第一、三、四象限,反比例函数的两个分支分别位于第一、三象限,无选项符合;k <0时,一次函数y =kx -3的图象经过第二、三、四象限,反比例函数的两个分支分别位于第二、四象限,B 选项符合.故选B .k x2.已知点P (-3,2),点Q (2,a )都在反比例函数y =(k ≠0)的图象上,过点Q 分别作两坐标轴的垂线,两垂线与两坐标轴围成的矩形面积为()A .3B .6C .9D .12【参考答案】答案:B .解:∵点P (-3,2)在反比函数图象上,∴k =-3×2=-6,∴两垂线与两坐标轴围成的矩形的面积为|-6|=6.故选B .反比例函数中k 值的几何意义k x3.已知一次函数y 1=x -3和反比例函数y 2=的图象在平面直角坐标系中交于A 、B 两点,当y 1>y 2时,x 的取值范围是()A .x <-1或x >4B .-1<x <0或x >4C .-1<x <0或0<x <4D .x <-1或0<x <4【参考答案】答案:B .解:解方程x -3=,得4x4xx =-1或x =4,那么A 点坐标是(-1,-4),B 点坐标是(4,1),如图所示,当x >4时,y 1>y 2,当-1<x <0时,y 1>y 2.故选B .4.如图是反比例函数y 1=和一次函数y 2=mx +n 的图像,若y 1<y 2,则相应的x 的取值范围是().A .1<x <6B .x <1C .x <6D .x >1【参考答案】答案:A .解:根据图象可知:反比例函数与一次函数的交点横坐标为1和6,∴当1<x <6时,y 1<y 2.故选A .反比例函数与一次函数的综合应用k x5.已知关于x 的方程(x +1)2+(x -b )2=2有唯一的实数解,且反比例函数y =的图象在每个象限内y 随x 的增大而增大,那么反比例函数的关系式为()A .y =-B .y =C .y =D .y =-【参考答案】答案:D .解:将方程(x +1)2+(x -b )2=2化成一般式,得2x 2+(2-2b )x +b 2-1=0,由方程有唯一的实数根可得△=(2-2b )2-8(b 2-1)=0,化简,得-4(b -1)(b +3)=0,解得b =1或b =-3.1+b x3x1x2x2x又因为反比例函数y =的图象在每个象限内y 随x 的增大而增大,所以1+b <0,即b <-1,故b =-3,所以反比例函数的关系式为y =-.故选D .1+b x2x6.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =(x >0)的图象上,若AB =2,则k 的值为()A .4B .2C .2D .【参考答案】答案:A .解:作BD ⊥AC 于D ,如图,∵△ABC 为等腰直角三角形,∴AC =AB =2,等腰直角三角形的性质∴BD =AD =CD =,∵AC ⊥x 轴,∴C (,2),把C (,2)代入y =得k =×2=4,用待定系数法求反比例函数 故选A .kx 2–√2–√2–√2–√2–√2–√2–√2–√2–√k x2–√2–√7.如图,A 、B 两点在双曲线y =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2=()4xA .3B .4C .5D .6【参考答案】答案:D .解:根据反比例函数比例系数k 的几何意义可知S 1+S 2+2S 阴影=2|k |,因此S 1+S 2=4+4-1×2=6.故选D .8.如图,在平面直角坐标系中,菱形ABCD 的顶点A 、B 在反比例函数y =(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴.若菱形ABCD 的面积为,则k 的值为()A .B .C .4D .5【参考答案】答案:D .解:∵菱形的面积为,∴AC •BD =45,对角线相互垂直的四边形的面积是其两条对角线乘积的一半 ∵A ,B 的横坐标是1和4,且A ,B 在反比例函数y =的图象上可得A (1,k )B (4,)∴BD =2(4-1)=6,∴AC =,∴k =+k解得:k =5.反比例函数中k 值的几何意义 故选D .k x45254154452k xk 4152154149.如图,一次函数y =2x 与反比例函数y =(k >0)的图象交于A ,B 两点,点P 在以C (-2,0)为圆心,1为半径的⊙C 上,Q 是AP 的中点,已知OQ 长的最大值为,则k 的值为()kx 32A .B .C .D .【参考答案】答案:C .解:连接BP .由对称性知OA =OB .∵Q 是AP 的中点,∴OQ =BP .∵OQ 的最大值为,∴BP 的最大值为2×=3.如图,当BP 过圆心C 时,BP 最长,则BP =3.∵⊙C 的半径为1,∴CP =1,∴BC =2.∵点B 在直线y =2x 上,∴可设B (t ,2t ).过点B 作BD ⊥x 轴于点D ,则CD =t -(-2)=t +2,BD =0-2t =-2t .在Rt △BCD 中,由勾股定理得CD 2+BD 2=BC 2,即(t +2)2+(-2t )2=22,解得t 1=0(不合题意,舍去),t 2=-,∴B (-,-).∵点B (-,-)在反比例函数y =的图象上,∴k =(-)×(-)=.故选C .493225183225981232324545854585k x45853225二、填空题【参考答案】y =.解:∵四边形AOBC 是平行四边形,=OC .6x∴在第四象限内二次函数的图象上和图象上方的整数点有3个,坐标为(1,-1)、(1,-2)、(1,-3).∵1×(-1)=-1,1×(-2)=-2,1×(-3)=-3,且在反比例函数的图象上和下方的整数点有2个,∴整点(1,-1)不在封闭区域内,∴-2≤m<-1.13.如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;……以此类推,则点B6的坐标为 .【参考答案】答案:(2,0).解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)·a=,解得a=-1,或a=--1(舍去),∴OB2=OB1+2B1C=2+2-2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)·b=,解得b=-+,或b=--(舍去),∴OB3=OB2+2B2D=2-2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),3√x6–√3–√3–√3√x3–√3–√2–√2–√2–√2–√2–√3–√2–√2–√3–√3√x2–√3–√3–√2–√3–√2–√3–√2–√2–√3–√3–√3–√4–√n−√∴点B 6的坐标为(2,0).6–√三、解答题14.如图,反比例函数y =(x >0)的图象过格点(网格线的交点)P .(1)求反比例函数的解析式;(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O ,点P ;②矩形的面积等于k 的值.【参考答案】解:(1)∵反比例函数y =(x >0)的图象过格点P (2,2),∴k =2×2=4,∴反比例函数的解析式为y =;(2)如图所示:矩形OAPB 、矩形OCDP 即为所求作的图形.k x k x 4x 15.如图,在平面直角坐标系中,直线y 1=kx +b (k ≠0)与双曲线y 2=(a ≠0)交于A 、B 两点,已知点A (m ,2),点B (-1,-4).(1)求直线和双曲线的解析式;(2)把直线y 1沿x 轴负方向平移2个单位后得到直线y 3,直线y 3与双曲线y 2交于D 、E 两点,当y 2>y 3时,求x 的取值范围.a x【参考答案】解:(1)∵B (-1,-4),点B 在双曲线上,∴a =(-1)×(-4)=4.∵点A 在双曲线上,∴2m =4,即m =2,∴A (2,2).∵A (2,2),B (-1,-4)在直线y 1=kx +b 上,∴,∴,∴直线和双曲线的解析式分别为:y 1=2x -2和y 2=.用待定系数法求反比例函数待定系数法求一次函数表达式(2)∵直线y 3是直线y 1沿x 轴负方向平移2个单位得到,∴y 3=2(x +2)-2=2x +2,解方程组:得,或,∴点D (1,4),E (-2,-2),∴当y 2>y 3时,x 的取值范围是:x <-2或0<x <1.函数图象上点的坐标与函数关系式的关系一次函数图象的平移规律{2=2k +b−4=−k +b {k =2b =−24x {y =4xy =2x +2{x =1y =4{x =−2y =−216.如图,直线y =kx +b (k ≠0)与双曲线y =(m ≠0)交于点A (-,2),B (n ,-1).(1)求直线与双曲线的表达式;m x12(2)点P 在x 轴上,如果S △ABP =3,求点P 的坐标.【参考答案】解:(1)将A 代入反比例函数,可以得到m =2×(-)=-1,所以,反比例函数解析式为y =-用待定系数法求反比例函数将B 的坐标代入反比例函数,可得-1=-,所以n =1;函数图象上点的坐标与函数关系式的关系将A (-,2),B (1,-1),代入一次函数,可得解得,所以,一次函数的解析式是:y =-2x +1;待定系数法求一次函数表达式(2)当y =-2x +1=0时,x =,所以点C 为(,0),由此可得S △ABP =S △ACP +S △BCP =·2·CP +·1·CP =3,解得CP =2所以点P 的坐标是(-,0)或(,0).反比例函数与一次函数的综合应用121x 1n 12{−k +b =212k +b =−1{k =−2b =112121212325217.一次函数y =kx +b 的图象经过点A (-2,12),B (8,-3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y =(m>0)的图象相交于点C (x 1,y 1),D (x 2,y 2),与y 轴交于点E ,且CD =CE ,求m 的值.【参考答案】解:(1)把点A (-2,12),B (8,-3)代入y =kx +b 得:,解得:,∴一次函数解析式为:y =-x +9;待定系数法求一次函数表达式(2)分别过点C 、D 做CA ⊥y 轴于点A ,DB ⊥y 轴于点B ,如图所示:m x {12=−2k +b−3=8k +b {k =−32b =932设点C 坐标为(a ,b ),由已知,得ab =m ,反比例函数的图象与性质由(1)点E 坐标为(0,9),则AE =9-b .∵AC ∥BD ,CD =CE ,∴BD =2a ,EB =2(9-b ),∴OB =9-2(9-b )=2b -9,∴点D 坐标为(2a ,2b -9),∴2a •(2b -9)=m ,整理得:m =6a .∵ab =m ,∴b =6,则点D 坐标化为(2a ,3).∵点D 在y =-x +9图象上,∴a =2,∴m =ab =12.一次函数的图象和性质 32。
九年级下册数学《第二十六章反比例函数》章节测试卷测试时间:120分钟试卷满分:120分一.选择题(共10小题,共30分)1.(2022秋•招远市期中)下列函数中,y是x的反比例函数的有()个.①y=−1x;①y=3x;①xy=﹣1;①y=3x;①y=2x−1;①y=1x−1.A.2B.3C.4D.52.(2022秋•沈河区校级期中)关于反比例函数y=−4x下列说法正确的是()A.图象经过点(﹣2,﹣2)B.图象分别在第一、三象限C.在每个象限内,y随x的增大而增大D.当y≤1时,x≤﹣43.(2022•鹿城区校级开学)如图,A为反比例函数y=kx(k>0)图象上一点,AB①x轴于点B,若S①AOB=3,则k的值为()A.1.5B.3C.√3D.64.(2022秋•晋州市期中)在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣k(k为常数,且k≠0)的图象可能是()A .B .C .D .5.(2022•鼓楼区校级模拟)在平面直角坐标系中,若一个反比例函数的图象经过A (m ,6),B (5,n )两点,则m ,n 一定满足的关系式是( ) A .m ﹣n =1B .m n=56C .m n=65D .mn =306.(2022秋•石阡县期中)若P 1(x 1,y 1),P 2(x 2,y 2)是反比例函数y =−6x的图象上的两点,且x 1<x 2<0,则( ) A .0<y 2<y 1B .0<y 1<y 2C .y 1<0<y 2D .y 2<0<y 17.(2022秋•虹口区校级期中)下列函数中,y 的值随x 值的增大而增大的函数是( ) A .y =2xB .y =﹣2x +1C .y =x ﹣2D .y =﹣x ﹣28.(2022春•丰城市校级期末)如图已知反比例函数C 1:y =k x(k <0)的图象如图所示,将该曲线绕点O 顺时针旋转45°得到曲线C 2,点N 是曲线C 2上一点,点M 在直线y =﹣x 上,连接MN 、ON ,若MN =ON ,①MON 的面积为2√3,则k 的值为( )A.﹣2B.﹣4C.−2√3D.−4√39.(2022秋•平桂区期中)如图,正比例函数y1=k1x的图象与反比例函数y2=k2x的图象相交于A、B两点,其中A点的横坐标为3,当y1<y2时,x的取值范围是()A.x<﹣3或x>3B.x<﹣3或0<x<3C.﹣3<x<0或0<x<3D.﹣3<x<0或x>310.(2022秋•覃塘区期中)如图,已知点A(﹣1,6)在双曲线y=kx(x<0)上,动点P在y轴正半轴上,将点A绕点P逆时针旋转90°,点A的对应点为B,若点B恰好落在双曲线上,则点P的坐标为()A.(0,3)B.(3,0)或(4,0)C.(0,2)或(0,6)D.(0,3)或(0,4)二.填空题(共8小题,共24分)11.(2022秋•蜀山区校级月考)若函数y=(m−1)x m2−2是反比例函数,则m的值是.12.(2022秋•澧县期中)若反比例函数y=kx的图象经过点(﹣2,32),则此函数的解析式为.13.(2022秋•固镇县校级期中)如图,点P(x,y)在双曲线y=kx的图象上,P A①x轴,垂足为A,若S①AOP=4,则该反比例函数的表达式为.14.(2022秋•淄川区月考)在反比例y=k−1x的图象的每一支上,y都随x的增大而减小,且整式x2﹣kx+4是一个完全平方式,则该反比例函数的解析式为.15.(2022秋•冷水滩区校级月考)已知y关于x的函数表达式是y=a−1x,且x=2时,y=3,则a的值为.16.(2022秋•滁州期中)如图,双曲线y=kx(x>0)与正方形ABCD的边BC交于点E,与边CD交于点F,且BE=3CE,A(4,0),B(8,0),则CF=.17.(2022秋•莱阳市期中)如图,在平面直角坐标系中,菱形ABOC的顶点A在反比例函数y=kx(k>0,x>0)的图象上,点C的坐标为(4,3),则k的值为.18.(2022春•锡山区期末)点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 2+S 3=20,则S 1的值为 .三.解答题(共66分)19.(6分)(2022秋•德江县期中)已知反比例函数y =kx (k ≠0)的图象经过点A (2,6). (1)求这个函数的表达式;(2)点B (10,65),C (﹣3,﹣5)是否在这个函数的图象上?20.(7分)(2022秋•青浦区校级期中)已知:y =y 1﹣y 2,并且y 1与x 成正比例,y 2与(x ﹣2)成反比例,且当x =﹣2时,y =﹣7,当x =3时,y =13,求: (1)求y 与x 之间的函数解析式; (2)求当x =√2时的函数值.21.(7分)(2022•游仙区校级二模)如图,菱形ABOC在平面直角坐标系中,边OB在x轴的负半轴上,点C在反比例函数y=kx(k≠0)的图象上.若AB=2,①A=60°,求反比例函数的解析式.22.(9分)(2022秋•中山区月考)某气球内充满了一定量的气体,当温度不变时,气球内气体的压强P(kPa)是气体体积V(m3)的反比例函数,其图象过点A(0.8,120)如图所示.(1)求这一函数的表达式;(2)当气体压强为48kPa时,求V的值;(3)当气球内的体积小于0.6m3时,气球将爆炸,为了安全起见,气体的最大压强为多少?23.(9分)(2022秋•中原区月考)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=m x的图象的两个交点.(1)求反比例函数和一次函数的函数关系式;(2)求①AOB的面积;(3)求出反比例函数大于一次函数的解集.24.(8分)(2022秋•如皋市期中)如图,矩形ABCD的两边AD,AB的长分别为3,8.边BC落在x轴上,E是AB的中点,连接DE,反比例函数y=mx的图象经过点E,与CD交于点F.(1)若B(3,0),求F点坐标;(2)若DF=DE,求反比例函数的解析式.25.(8分)(2022秋•虹口区校级期中)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD①x轴于点D,交y=1x的图象于点C,联结AC,若①ABC是等腰三角形,求k的值.26.(12分)(2022秋•青浦区校级期中)如图,A为反比例函数y=kx(k<0)的图象上一点,AP①y轴,垂足为P.(1)联结AO,当S①APO=2时,求反比例函数的解析式;(2)联结AO,若A(﹣1,2),y轴上是否存在点M,使得S①APM=S①APO,若存在,求出M的坐标:若不存在,说明理由,(3)点B在直线AP上,且PB=3P A,过点B作直线BC①y轴,交反比例函数的图象于点C,若①P AC的面积为4,求k的值.九年级下册数学《第二十六章反比例函数》章节测试卷解析版测试时间:120分钟试卷满分:120分三.选择题(共10小题,共30分)1.(2022秋•招远市期中)下列函数中,y是x的反比例函数的有()个.①y=−1x;①y=3x;①xy=﹣1;①y=3x;①y=2x−1;①y=1x−1.A.2B.3C.4D.5【分析】根据反比例函数的定义(形如y=kx(k为常数,k≠0)的函数称为反比例函数)逐一判断即可得答案.【解答】解:①y=−1x,符合反比例函数的定义,是反比例函数;①y=3x,符合反比例函数的定义,是反比例函数;①xy=﹣1,符合反比例函数的定义,是反比例函数;①y=3x,不符合反比例函数的定义,不是反比例函数;①y=2x−1,不符合反比例函数的定义,不是反比例函数;①y=1x−1,不符合反比例函数的定义,不是反比例函数.故选:B.【点评】本题考查了反比例函数的定义,形如y=kx(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.2.(2022秋•沈河区校级期中)关于反比例函数y=−4x下列说法正确的是()A.图象经过点(﹣2,﹣2)B.图象分别在第一、三象限C.在每个象限内,y随x的增大而增大D.当y≤1时,x≤﹣4【分析】根据反比例函数的性质对各选项进行逐一分析即可.【解答】解:A、①(﹣2)×(﹣2)=4≠﹣4,①图象不经过点(﹣2,﹣2),故本选项不符合题意;B 、①﹣4<0,①图象分别在第二、四象限,故本选项不符合题意; C 、①﹣4<0,①在每个象限内,y 随x 的增大而增大,故本选项符合题意; D 、当0<y ≤1时,x ≤﹣4,故本选项不符合题意. 故选:C .【点评】本题考查的是反比例函数的性质,熟知反比例函数y =kx(k ≠0)的图象是双曲线;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大是解题的关键.3.(2022•鹿城区校级开学)如图,A 为反比例函数y =kx (k >0)图象上一点,AB ①x 轴于点B ,若S ①AOB =3,则k 的值为( )A .1.5B .3C .√3D .6【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S =12|k |.【解答】解:由于点A 是反比例函数y =k x图象上一点,则S ①AOB =12|k |=3; 又由于k >0,则k =6. 故选:D .【点评】本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得三角形面积为12|k |,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.4.(2022秋•晋州市期中)在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣k(k为常数,且k≠0)的图象可能是()A.B.C.D.【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:A、①由反比例函数的图象在一、三象限可知,k>0,①﹣k<0,①一次函数y=kx﹣k的图象应该经过一、三、四象限,故本选项不符合题意;B、①由反比例函数的图象在二、四象限可知,k<0,①﹣k>0,①一次函数y=kx﹣k的图象应该经过一、二、四象限,故本选项符合题意;C、①由反比例函数的图象在二、四象限可知,k<0,①﹣k>0,①一次函数y=kx﹣k的图象应该经过一、二、四象限,故本选项不符合题意;D、①由反比例函数的图象在一、三象限可知,k>0,①﹣k<0,①一次函数y=kx﹣k的图象应该经过一、三、四象限,故本选项不符合题意;故选:B.【点评】本题考查的是反比例函数及一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k的符号,再根据一次函数的性质进行解答.5.(2022•鼓楼区校级模拟)在平面直角坐标系中,若一个反比例函数的图象经过A(m,6),B(5,n)两点,则m,n一定满足的关系式是()A .m ﹣n =1B .m n=56C .m n=65D .mn =30【分析】设该函数解析式为y =k x,由题意可得6m =5n =k ,可求得此题结果. 【解答】解:设该函数解析式为y =kx ,由题意可得: 6m =5n =k , 即6m =5n , 解得m n=56,故选:B .【点评】此题考查了运用待定系数法求反比例函数解析式解决相关问题的能力,关键是能灵活运用该方法进行变式求解.6.(2022秋•石阡县期中)若P 1(x 1,y 1),P 2(x 2,y 2)是反比例函数y =−6x的图象上的两点,且x 1<x 2<0,则( ) A .0<y 2<y 1B .0<y 1<y 2C .y 1<0<y 2D .y 2<0<y 1【分析】根据反比例函数的性质和增减性,结合横坐标的大小和正负,即可得到答案. 【解答】解:①反比例函数y =−6x ,k <0, ①x <0时,y >0,y 随着x 的增大而增大, 又①x 1<x 2<0, ①0<y 1<y 2. 故选:B .【点评】本题考查了反比例函数图象上点的坐标特征,正确掌握反比例函数的性质和增减性是解题的关键.7.(2022秋•虹口区校级期中)下列函数中,y 的值随x 值的增大而增大的函数是( ) A .y =2xB .y =﹣2x +1C .y =x ﹣2D .y =﹣x ﹣2【分析】根据一次函数和反比例函数的性质分别进行判断即可.【解答】解:A、y=2x是反比例函数,k=2>0,在每个象限内,y随x的增大而减小,所以A选项不合题意;B、y=﹣2x+1是一次函数,k=﹣2<0,y随x的增大而减小,所以B选项不合题意;C、y=x﹣2是一次函数,k=1>0,y随x的增大而增大,所以C选项符合题意;D、y=﹣x﹣2是一次函数,k=﹣1<0,y随x的增大而减小,所以D选项不合题意.故选:C.【点评】本题考查了反比例函数的性质,一次函数的性质,熟练掌握反比例函数与一次函数的性质是解题的关键.8.(2022春•丰城市校级期末)如图已知反比例函数C1:y=kx(k<0)的图象如图所示,将该曲线绕点O顺时针旋转45°得到曲线C2,点N是曲线C2上一点,点M在直线y=﹣x上,连接MN、ON,若MN=ON,①MON的面积为2√3,则k的值为()A.﹣2B.﹣4C.−2√3D.−4√3【分析】将直线y=﹣x和曲线C2绕点O逆时针旋转45°,则直线y=﹣x与x轴重合,曲线C2与曲线C1重合,即可求解.【解答】解:①将直线y=﹣x和曲线C2绕点O逆时针旋转45°后直线y=﹣x与x轴重合,①旋转后点N落在曲线C1上,点M落在x轴上,如图所示,设点M和点N的对应点分别为点M'和N',过点N'作N'P①x轴于点P,连接ON',M'N',①MN=ON,①M'N'=ON',M'P=OP,①S①MON=2S①PN'O=2×12|k|=|k|=2√3,①k<0,①k=﹣2√3.故选:C.【点评】本题考查了反比例函数比例系数k的几何意义、旋转的性质,体现了直观想象、逻辑推理的核心素养.9.(2022秋•平桂区期中)如图,正比例函数y1=k1x的图象与反比例函数y2=k2x的图象相交于A、B两点,其中A点的横坐标为3,当y1<y2时,x的取值范围是()A.x<﹣3或x>3B.x<﹣3或0<x<3C.﹣3<x<0或0<x<3D.﹣3<x<0或x>3【分析】由正、反比例的对称性结合点A的横坐标即可得出点B的横坐标,根据函数图象的上下位置关系结合交点的横坐标,即可得出不等式y1<y2的解集.【解答】解:①正比例函数与反比例函数的图象均关于原点对称,点A的横坐标为3,①点B的横坐标为﹣3.观察函数图象,发现:当0<x<3或x<﹣3时,正比例函数图象在反比例函数图象的下方,①当y1<y2时,x的取值范围是x<﹣3或0<x<3.故选:B.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是找出点B的横坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数的对称性找出两函数交点的横坐标,再根据函数图象的上下位置关系结合交点的横坐标解决不等式是关键.10.(2022秋•覃塘区期中)如图,已知点A(﹣1,6)在双曲线y=kx(x<0)上,动点P在y轴正半轴上,将点A绕点P逆时针旋转90°,点A的对应点为B,若点B恰好落在双曲线上,则点P的坐标为()A.(0,3)B.(3,0)或(4,0)C.(0,2)或(0,6)D.(0,3)或(0,4)【分析】先把A(﹣1,6)代入反比例函数y=kx(x<0)求出k的值,分别过A、B两点作x轴的垂线AC,BD,由旋转的性质证明①APC①①PBD,再设P(0,m),即可得出B 的坐标,由双曲线上的点横坐标与纵坐标的积即相等,列方程求m的值,确定P点坐标.【解答】解:分别过A 、B 两点作AC ①y 轴,BD ①y 轴,垂足为C 、D ,①A (﹣1,6)是双曲线y =k x(x <0)上一点, ①k =﹣6,①反比例函数的解析式为y =−6x , ①①APB =90°, ①①APC +①BPD =90°, 又①APC +①P AC =90°, ①①P AC =①BPD , 在①APC 和①PBD 中, {∠PAC =∠BPD∠ACP =∠PDB =90°AP =PB, ①①APC ①①PBD (AAS ), ①CP =BD ,AC =PD =1, 设P (0,m ), ①OP =m , ①PC =6﹣m , ①B (m ﹣6,m ﹣1), ①点B 在双曲线上,①m ﹣1=−6m−6,解得m =3或m =4, ①P (0,3)或(0,4). 故选:D .【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 四.填空题(共8小题,共24分)11.(2022秋•蜀山区校级月考)若函数y =(m −1)x m2−2是反比例函数,则m 的值是 .【分析】形如y =kx(k 为常数,k ≠0)的函数称为反比例函数,由此即可判断. 【解答】解:因为函数y =(m ﹣1)x m 2−2是自变量为x 的反比例函数,所以m 2﹣2=﹣1,m ﹣1≠0, 所以m =﹣1. 故答案为:﹣1.【点评】本题考查反比例函数的定义,解题的关键是记住反比例函数的定义,属于中考基础题.12.(2022秋•澧县期中)若反比例函数y =kx 的图象经过点(﹣2,32),则此函数的解析式为 .【分析】把(﹣2,32)代入y =kx 中求出k 即可得到反比例函数解析式,【解答】解:把(﹣2,32)代入y =kx 中,得32=k−2,解得k =﹣3,所以反比例函数解析式为y =−3x . 故答案为:y =−3x .【点评】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,熟知待定系数法是解题的关键.13.(2022秋•固镇县校级期中)如图,点P (x ,y )在双曲线y =kx的图象上,P A ①x 轴,垂足为A ,若S ①AOP =4,则该反比例函数的表达式为 .【分析】根据反比例函数的几何意义解答即可.【解答】解:①点P (x ,y )在双曲线y =kx 的图象上,P A ①x 轴, ①xy =k ,OA =﹣x ,P A =y . ①S ①AOP =4, ①12AO •P A =4.①﹣x •y =8. ①xy =﹣8, ①k =xy =﹣8.①该反比例函数的解析式为xy 8﹣=.故答案为:xy 8﹣=.【点评】本题主要考查了反比例函数的几何意义,反比例函数图象上点的坐标的特征,待定系数法,利用点的坐标表示出相应线段的长度是解题的关键.14.(2022秋•淄川区月考)在反比例y =k−1x 的图象的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =k−1x 的图象的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:①整式x2﹣kx+4是一个完全平方式,①k=±4,①反比例函数y=k−1x的图象的每一支上,y都随x的增大而减小,①k﹣1>0,解得k>1,①k=4,①反比例函数的解析式为y=3 x.故答案为:y=3 x.【点评】本题考查反比例函数的图象与性质、完全平方式,熟练掌握反比例函数的图象与性质、完全平方式是解答本题的关键.15.(2022秋•冷水滩区校级月考)已知y关于x的函数表达式是y=a−1x,且x=2时,y=3,则a的值为.【分析】将x=2,y=3代入y=a−1x即可求出a的值.【解答】解:将x=2,y=3代入y=a−1x得,3=a−12,解得a=7,故答案为:7.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的图象上点的坐标特征是解题的关键.16.(2022秋•滁州期中)如图,双曲线y=kx(x>0)与正方形ABCD的边BC交于点E,与边CD交于点F,且BE=3CE,A(4,0),B(8,0),则CF=.【分析】直接利用已知点坐标得出AB=4,则AD=BC=4,F点纵坐标为4,进而利用反比例函数图象上点的坐标特点得出答案.【解答】解:①A(4,0),B(8,0),四边形ABCD是正方形,①AB=4,则AD=BC=4,F点纵坐标为4,①BE=3CE,①BE=3,EC=1,①E(8,3),故k=8×3=24,则设F点横坐标为m,故4m=24,解得:m=6,故FC=8﹣6=2.故答案为:2.【点评】此题主要考查了反比例函数图象上点的坐标特点,正确得出E点坐标是解题关键.17.(2022秋•莱阳市期中)如图,在平面直角坐标系中,菱形ABOC的顶点A在反比例函数y=kx(k>0,x>0)的图象上,点C的坐标为(4,3),则k的值为.【分析】延长AC交x轴于E,则AE①OC,根据菱形的性质以及勾股定理得出AB=OC=OB=5,即可得出A点坐标,进而求出k的值即可.【解答】解:延长AC交x轴于E,如图所示:则AE①x轴,①C的坐标为(4,3),①OE=4,CE=3,①OC=√42+32=5,①四边形OBAC是菱形,①AB=OB=OC=AC=5,①AE=5+3=8,①点A的坐标为(4,8),把A(4,8)代入函数y=kx(x>0)得:k=4×8=32;故答案为:32.【点评】此题主要考查了菱形的性质、勾股定理和反比例函数图象上点的坐标性质;得出A点坐标是解题关键.18.(2022春•锡山区期末)点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S2+S3=20,则S1的值为.【分析】根据CD =DE =OE 以及反比例函数系数k 的几何意义得到S 1=13k ,S 四边形OGQD =k ,列方程即可得到结论.【解答】解:①CD =DE =OE ,①S 1=13k ,S 四边形OGQD =k ,①S 2=13(k −13k ×2)=k 6,S 3=k −13k −16k =12k ,①16k +12k =20, ①k =30,①S 1=13k =10,故答案为:10.【点评】本题考查反比例函数系数k 的几何意义,矩形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.三.解答题(共66分)19.(6分)(2022秋•德江县期中)已知反比例函数y =k x (k ≠0)的图象经过点A (2,6).(1)求这个函数的表达式;(2)点B (10,65),C (﹣3,﹣5)是否在这个函数的图象上?【分析】(1)首先设这个反比例函数的解析式为y =k x(k ≠0),再把点A (2,6)的坐标代入函数关系式,即可算出k 的值,进而可得函数关系式;(2)只要把点B (10,65),C (﹣3,﹣5)分别代入(1)中求出的函数关系式,满足关系式,就是函数图象上的点,反之则不在.【解答】解:(1)设这个反比例函数的解析式为y =k x(k ≠0),依题意得:6=k 2,①k =12,故这个反比例函数解析式为y =12x ;(2)由(1)求得:y =12x ,当x =10时,y =65,当x =﹣3时,y =﹣4,①点B (10,65)在这个函数图象上,C (﹣3,﹣5)不在这个函数的图象上. 【点评】此题主要考查了利用待定系数法求反比例函数解析式,正确求出函数解析式是解题关键.20.(7分)(2022秋•青浦区校级期中)已知:y =y 1﹣y 2,并且y 1与x 成正比例,y 2与(x ﹣2)成反比例,且当x =﹣2时,y =﹣7,当x =3时,y =13,求:(1)求y 与x 之间的函数解析式;(2)求当x =√2时的函数值.【分析】(1)设y 1=kx ,y 2=m x−2,则y =kx −m x−2,然后利用待定系数法即可求得;(2)把x =√2代入(1)求得函数解析式求解.【解答】解:(1)设y 1=kx ,y 2=m x−2,则y =kx −m x−2, 根据题意得:{−2k +m 4=−73k −m =13, 解得:{k =3m =−4, 则函数解析式是:y =3x +4x−2;(2)当x =√2时,y =3√2+√2−2=√2−4. 【点评】本题考查了待定系数法求函数的解析式,注意在本题中的正比例系数和反比例系数是两个不同的值,用不同的字母区分.21.(7分)(2022•游仙区校级二模)如图,菱形ABOC 在平面直角坐标系中,边OB 在x 轴的负半轴上,点C 在反比例函数y =k x(k ≠0)的图象上.若AB =2,①A =60°,求反比例函数的解析式.【分析】连接BC ,过C 作CD ①OB 于D ,根据菱形的性质得出OC =AB =2,①COB =①A =60°,根据直角三角形的性质求出OD 和CD ,得出点C 的坐标,再代入反比例函数的解析式y =kx 即可.【解答】解:连接BC ,过C 作CD ①OB 于D ,则①CDO =90°,①四边形ABOC 是菱形,AB =2,①A =60°,①OC =AB =2,①COB =①A =60°,①①DCO =30°,①OD=12OC=1,①CD=√OC2−OD2=√22−12=√3,①点C的坐标是(﹣1,√3),①点C在反比例函数y=kx(k≠0)的图象上,①k=(﹣1)×√3=−√3,∴反比例函数的解析式是y=−√3 x,【点评】本题考查了菱形的性质,反比例函数图象上点的坐标特征,用待定系数法求反比例函数的解析式,直角三角形的性质等知识点,能求出点C的坐标是解此题的关键.,22.(9分)(2022秋•中山区月考)某气球内充满了一定量的气体,当温度不变时,气球内气体的压强P(kPa)是气体体积V(m3)的反比例函数,其图象过点A(0.8,120)如图所示.(1)求这一函数的表达式;(2)当气体压强为48kPa时,求V的值;(3)当气球内的体积小于0.6m3时,气球将爆炸,为了安全起见,气体的最大压强为多少?【分析】(1)设函数解析式为P=kv,把点(0.8,120)的坐标代入函数解析式求出k值,即可求出函数关系式;(2)将P=48代入(1)中的函数式中,可求气球的体积V.(3)依题意V =0.6,即 96P =0.6,求解即可.【解答】解:(1)设P 与V 的函数关系式为P =k v ,则 k =0.8×120,解得k =96,①函数关系式为P =96v .(2)将P =48代入P =96v 中, 得96v =48,解得V =2,①当气球内的气压为48kPa 时,气球的体积为2立方米.(3)当V =0.6m 3时,气球将爆炸,①V =0.6,即96P =0.6,解得 P =160kpa故为了安全起见,气体的压强不大于160kPa .【点评】本题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.23.(9分)(2022秋•中原区月考)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y =kx +b 的图象和反比例函数y =m x 的 图象的两个交点.(1)求反比例函数和一次函数的函数关系式;(2)求①AOB 的面积;(3)求出反比例函数大于一次函数的解集.【分析】(1)先把B 点坐标代入反比例函数的解析式中求得反比例解析式,再求A 点坐标,最后用待定系数法求出一次函数的解析式;(2)求出AB 与x 轴的交点C 的坐标,再由OC 求三角形面积;(3)根据函数图象便可求解.【解答】解:(1)把B (2,﹣4)代入y =m x 中,得﹣4=m 2, 解得m =﹣8,①反比例函数的解析式为:y =−8x ,把A (﹣4,n )代入y =−8x 中,得n =−8−4=2,①A (﹣4,2),把A (﹣4,2),B (2,﹣4)代入y =kx +b 中,得{−4k +b =22k +b =−4, 解得{k =−1b =−2, ①一次函数的解析式为:y =﹣x ﹣2;(2)在y =﹣x ﹣2中,令y =0,则﹣x ﹣2=0,解得x =﹣2,①C (﹣2,0),①OC =2,①S ①AOB =S ①AOC +S ①BOC =12×2×(2+4)=6; (3)由函数图象可知,反比例函数大于一次函数的解集为﹣4<x <0或x >2.【点评】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法求函数解析式,利用函数图象求不等式的解集,求三角形的面积,此题难度适中,注意掌握数形结合思想的应用.24.(8分)(2022秋•如皋市期中)如图,矩形ABCD 的两边AD ,AB 的长分别为3,8.边BC 落在x 轴上,E 是AB 的中点,连接DE ,反比例函数y =m x 的图象经过点E ,与CD 交于点F .(1)若B (3,0),求F 点坐标;(2)若DF =DE ,求反比例函数的解析式.【分析】(1)先求得点E 的坐标为(3,4),然后利用待定系数法求得m ,进一步即可求得点F 的坐标.(2)在Rt①ADE 中,利用勾股定理可求出AE 的长,由DF =DE ,BC =3可得出点E 的坐标为(m 3−3,4),再利用反比例函数图象上点的坐标特征,可得出关于m 的一元一次方程,解之即可得出m 的值,进而可得出反比例函数的表达式.【解答】解:(1)①反比例函数y =m x 的图象经过点E ,E 是AB 的中点,AB =8, ①BE =4,①B (3,0),①E (3,4),①反比例函数y =m x的图象经过点E , ①m =3×4=12,①y =12x ,①BC =AD =3,①OC =6, 把x =6代入y =12x 得y =2,①点F 的坐标为(6,2);(2)在Rt①ADE 中,AD =3,AE =4,①A =90°,①DE =5.①DF =DE ,①DF =5,①CF =8﹣5=3,①点E 的坐标为(m 3−3,4).①反比例函数y =m x 的图象经过点F ,①4×(m 3−3)=m ,解得:m =36,①反比例函数的表达式为y =36x .【点评】本题考查了矩形的性质、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、勾股定理,解题的关键是利用含m 的代数式表示出点E ,F 的坐标.25.(8分)(2022秋•虹口区校级期中)如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数y =1x 和y =9x 在第一象限的图象于点A ,B ,过点B 作BD ①x 轴于点D ,交y =1x 的图象于点C ,联结AC ,若①ABC 是等腰三角形,求k 的值.【分析】根据一次函数和反比例函数的解析式,即可求得点A、B、C的坐标(用k表示),再讨论①AB=BC,①AC=BC,即可解题.【解答】解:①点B是y=kx和y=9x的交点,则kx=9x,①点B坐标为(√k,3√k),同理可求出点A的坐标为(√k,√k),①BD①x轴,①点C(√k ,√k3),①BA=√4k+4k,AC=√4k+4k9,BC=83√k,①BA2≠AC2,①BA≠AC,若①ABC是等腰三角形,①AB=BC,则√4k+4k=83√k,解得k=3√7 7;①AC=BC,则√4k+4k9=83√k,解得k=√15 5;故k 的值为3√77或√155. 【点评】本题考查了点的坐标的计算,考查了一次函数和反比例函数交点的计算,本题中用k 表示点A 、B 、C 坐标是解题的关键.26.(12分)(2022秋•青浦区校级期中)如图,A 为反比例函数y =k x (k <0)的图象上一点,AP ①y 轴,垂足为P .(1)联结AO ,当S ①APO =2时,求反比例函数的解析式;(2)联结AO ,若A (﹣1,2),y 轴上是否存在点M ,使得S ①APM =S ①APO ,若存在,求出M 的坐标:若不存在,说明理由,(3)点B 在直线AP 上,且PB =3P A ,过点B 作直线BC ①y 轴,交反比例函数的图象于点C ,若①P AC 的面积为4,求k 的值.【分析】(1)根据反比例函数系数k 的几何意义即可求解;(2)求得S ①APM =S ①APO =1,即可求得PM =2从而求得点M (0,4);(3)当B 点在P 点右侧,如图,设A (t ,k t ),则可表示出B (﹣3t ,k t ),C (﹣3t ,−k 3t),利用三角形面积公式得到12×(﹣t )×(k t+k 3t )=4;当B 点在P 点左侧,设A (t ,k t ),则可表示出B (3t ,k t ),C (3t ,k 3t ),利用三角形面积公式得到12×(﹣t )×(k t −k 3t )=4,然后分别解关于k 的方程即可.【解答】解:(1)①S ①APO =2,AP ①y 轴,①S ①APO =12|k |=2,①反比例函数的解析式为y =−4x ;(2)存在,理由如下:①A (﹣1,2),①AP =1,OP =2,①S ①APO =12×1×2=1, ①S ①APM =S ①APO =1,①12PM •AP =1, ①PM =2,①M (0,4);(3)当B 点在P 点右侧,如图,设A (t ,k t ), ①PB =3P A ,①B (﹣3t ,k t ), ①BC ①y 轴,①C (﹣3t ,−k 3t), ①①P AC 的面积为4,①12×(﹣t )×(k t +k 3t )=4,解得k =﹣6;当B 点在P 点左侧,设A (t ,k t ),①B (3t ,k t ), ①BC ①y 轴,①C (3t ,k 3t ), ①①P AC 的面积为4,①12×(﹣t )×(k t −k 3t )=4,解得k =﹣12;综上所述,k 的值为﹣6或﹣12.【点评】本题考查了反比例函数系数k 的几何意义:在反比例函数y =k x 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.也考查了反比例函数图象上点的坐标特征.。
九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.如果反比例函数的图象经过点P (﹣3,﹣1),那么这个反比例函数的表达式为( ) A .y =3xB .y =﹣3xC .y =13xD .y =﹣13x2.若反比例函数2y x=的图像经过(),n n ,则n 的值是( )A .2±B .CD .3.如图,点A 在x 轴正半轴上,B (5,4).四边形AOCB 为平行四边形,反比例函数y =8x的图象经过点C和AB 边的中点D ,则点D 的坐标为( )A .(2,4)B .(4,2)C .(83,3)D .(3,83)4.对于反比例函数4y x=,下列说法错误的是( ) A .它的图象与坐标轴永远不相交 B .它的图象绕原点旋转180°能和本身重合 C .它的图象关于直线y x =±对称D .它的图象与直线y x =-有两个交点5.如图是同一直角坐标系中函数12y x =和22y x=的图象.观察图象可得不等式22x x >的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >6.如图,在平面直角坐标系中直线y mx =(0m ≠,m 为常数)与双曲线ky x=(0k ≠,k 为常数)交于点A ,B ,若()1,A a -和(),3B b -,过点A 作AM x ⊥轴,垂足为M ,连接BM ,则ABM ∆的面积是( )A .2B .1m -C .3D .67.如图,在平面直角坐标系中函数()0ky x x=>的图象经过点P 、Q 、R ,分别过这个三个点作x 轴、y 轴的平行线,阴影部分图形的面积从左到右依次为若OE ED DC ==,1310S S +=则k 的值为( )A .6B .12C .18D .24二、填空题8.平面直角坐标系xOy 中已知点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x =≠图象上的三点.若2ABC S =△,则k 的值为___________.9.如图,△AOB 中AO =AB ,OB 在x 轴上C ,D 分别为AB ,OB 的中点,连接CD ,E 为CD 上任意一点,连接AE ,OE ,反比例函数y k x=(x >0)的图象经过点A .若△AOE 的面积为2,则k 的值是___.10.在平面直角坐标系xOy 中过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长的值与面积的值相等,则这个点叫做“和谐点”.已知直线y =﹣2x +k 1与y 轴交于点A ,与反比例函数y 2k x=的图象交于点P (52-,m ),且点P 是“和谐点”,则△OAP 的面积为___.11.不透明的袋子里装有除标号外完全一样的四个小球,小球上分别标有-1,2,3,4四个数,从袋子中随机抽取一个小球,记标号为k ,不放回,将袋子摇匀,再随机抽取一个小球,记标号为b ,两次抽取完毕后,则直线y kx =与反比例函数by x=的图象经过的象限相同的概率为______. 12.如图,点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴,作AC x ⊥轴于点C ,交OB 于点D .若2OD BD =,则k 的值是______.13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =﹣6x(x <0)和y=8x(x >0)的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为__.14.一定质量的二氧化碳,其密度()3kg /m ρ=是体积()3m V 的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式___________,当33m V =时,则ρ=_______3kg /m .三、解答题15.如图1,反比例函数()0my x x=>的图象过点()4,3M .(1)求反比例函数my x=的表达式,判断点()2,8在不在该函数图象上,并说明理由; (2)反比例函数()16my x x=≤≤的图象向左平移2个单位长度,平移过程中图象所扫过的面积是______; (3)如图2,直线:8l y x =-+与x 轴、y 轴分别交于点A 、点B ,点P 是直线l 下方反比例函数my x=图象上一个动点,过点P 分别作PC x ∥轴交直线l 于点C ,作PD y ∥轴交直线l 于点D ,请判断AC BD ⋅的值是否发生变化,并说明理由,如果不变化,求出这个值. 16.阅读下列材料定义运算min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a =.例如:min 1,31-=-与min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②min 4--=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,则()()2min,213kx b x x x x-+=+--.求这两个函数的解析式. 17.在如图平面直角坐标系中矩形OABC 的顶点B 的坐标为(4,2),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将△OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到△ODE ,OD 与CB 相交于点F ,反比例函数y =kx(x >0)的图象经过点F ,交AB 于点G .(1)求k 的值和点G 的坐标;(2)连接FG ,则图中是否存在与△BFG 相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA 上存在这样的点P ,使得△PFG 是等腰三角形.请直接写出点P 的坐标.18.我们不妨约定:在平面直角坐标系中若某函数图象上至少存在不同的两点关于直线x n =(n 为常数)对称,则把该函数称之为“()X n 函数”.(1)在下列关于x 的函数中是“()X n 函数”的是________(填序号); ①6y x=,②4y x =,③225y x x =-- (2)若关于x 的函数y x h =-(h 为常数)是“()3X 函数”,与my x=(m 为常数,0m >)相交于A (A x ,A y )、B (B x ,B y )两点,A 在B 的左边,5B A x x -=,求m 的值;(3)若关于x 的“()X n 函数”24y ax bx =++(a ,b 为常数)经过点(1-,1),且1n =,当1t x t -≤≤时,则函数的最大值为1y ,最小值为2y ,且1212y y -=,求t 的值. 19.如图,在平面直角坐标系中四边形ABCD 为正方形,已知点A (0,﹣6)、D (﹣3,﹣7),点B 、C 在第三象限内.(1)求点B 的坐标;(2)在y 轴上是否存在一点P ,使ABP 是AB 为腰的等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.(3)将正方形ABCD 沿y 轴向上平移,若存在某一位置,使在第二象限内点B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上,求该反比例函数的解析式.参考答案与解析1.【答案】A【分析】根据点P 的坐标,利用待定系数法即可得.【详解】解:设这个反比例函数的表达式为(0)ky k x =≠ 由题意,将点(3,1)P --代入得:3(1)3k =-⨯-= 则这个反比例函数的表达式为3y x =故选:A .【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键. 2.【答案】B【分析】将(),n n 代入解析式中即可求出n 的值. 【详解】解:将(),n n 代入2y x =中得2n n=解得:n =故选B.【点睛】此题考查的是根据点所在的图像求点的坐标,将点的坐标代入解析式求点的坐标是解决此题的关键.3.【答案】B【分析】作CE ⊥OA 于E ,依据反比例函数系数k 的几何意义求得OE ,即可求得C 的坐标,从而求得点A 坐标,再根据中点坐标公式即可求得D 的坐标. 【详解】解:作CE ⊥OA 于E ,如图∵B(5,4),四边形AOCB为平行四边形∴CE=4∵反比例函数y=8x的图象经过点C∴S△COE=12OE•CE=12×8∵CE=4∴OE=2∴C(2,4),OA=BC=5-2=3 ∴A(3,0)∵点D是AB的中点∴点D的坐标为(3+50+422,),即D(4,2)故选:B.【点睛】本题考查了平行四边形的性质,反比例函数系数k的几何意义等,求得点C和点A的坐标是解题的关键.4.【答案】D【分析】当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A.∵反比例函数4yx=中4>0,∴此函数图象在一、三象限,故本选项正确;B.∵反比例函数4yx=的图象双曲线关于原点对称,故本选项正确;C.反比例函数的图象可知,图象关于直线y x=±对称,故本选项正确;D.∵反比例函数4yx=的图象位于第一、三象限,直线y x=-经过第二、四象限,所以直线y x=-与双曲线4yx=无交点,故本选项错误;故选D.【点睛】本题考查了反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 5.D【分析】根据图象进行分析即可得结果; 【详解】解:∵22x x> ∴12y y >由图象可知,函数12y x=和22y x =分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-, 由图象可以看出当10x -<<或1x >时,则函数12y x=在22y x =上方,即12y y >故选:D .【点睛】本题主要考查一次函数和反比例函数的应用,掌握一次函数和反比例函数图象的性质是解本题的关键. 6.【答案】C【分析】根据直线y mx =与双曲线k y x =都经过点A ,得出1a mk a =-⎧⎪⎨=⎪⎩-,进而得到k m =,再由直线y mx =与双曲线k y x =都经过点B ,得到33k b bm ⎧-=⎪⎨⎪-=⎩,进而得到2b m k =,进而求出b 的值,得到点A 的坐标,即可得到答案.【详解】由题,直线y mx =与双曲线ky x=都经过点A ∴1a m k a =-⎧⎪⎨=⎪⎩- ,得:k m =直线y mx =与双曲线ky x=都经过点B 33bm k b -=⎧⎪∴⎨-=⎪⎩,得:2b m k = 21b ∴=0b >1b ∴=13B ∴-(,)将点B 代入y mx =,得:3m -=3y x ∴=-13A ∴-(,)111313322ABM S ∆∴=⨯⨯+⨯⨯=故选:C【点睛】本题考查一次函数与反比例函数的图像问题,根据两者的交点结合解析式求出点的坐标是解题关键.7.【答案】B【分析】设未知数,表示出点P 、Q 、R 的坐标,进而表示S 1、S 2、S 3,由S 1+S 3=10列方程求解即可. 【详解】解:设OE =ED =DC =a ∵函数ykx =(x >0)的图象经过点P 、Q 、R∴点P (3k a ,3a ),Q (2k a ,2a ),R (ka ,a )∴OF 3k a =,OG 2k a =,OA k a =∴S 1=OF •CD 3k a =⨯a 3k =S 3=AG •OE =(2k k a a -)×a 2k =又∵S 1+S 3=10 ∴32k k +=10 解得k =12 故选:B .【点睛】本题考查反比例函数系数k 的几何意义以及反比例函数图象上点的坐标特征,用坐标表示线段的长是解决问题的关键. 8.【答案】34##0.75 【分析】由点A 、B 、C 的坐标可知260k m =>,m =n ,点B 、C 关于原点对称,求出直线BC 的解析式,不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,根据2ABC S =△列式求出2m ,进而可得k 的值. 【详解】解:∵点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x=≠图象上的三点 ∴260k m => 6k mn = ∴m =n∴(3,2)B m m (3,2)C m m -- ∴点B 、C 关于原点对称∴设直线BC 的解析式为()0y kx k =≠ 代入(3,2)B m m 得:23m mk = 解得:23k =∴直线BC 的解析式为23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D 把x =m 代入23y x =得:23y m =∴D (m ,23m )∴AD =216633m m m -=∴()11633223ABCSm m m =⨯⋅+= ∴218m =∴2136684k m ==⨯=而当m <0时,则同样可得34k =故答案为:34【点睛】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键.9.【答案】4【分析】根据等腰△AOB,中位线CD得出AD⊥OB,S△AOE=S△AOD=2,应用|k|的几何意义求k.【详解】解:如图:连接AD△AOB中AO=AB,OB在x轴上,C、D分别为AB,OB的中点∴AD⊥OB,AO∥CD∴S△AOE=S△AOD=2∴k=4.故答案为:4.【点睛】本题考查了反比例函数图象、等腰三角形以及中位线的性质、三角形面积,解题的关键是灵活运用等腰三角形的性质.10.【答案】254或754【分析】先根据“和谐点”的定义求出m的值,进而可求出点A的坐标,根据三角形的面积可求出△OAP的面积.【详解】解:∵点P(52-,m)是“和谐点”∴5+2|m|52=|m|,解得m=±10当m=10时,则P(52-,10)把点P的坐标代入一次函数和反比例的解析式得:k1=5,k2=﹣25∴A(0,5)∴S△OAP15255224=⨯⨯=.当m =﹣10时,则P (52-,﹣10)∴k 1=﹣15,k 2=25 ∴A (0,﹣15) ∴S △OAP 12=⨯1557524⨯=. 故答案为:254或754. 【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |,读懂题意,明确和谐点的定义是解题的关键. 11.【答案】12【分析】画树状图,共有12个等可能的结果,直线y kx =与反比例函数by x=的图象经过的象限相同的结果有6个,再由概率公式求解即可. 【详解】解:画树状图如图:∵从袋子中随机抽取一个小球,记标号为k ,不放回后将袋子摇匀,再随机抽取一个小球,记标号为b ,共有12个数组∴直线y kx =与反比例函数by x=的图象经过的象限相同的数组有(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),共有6组∴k ,b 直线y kx =与反比例函数b y x=的图象经过的象限相同的概率为61122=.故答案为:12【点睛】此题考查了用列表法或树状图法求概率及一次函数与反比例函数的性质,熟练掌握利用列表法或树状图列出所有等可能的结果以及一次函数与反比例函数的性质是解题的关键. 12.【答案】9【分析】先求解A 的坐标,再表示B 的坐标,再证明,ABD COD ∽利用相似三角形的性质列方程求解即可.【详解】解: 点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴 63,,3,23kmB2,3,AAC x ⊥轴2,0,CAB x ∥轴,ABD COD ∽,ABBDOC OD而2OD BD = 213,22k 解得:9,k = 故答案为:9【点睛】本题考查的是反比例函数的性质,相似三角形的判定与性质,掌握“反比例函数的图像与性质”是解本题的关键. 13.【答案】7【分析】连接OA ,OB ,利用同底等高的两三角形面积相等得到三角形AOB 面积等于三角形ACB 面积,再利用反比例函数k 的几何意义求出三角形AOP 面积与三角形BOP 面积,即可得到结果. 【详解】解:如图,连接OA ,OB∵△AOB 与△ACB 同底等高 ∴S △AOB =S △ACB ∵AB ∥x 轴∴AB ⊥y 轴∵A 、B 分别在反比例函数y =﹣6x (x <0)和y =8x (x >0)的图象上∴S △AOP =3,S △BOP =4∴S △ABC =S △AOB =S △AOP +S △BOP =3+4=7. 故答案为:7.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数y =kx的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变.也考查了三角形的面积. 14.【答案】10V ρ=103【分析】由函数图像信息可得反比例函数过点(5,2),根据待定系数法求解析式;将3V =代入即可求得ρ. 【详解】反比例函数过点(5,2) 设反比例函数解析式为kVρ= 则10k =∴反比例函数解析式为10Vρ=当3V =时,则103ρ= 故答案为:10V ρ=103【点睛】本题考查了反比例函数的应用,待定系数法求反比例函数的解析式,根据解析式求函数值,从图像获取信息是解题的关键.15.【答案】(1)不在,理由见解析 (2)20 (3)不变化,24【分析】对于(1),利用待定系数法求出函数关系式,再代入判断即可;对于(2),设点E 的横坐标和点F 的横坐标,再分别表示出点E ,F ,G ,H 的坐标,进而得出线段的长度,再根据平行四边形面积公式得出答案;对于(3),设点P 的横坐标为t ,分别表示点C ,点D 的坐标,再根据两点之间的距离公式得出AC 和BD 的长,进而得出答案.(1)将点()4,3M 代入m y x =得34m= 12m =∴12y x=;当2x =时,则6y = ∵68≠∴点()2,8不在函数图象上;(2)设点E 的横坐标是1,点F 的横坐标是6,点G ,H 分别对应点E ,F ,如图所示.图形扫过的面积即为平行四边形EFHG 的面积.令12y x=中1x =,则12y = 所以(112)E , -1,12G ()令12y x=中6x =,则2y = 所以(62)F ,,(4,2)H . 因为EG FH ∥,且EM FH = 所以四边形EGHF 为平行四边形所以=()2(122)20E F S EG y y ⋅-=⨯-=. 故答案为:20;(3)不变化,理由如下:因为直线l :8y x =-+与x 轴,y 轴分别交于点A ,点B 所以点A (8,0),B (0,8). 设点P 的横坐标是t 所以12(,)P t t.因为PC x ∥轴交直线l 于点C ,PD y ∥轴交直线l 于点D 所以1212(8,)C tt-+ (,8)D t t -+所以AC =BD =即24AC BD ⋅=⋅=所以AC BD ⋅为定值,为24..【点睛】本题主要考查了反比例函数图象上点的坐标特征,待定系数法求函数关系式,求平行四边形面积等,掌握数形结合思想是解题的关键.16.【答案】(1)①1;②4- (2)12y x=- 223y x =--【分析】(1)根据材料中的定义进行计算,即可求出答案; (2)由函数图像可知当20x -<<时,则2kx bx ,则min ,22k x b x b x-+=-+,结合已知可得()()2213x b x x x -+=+--,即可求出b ,得到一次函数解析式,求出点A 的坐标,再利用待定系数法求出反比例函数解析式. (1)解:根据题意∵min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a = ∴①()0min 3,21-=;∵4-∴②min 44-=-; 故答案为:①1;②4-;(2)解:由函数图像可知当20x -<<时,则2k x bx∴min,22kx b x b x-+=-+ 又∵()()2min,213kx b x x x x-+=+-- ∴()()2213x b x x x -+=+-- ∴3b =-∴一次函数223y x =-- 当x =-2时21y = ∴A (-2,1) 将A (-2,1)代入1ky x=得212k =-⨯=-∴反比例函数12y x=-.【点睛】本题考查了新定义的运算法则,零次幂,反比例函数与一次函数的综合问题,解题的关键是掌握题意,正确的运用数形结合的思想求解.17.【答案】(1)k =2,点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG ,证明详见解析;(3)点P 的坐标为(40)或(158,00). 【分析】(1)证明△COF ∽△AOB ,则CF OCAB OA=,求得:点F 的坐标为(1,2),即可求解; (2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG .证△OAB ∽△BFG :43AO BF = 24332AB BG ==即可求解.(3)分GF =PF 、PF =PG 、GF =PG 三种情况,分别求解即可. 【详解】解:(1)∵四边形OABC 为矩形,点B 的坐标为(4,2) ∴∠OCB =∠OAB =∠ABC =90°,OC =AB =2,OA =BC =4 ∵△ODE 是△OAB 旋转得到的,即:△ODE ≌△OAB ∴∠COF =∠AOB ,∴△COF ∽△AOB ∴CF OC AB OA =,∴2CF =24,∴CF =1∴点F 的坐标为(1,2) ∵y =kx(x >0)的图象经过点F∴2=1k ,得k =2 ∵点G 在AB 上 ∴点G 的横坐标为4对于y =2x ,当x =4,得y =12∴点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG . 下面对△OAB ∽△BFG 进行证明: ∵点G 的坐标为(4,12),∴AG =12 ∵BC =OA =4,CF =1,AB =2∴BF=BC﹣CF=3BG=AB﹣AG=32.∴43AOBF=24332ABBG==∴AO AB BF BG=∵∠OAB=∠FBG=90°∴△OAB∽△FBG.(3)设点P(m,0),而点F(1,2)、点G(4,12)则FG2=9+94=454,PF2=(m﹣1)2+4,PG2=(m﹣4)2+14当GF=PF时,则即454=(m﹣1)2+4,解得:m;当PF=PG时,则同理可得:m=158;当GF=PG时,则同理可得:m=4综上,点P的坐标为(40)或(158,00).【点睛】本题考查的是反比例函数综合运用,涉及到旋转的性质、三角形相似、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.18.【答案】(1)②③( 2)4 (3)t=2或t=1【分析】(1)根据定义分析判断即可;(2)作出图形,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点,由xB﹣xA=5,设CN=x,则MC=5﹣x,则B(3+x,x),A(x﹣2,5﹣x),根据轴对称的性质以及反比例函数的性质可得(3+x)x+(x﹣2)(5﹣x)=0,继而求得x的值,即可求得B的坐标,根据反比例函数的意义即可求得m的值;(3)根据题意以及二次函数的性质,待定系数求二次函数解析式,进而分类讨论,根据121 2y y-=,即可求得t的值.(1)解:根据定义,函数关于直线x n=(n为常数)对称,即该函数图象是轴对称图形①6yx=的图象是中心对称图象,不符合题意;②4y x=,③225y x x=--的图象是轴对称图形,符合题意故答案为:②③(2)∵y=|x-h|是“X(3)”函数∴h=3如图,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点∴C(3,0),D(0,﹣3)∴∠BCN=∠OCD=45°由对称性可知,∠ACM=∠OCD=45°∴AM=CM,BN=CN∵xB﹣xA=5∴MN=5设CN=x,则MC=5﹣x∴B(3+x,x),A(x﹣2,5﹣x)∴(3+x)x+(x﹣2)(5﹣x)=0∴x=1∴B(4,1)∴m=4;(3)由题意得4112a bba-+=⎧⎪⎨-=⎪⎩解得12 ab=-⎧⎨=⎩∴此“X(n)函数”为y=﹣x2+2x+4①当t<1时x=t时,则y1=﹣t2+2t+4x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=(﹣t2+2t+4)﹣[﹣(t﹣1)2+2(t﹣1)+4]=﹣2t+3=12∴t=54(舍);②当t﹣1≥1,即t≥2时x=t﹣1时,则y1=﹣(t﹣1)2十2(t﹣1)+4x=t时,则y2=﹣t2+2t+4y1-y2=﹣(t﹣1)2+2(t﹣1)+4﹣(﹣t2+2t+4)=2t﹣3=12∴t=74(舍);③当1≤t<32时x=1时,则y1=5x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=5﹣[﹣(t﹣1)2+2(t﹣1)+4]=t2﹣4t+4=12∴t=2±,又因为1≤t<3 2∴t=2-④32≤t<2时x=1时,则y1=5x=t时,则y2=﹣t2十2t+4y1﹣y2=5﹣(﹣t2+2t+4)=t2﹣4t+4=12∴t=1,又因为32≤t<2∴t=1综上所述:t=2-t=1【点睛】本题考查了新定义,一次函数的性质,反比例函数的性质,二次函数的性质,根据新定义以及轴对称的性质求解是解题的关键.19.【答案】(1)B (-1,-3)(2)存在,(06-,或(06-,或()00,(3)6y x =-【分析】(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,证明ADF BAE ≅得出BE 与OE 的长度便可求得B 点坐标;(2)先求出AB 的值,再根据题意可得分类讨论,分为当AB =AP 时有两种情况和当AB =BP 时有一种情况进行求解即可;(3)先设向上平移了m 表示B '和D 的坐标,再根据B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上得B '和D 点的横、纵坐标的积相等,列出关于m 的方程即可求解.(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,如下图则90AFD AEB ∠=∠=︒∵点A (0,-6),D (-3,-7)∴DF =3,AF =1∵四边形ABCD 是正方形∴AB =AD 90BAD ∠=︒∴90DAF BAE DAF ADF ∠+∠=∠+∠=︒∴ADF BAE =∠∠∵ADF BAE F EAD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADF BAE ≅∴DF =AE =3,AF =BE =1∴OE=OA-AE=6-3=3∴B(-1,-3).(2)存在3种情况由(1)得ADF BAE≅且在Rt AFD中AB=AD①当AB=AP时的等腰三角形,如图则AP∵A为(0,-6)∴P点的坐标为(0,);②当AB=AP时,则如下图则AP∵A 为(0,-6)∴P 点的坐标为(0,);③当AB =BP 时,则如下图则BP ,且过B 作BE ⊥AP 于点E∵AB BP BE AP =⊥,∴3PE AE ==∴P 点在原点上则P 为(0,0).综上所述点P 的坐标为(06-,或(06-,或()00,. (3)设向上平移了m 可得B '为(-1,-3+m ),D 为(-3,-7+m ) 反比例函数关系式为k y x=()0k ≠ ∴()()1337k m m =-⨯-+=-⨯-+解得m =9∴k =()13166m -⨯-+=-⨯=- ∴反比例函数解析式为:6y x=- 【点睛】此题是反比例函数与正方形结合的综合体,主要考查了反比例函数的性质、待定系数法、全等三角形的性质和判定和等腰三角形的性质和判定,解决本题的关键是证明全等三角形和分类讨论.。
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。
九年级数学下册第二十六章《反比例函数》单元综合复习题(含答案)(本试卷共三个大题,26个小题,总分150分,时间 120分)一.选择题(每题4分,共40分)1.在下列表达式中,x 均表示自变量:①x y 52-= ②2x y = ③1--=x y ④2=xy ⑤11+=x y ⑥xy 4.0= .其中y 是x 的反比例函数的个数有( )个。
A. 3 B. 4 C. 5 D. 6 2.如果反比例函数xky =的图象经过点(-3,4),那么函数的图象应在( ) A.第一、三象限 B. 第一、二象限 C. 第二、四象限 D. 第三、四象限 3.已知反比例函数xky =经过点(-1,2),那么一次函数2+=kx y 的图象一定不经过( ) A .第一象限 B.第二象限 C. 第三象限 D. 第四象限 4.已知y 与x 成正比例,z 与y 成反比例,那么z 与x 之间的关系是( ) A.成正比例 B.成反比例 C.有可能成正比例,也有可能成反比例 D.不能确定 5.如图,函数)1(+=x k y 与xky =在同一坐标系中,图象只能是下图中的( )6.三角形的面积为42cm ,底边上的高)(cm y 与底边)(cm x 之间的 函数关系图象大致为( )7.已知反比例函数)0(<=k xky 的图象上有两点A ),(11y x 、B ),(22y x ,且21x x <,则21y y -的值是( )A. 正数B. 负数C. 非正数D. 不能确定8.如图,在平面直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (a 3,a )是反比例函数)0(>=k xky 的图象与正方形的一个交点,若图中阴影部分的面积等于9,则k 的值为( )A. 1 B . 2 C . 3 D. 49.如图,正比例函数x y =和)0(>=m mx y 的图象与反比例函数)0(>=k xky 的图象分别交于A 、C 两点,过A 、C 两点分别向x 轴作垂线,垂足分别为B 、D 若R t △AOB 与Rt △COD 的面积分别为1S 和2S ,则1S 与2S 的关系为( )0 xyB DC A 9题第8题第16题A .21S S > B. 21S S < C. 21S S = D. 与m 、k 的值无关 10.如图,已知直线b x k y +=1与x 轴、y 轴相交于P 、Q 两点,与xk y 22=的图象相交于A (-2,m )、B (1,n )两点,连接OA 、OB.给出下列四个结论:①021<k k ;②021=+n m ;③S △AOP=S △BOQ ;④不等式x kb x k 21>+的解集 是2-<x 或10<<x ,其中正确的结论是( )A.①②③④B.①②③C.②③④D.①③④ 二.填空题(每题4分,共40分) 11.如果一个反比例函数xky =的图象经过点(2,-1)那么这 个反比例函数的解析式是 。
反比例函数——图像上点的坐标特征一.选择题(共16小题)1.如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤494B.6≤k≤10C.2≤k≤6D.2≤k≤2522.如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′BC′.若反比例函数y=kx的图象恰好经过A′B的中点D,则k的值是()A.9B.12C.15D.183.如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=kx(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A.16B.20C.32D.404.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D (﹣2,3),AD =5,若反比例函数y =kx(k >0,x >0)的图象经过点B ,则k 的值为( )A .163B .8C .10D .3235.如图,已知点A 、B 分别在反比例函数y =1x(x >0),y =−4x(x >0)的图象上,且OA ⊥OB ,则OB OA的值为( )A .√2B .2C .√3D .46.已知点A 在双曲线y =−2x 上,点B 在直线y =x ﹣4上,且A ,B 两点关于y 轴对称.设点A 的坐标为(m ,n ),则m n+n m的值是( )A .﹣10B .﹣8C .﹣6D .47.如图,平面直角坐标系中,A (﹣8,0),B (﹣8,4),C (0,4),反比例函数y =kx 的图象分别与线段AB ,BC 交于点D ,E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k =( )A .﹣20B .﹣16C .﹣12D .﹣88.如图,点D 是▱OABC 内一点,CD 与x 轴平行,BD 与y 轴平行,BD =√2,∠ADB =135°,S △ABD =2.若反比例函数y =kx (x >0)的图象经过A 、D 两点,则k 的值是( )A.2√2B.4C.3√2D.69.如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(3,0)为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=kx的图象上,则k的值为()A.36B.48C.49D.6410.如图,在平面直角坐标系中,一次函数y=43x+4的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形ABCD,且点C在反比例函数y=kx(x<0)的图象上,则k的值为()A.﹣12B.﹣42C.42D.﹣2111.若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=kx(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>112.若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=−12x的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1 13.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A.6B.﹣6C.12D.﹣1214.已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=2x上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0B.x1•x3<0C.x2•x3<0D.x1+x2<015.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=kx(k<0)的图象上,且x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y2>y3D.y3>y1>y216.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1二.填空题(共16小题)17.如图,四边形OABC是平行四边形,点C在x轴上,反比例函数y=kx(x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为.18.如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=k x图象上,且y轴平分∠ACB,求k=.19.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC 上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=kx(k≠0)的图象恰好经过点A′,B,则k的值为.20.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(1x,1y)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=kx的图象上.若AB=2√2,则k=.21.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为.22.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=k1x上,点A关于x轴的对称点B在双曲线y=k2x,则k1+k2的值为.23.如图,已知直线y=−13x+1与坐标轴交于A,B两点,矩形ABCD的对称中心为M,双曲线y=kx(x>0)正好经过C,M两点,则直线AC的解析式为:.24.如图,将一个含30°角的三角尺ABC放在直角坐标系中,使直角顶点C与原点O重合,顶点A,B分别在反比例函数y=−4x和y=kx的图象上,则k的值为.25.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=kx(k≠0)的图象经过其中两点,则m的值为.26.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=kx(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.27.如图,已知矩形ABCD的顶点A、B分别落在双曲线y=kx上,顶点C、D分别落在y轴、x轴上,双曲线y=kx经过AD的中点E,若OC=3,则k的值为.28.如图,在平面直角坐标系中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的顶点C、D在第一象限,顶点D在反比例函数y=kx(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是.29.如图,过原点的直线与反比例函数y=2x(x>0)、反比例函数y=6x(x>0)的图象分别交于A、B两点,过点A作y轴的平行线交反比例函数y=6x(x>0)的图象于C点,以AC为边在直线AC的右侧作正方形ACDE,点B恰好在边DE上,则正方形ACDE的面积为.30.设A,B,C,D是反比例函数y=kx图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是.(写出所有正确结论的序号)31.如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数y=6x(x>0)的图象上,则矩形ABCD的周长为.32.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=2x的图象上,且x1<x2<0,则y1y2(填“>”或“<”).三.解答题(共7小题)33.如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=kx(k≠0)的图象与AD边交于E(﹣4,12),F(m,2)两点.(1)求k,m的值;(2)写出函数y=kx图象在菱形ABCD内x的取值范围.34.如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数y=kx(k>0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.35.阅读下面的材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有f (x 1)<f (x 2),则称f (x )是增函数; (2)若x 1<x 2,都有f (x 1)>f (x 2),则称f (x )是减函数. 例题:证明函数f (x )=6x (x >0)是减函数. 证明:设0<x 1<x 2, f (x 1)﹣f (x 2)=6x 1−6x 2=6x 2−6x 1x 1x 2=6(x 2−x 1)x 1x 2. ∵0<x 1<x 2,∴x 2﹣x 1>0,x 1x 2>0. ∴6(x 2−x 1)x 1x 2>0.即f (x 1)﹣f (x 2)>0.∴f (x 1)>f (x 2).∴函数f (x )=6x(x >0)是减函数. 根据以上材料,解答下面的问题: 已知函数f (x )=1x 2+x (x <0), f (﹣1)=1(−1)2+(﹣1)=0,f (﹣2)=1(−2)2+(﹣2)=−74(1)计算:f (﹣3)= ,f (﹣4)= ; (2)猜想:函数f (x )=1x 2+x (x <0)是 函数(填“增”或“减”); (3)请仿照例题证明你的猜想. 36.已知反比例函数y =−3x.(1)若点(﹣t +52,﹣2)在此反比例函数图象上,求t 的值. (2)若点(x 1,y 1)和(x 2,y 2)是此反比例函数图象上的任意两点, ①当x 1>0,x 2>0,且x 1=x 2+2时,求y 2−y 1y 1y 2的值;②当x 1>x 2时,试比较y 1,y 2的大小.37.小明根据学习函数的经验,参照研究函数的过程与方法,对函数y=x−2x(x≠0)的图象与性质进行探究.因为y=x−2x=1−2x,即y=−2x+1,所以可以对比函数y=−2x来探究.列表:(1)下表列出y与x的几组对应值,请写出m,n的值:m=,n=;x…﹣4﹣3﹣2﹣1−12121234…y=−2x…1223124﹣4﹣2﹣1−23−12…y=x−2x…325323m﹣3﹣10n12…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=x−2x相应的函数值为纵坐标,描出相应的点,如图所示:(2)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(3)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填“增大”或“减小”)②函数y=x−2x的图象是由y=−2x的图象向平移个单位而得到.③函数图象关于点中心对称.(填点的坐标)38.小明根据学习函数的经验,对函数y=1x−1+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=1x−1+1的自变量x的取值范围是;(2)如表列出了y与x的几组对应值,请写出m,n的值:m=,n=;x…−32﹣1−1201232252372…y (3)5m130﹣1n2533275…(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.(4)结合函数的图象,解决问题:①写出该函数的一条性质:.②当函数值1x−1+1>32时,x的取值范围是:.39.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数y=kx在第一象限的图象经过点D,交BC于E.(1)当点E的坐标为(3,n)时,求n和k的值;(2)若点E是BC的中点,求OD的长.答案一.选择题(共16小题)1.【解答】解:反比例函数和三角形有交点的第一个临界点是交点为A , ∵过点A (1,2)的反比例函数解析式为y =2x , ∴k ≥2.随着k 值的增大,反比例函数的图象必须和线段BC 有交点才能满足题意, 经过B (2,5),C (6,1)的直线解析式为y =﹣x +7, {y =−x +7y =k x,得x 2﹣7x +k =0 根据△≥0,得k ≤494 综上可知2≤k ≤494. 故选:A .2.【解答】解:作A ′H ⊥y 轴于H .∵∠AOB =∠A ′HB =∠ABA ′=90°,∴∠ABO +∠A ′BH =90°,∠ABO +∠BAO =90°, ∴∠BAO =∠A ′BH , ∵BA =BA ′,∴△AOB ≌△BHA ′(AAS ), ∴OA =BH ,OB =A ′H ,∵点A 的坐标是(﹣2,0),点B 的坐标是(0,6), ∴OA =2,OB =6,∴BH =OA =2,A ′H =OB =6, ∴OH =4, ∴A ′(6,4), ∵BD =A ′D , ∴D (3,5),∵反比例函数y =kx的图象经过点D , ∴k =15. 故选:C .3.【解答】解:∵BD ∥x 轴,D (0,4), ∴B 、D 两点纵坐标相同,都为4, ∴可设B (x ,4).∵矩形ABCD 的对角线的交点为E , ∴E 为BD 中点,∠DAB =90°. ∴E (12x ,4).∵∠DAB =90°, ∴AD 2+AB 2=BD 2,∵A (2,0),D (0,4),B (x ,4), ∴22+42+(x ﹣2)2+42=x 2, 解得x =10, ∴E (5,4).∵反比例函数y =kx (k >0,x >0)的图象经过点E , ∴k =5×4=20. 故选:B .4.【解答】解:过D 作DE ⊥x 轴于E ,过B 作BF ⊥x 轴,BH ⊥y 轴, ∴∠BHC =90°,∵点D (﹣2,3),AD =5, ∴DE =3,∴AE =√AD 2−DE 2=4, ∵四边形ABCD 是矩形, ∴AD =BC ,∴∠BCD =∠ADC =90°,∴∠DCP +∠BCH =∠BCH +∠CBH =90°, ∴∠CBH =∠DCH ,∵∠DCP +∠CPD =∠APO +∠DAE =90°, ∠CPD =∠APO , ∴∠DCP =∠DAE , ∴∠CBH =∠DAE , ∵∠AED =∠BHC =90°,∴△ADE ≌△BCH (AAS ), ∴BH =AE =4, ∵OE =2, ∴OA =2, ∴AF =2,∵∠APO +∠P AO =∠BAF +∠P AO =90°, ∴∠APO =∠BAF , ∴△APO ∽△BAF , ∴OP AF=OA BF,∴12×32=2BF,∴BF =83, ∴B (4,83),∴k =323, 故选:D .5.【解答】解:过点A 作AM ⊥y 轴于点M ,过点B 作BN ⊥y 轴于点N , ∴∠AMO =∠BNO =90°, ∴∠AOM +∠OAM =90°, ∵OA ⊥OB ,∴∠AOM +∠BON =90°, ∴∠OAM =∠BON , ∴△AOM ∽△OBN ,∵点A ,B 分别在反比例函数y =1x (x >0),y =−4x(x >0)的图象上, ∴S △AOM :S △BON =1:4, ∴AO :BO =1:2, ∴OB :OA =2. 故选:B .6.【解答】解:∵点A 的坐标为(m ,n ),A 、B 两点关于y 轴对称, ∴B (﹣m ,n ),∵点A 在双曲线y =−2x 上,点B 在直线y =x ﹣4上, ∴n =−2m,﹣m ﹣4=n ,即mn =﹣2,m +n =﹣4,∴原式=(m+n)2−2mn mn=16+4−2=−10. 故选:A .7.【解答】解:过点E 作EG ⊥OA ,垂足为G ,设点B 关于DE 的对称点为F ,连接DF 、EF 、BF ,如图所示: 则△BDE ≌△FDE ,∴BD =FD ,BE =FE ,∠DFE =∠DBE =90° 易证△ADF ∽△GFE ∴AF EG=DF FE,∴AF :EG =BD :BE ,∵A (﹣8,0),B (﹣8,4),C (0,4), ∴AB =OC =EG =4,OA =BC =8, ∵D 、E 在反比例函数y =kx的图象上, ∴E (k4,4)、D (﹣8,−k 8)∴OG =EC =−k 4,AD =−k8, ∴BD =4+k8,BE =8+k4 ∴BD BE=4+k 88+k 4=12=DF FE=AF EG,∴AF =12EG =2,在Rt △ADF 中,由勾股定理:AD 2+AF 2=DF 2 即:(−k8)2+22=(4+k8)2解得:k=﹣12故选:C.8.【解答】解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA∥BC,OA=BC,∴∠AOM=∠CNM,∵BD∥y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=√2,∵S△ABD=12BD⋅AE=2,BD=√2,∴AE=2√2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2√2,∴D的纵坐标为3√2,设A(m,√2),则D(m﹣2√2,3√2),∵反比例函数y=kx(x>0)的图象经过A、D两点,∴k=√2m=(m﹣2√2)×3√2,解得m=3√2,∴k=√2m=6.故选:D.9.【解答】解:过P 分别作AB 、x 轴、y 轴的垂线,垂足分别为C 、D 、E ,如图, ∵A (0,4),B (3,0), ∴OA =4,OB =3, ∴AB =√32+42=5,∵△OAB 的两个锐角对应的外角角平分线相交于点P , ∴PE =PC ,PD =PC , ∴PE =PC =PD , 设P (t ,t ),则PC =t ,∵S △P AE +S △P AB +S △PBD +S △OAB =S 矩形PEOD ,∴12×t ×(t ﹣4)+12×5×t +12×t ×(t ﹣3)+12×3×4=t ×t ,解得t =6, ∴P (6,6),把P (6,6)代入y =kx得k =6×6=36. 故选:A .10.【解答】解:∵当x =0时,y =0+4=4, ∴A (0,4), ∴OA =4;∵当y =0时,0=43x +4, ∴x =﹣3,∴B (﹣3,0), ∴OB =3;过点C 作CE ⊥x 轴于E ,∵四边形ABCD 是正方形, ∴∠ABC =90°,AB =BC ,∵∠CBE +∠ABO =90°,∠BAO +∠ABO =90°, ∴∠CBE =∠BAO . 在△AOB 和△BEC 中, {∠CBE =∠BAO ∠BEC =∠AOB BC =AB, ∴△AOB ≌△BEC (AAS ), ∴BE =AO =4,CE =OB =3, ∴OE =3+4=7,∴C 点坐标为(﹣7,3),∵点C 在反比例函数y =kx (x <0)的图象上, ∴k =﹣7×3=﹣21. 故选:D .11.【解答】解:∵k <0,∴在图象的每一支上,y 随x 的增大而增大, ①当点(a ﹣1,y 1)、(a +1,y 2)在图象的同一支上, ∵y 1>y 2, ∴a ﹣1>a +1, 此不等式无解;②当点(a ﹣1,y 1)、(a +1,y 2)在图象的两支上, ∵y 1>y 2,∴a ﹣1<0,a +1>0, 解得:﹣1<a <1, 故选:B .12.【解答】解:当x=﹣3,y1=−12−3=4;当x=﹣2,y2=−12−2=6;当x=1,y3=−121=−12,所以y3<y1<y2.故选:B.13.【解答】解:设反比例函数的解析式为y=k x,把A(3,﹣4)代入得:k=﹣12,即y=−12 x,把B(﹣2,m)代入得:m=−12−2=6,故选:A.14.【解答】解:∵反比例函数y=2x中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2>0,x1•x3<0,x2•x3<0,x1+x2<0,故选:A.15.【解答】解:∵反比例函数y=x(k<0)的图象分布在第二、四象限,在每一象限y随x的增大而增大,而x1<x2<0<x3,∴y3<0<y1<y2.即y2>y1>y3.故选:A.16.【解答】解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=−6x的图象上,∴y1=−6−1=6,y2=−62=−3,y3=−63=−2,又∵﹣3<﹣2<6,∴y1>y3>y2.故选:C.二.填空题(共16小题)17.【解答】解法1:如图,连接AD并延长,交x轴于E,由A(5,12),可得AO=√52+122=13,∴BC =13,∵AB ∥CE ,AB =BD ,∴∠CED =∠BAD =∠ADB =∠CDE , ∴CD =CE ,∴AB +CE =BD +CD =13,即OC +CE =13, ∴OE =13, ∴E (13,0),由A (5,12),E (13,0),可得AE 的解析式为y =−32x +392, ∵反比例函数y =kx(x >0)的图象经过点A (5,12), ∴k =12×5=60,∴反比例函数的解析式为y =60x ,解方程组{y =−32x +392y =60x ,可得{x =5y =12,{x =8y =152, ∴点D 的坐标为(8,152).解法2:如图,过D 作DH ⊥x 轴于H ,过A 作AG ⊥x 轴于G , ∵点A (5,12),∴OG =5,AG =12,AO =13=BC ,∵∠AOG =∠DCH ,∠AGO =∠DHC =90°, ∴△AOG ∽△DCH ,∴可设CH =5k ,DH =12k ,CD =13k , ∴BD =13﹣13k , ∴OC =AB =13﹣13k , ∴OH =13﹣13k +5k =13﹣8k , ∴D (13﹣8k ,12k ),∵反比例函数y =kx (x >0)的图象经过点A (5,12)和点D , ∴5×12=(13﹣8k )×12k , 解得k =58,k =1(舍去), ∴D 的坐标为(8,152).故答案为:(8,152).18.【解答】解:过A 作AE ⊥x 轴,垂足为E ,∵C (0,﹣3),∴OC =3,∵∠AED =∠COD =90°,∠ADE =∠CDO∴△ADE ∽△CDO ,∴AE CO =DE OD =AD CD =13, ∴AE =1;又∵y 轴平分∠ACB ,CO ⊥BD ,∴BO =OD ,∵∠ABC =90°,∴∠OCD =∠DAE =∠ABE ,∴△ABE ∽△DCO ,∴AE OD =BE OC设DE =n ,则BO =OD =3n ,BE =7n ,∴13n =7n 3, ∴n =√77∴OE =4n =4√77∴A (4√77,1)∴k =4√77×1=4√77. 故答案为:4√77.19.【解答】解:∵四边形ABCO 是矩形,AB =1,∴设B (m ,1),∴OA =BC =m ,∵四边形OA ′B ′D 与四边形OABD 关于直线OD 对称,∴OA ′=OA =m ,∠A ′OD =∠AOD =30°,∴∠A ′OA =60°,过A ′作A ′E ⊥OA 于E ,∴OE =12m ,A ′E =√32m ,∴A ′(12m ,√32m ), ∵反比例函数y =k x (k ≠0)的图象恰好经过点A ′,B ,∴12m •√32m =m , ∴m =4√33,∴k =4√33. 故答案为:4√33.20.【解答】解:(方法一)设点A (a ,﹣a +1),B (b ,﹣b +1)(a <b ),则A ′(1a ,11−a ),B ′(1b ,11−b ),∵AB =√(b −a)2+[(−b +1)−(−a +1)]2=√2(b −a)2=√2(b ﹣a )=2√2,∴b ﹣a =2,即b =a +2.∵点A ′,B ′均在反比例函数y =k x 的图象上,∴{b =a +2k =1a(1−a)=1b(1−b), 解得:k =−43.(方法二)∵直线y =﹣x +1上有两点A 、B ,且AB =2√2,∴设点A 的坐标为(a ,﹣a +1),则点B 的坐标为(a +2,﹣a ﹣1),点A ′的坐标为(1a ,11−a ),点B ′的坐标为(1a+2,−1a+1).∵点A ′,B ′均在反比例函数y =k x 的图象上,∴{11−a =ak −1a+1=k(a +2), 解得:{a =−12k =−43. 故答案为:−43.21.【解答】解:∵OA =1,OC =6,∴B 点坐标为(1,6),∴k =1×6=6,∴反比例函数解析式为y =6x ,设AD =t ,则OD =1+t ,∴E 点坐标为(1+t ,t ),∴(1+t )•t =6,整理为t 2+t ﹣6=0,解得t 1=﹣3(舍去),t 2=2,∴正方形ADEF 的边长为2.故答案为:2.22.【解答】解:∵点A (a ,b )(a >0,b >0)在双曲线y =k1x 上,∴k 1=ab ;又∵点A 与点B 关于x 轴的对称,∴B (a ,﹣b )∵点B 在双曲线y =k 2x 上, ∴k 2=﹣ab ;∴k 1+k 2=ab +(﹣ab )=0;故答案为:0.23.【解答】解:在y =−13x +1中,令x =0,得y =1,令y =0,x =3,∴A (3,0),B (0,1),∴OA =3,OB =1,过C 作CE ⊥y 轴于E ,∵四边形ABCD 是矩形,∴∠CBA =90°,∴∠CBE +∠OBA =∠OBA +∠BAO =90°,∴∠CBE =∠BAO ,∵∠BEC =∠AOB =90°,∴△BCE ∽△ABO ,∴OB OA =CE BE =13, 设CE =x ,则BE =3x ,∴C (x ,3x +1),∵矩形ABCD 对称中心为M ,∴M (x+32,3x+12), ∵双曲线y =k x (x >0)正好经过C ,M 两点,∴x (3x +1)=x+32⋅3x+12, 解得:x 1=1,x 2=−13(舍)∴C (1,4),设直线AC 的解析式为:y =kx +b ,把A (3,0)和C (1,4)代入得:{3k +b =0k +b =4, 解得:{k =−2b =6, ∴直线AC 的解析式为:y =﹣2x +6,故答案为:y =﹣2x +6.24.【解答】解:过A 作AE ⊥y 轴于E 过B 作BF ⊥y 轴于F ,∵∠AOB =90°,∠ABC =30°,∴tan30°=OA OB =√33, ∵∠OAE +∠AOE =∠AOE +∠BOF =90°,∴∠OAE =∠BOF ,∴△AOE ∽△BOF ,∴AE OF =OE BF =OA OB =√33, 设A (m ,−4m ),∴AE =﹣m ,OE =−4m,∴OF =√3AE =−√3m ,BF =√3OE =−4√3m , ∴B (4√3m ,√3m ), ∴k =√3m •4√3m=12. 故答案为:12.25.【解答】解:∵点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限,点A(﹣2,1)在第二象限,∴点C (﹣6,m )一定在第三象限,∵B (3,2)在第一象限,反比例函数y =k x(k ≠0)的图象经过其中两点,∴反比例函数y =k x (k ≠0)的图象经过B (3,2),C (﹣6,m ),∴3×2=﹣6m ,∴m =﹣1,故答案为:﹣1.26.【解答】解:连接BD ,与AC 交于点O ′,∵四边形ABCD 是正方形,AC ⊥x 轴,∴BD 所在对角线平行于x 轴,∵B (0,2),∴O ′C =2=BO ′=AO ′=DO ′,∴点A 的坐标为(2,4),∴k =2×4=8,故答案为:8.27.【解答】解:设A 点坐标为(a ,b ),则k =ab ,y =ab x,如图, 过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥y 轴于点N ,过点E 作EF ⊥x 轴于点F , ∵四边形ABCD 是矩形,∴AD =BC ,∠ADM +∠CDO =90°,∠BCN +∠DCO =90°,∵∠CDO +∠DCO =90°,∴∠ADM +∠BCN =90°,∵∠ADM +∠DAM =90°,∴∠BCN =∠DAM ,在△ADM 和△CBN 中,{∠DAM =∠BCN ∠AMD =∠CNB =90°AD =CB,∴△ADM ≌△CBN (AAS ),∴CN =AM =b ,BN =MD ,∴ON=3﹣b,即y B=b﹣3,且B在y=abx图象上,∴B(abb−3,b﹣3),∴BN=DM=|x B|=ab3−b,∵点E是AD的中点,∴MF=ab6−2b,OF=a+ab6−2b,OD=a+ab3−b,∴E(a+ab6−2b,12b),∵双曲线y=kx经过AD的中点E,∴(a+ab6−2b)•12b=ab,解得b=2,∴A(a,2),B(﹣2a,﹣1,D(3a,0),而C(0,﹣3),且矩形ABCD有AC=BD,∴(a﹣0)2+(2+3)2=(﹣2a﹣3a)2+(﹣1﹣0)2,解得a=1或a=﹣1(舍去),∴A(1,2),代入y=kx得:k=2.故答案为:2.28.【解答】解:过点D作DE⊥x轴,过点C作CF⊥y轴,∵AB⊥AD,∴∠BAO=∠ADE,∵AB=AD,∠BOA=∠DEA,∴△ABO≌△DAE(AAS),∴AE=BO,DE=OA,易求A(1,0),B(0,4),∴D(5,1),∵顶点D在反比例函数y=kx上,∴y=5 x,易证△CBF≌△BAO(AAS),∴CF=4,BF=1,∴C(4,5),∵C向左移动n个单位后为(4﹣n,5),∴5(4﹣n)=5,∴n=3,故答案为3;29.【解答】解:设直线AB的解析式为y=kx,A(m,2m ),B(n,6n),C(m,6m)∴{2m =km6 n =kn,∴k=2m2=6n2,∴n=√3m,∵AC=AE,即6m −2m=n﹣m,∴4m=√3m−m,解得:4m2=√3−1,∵S正方形=AC2=(4m )2=4×4m2=4(√3−1)=4√3−4;30.【解答】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA =OC ,OB =OD ,∴四边形ABCD 是平行四边形,当直线AC 和直线BD 关于直线y =x 对称时,此时OA =OC =OB =OD ,即四边形ABCD 是矩形.∵反比例函数的图象在一,三象限,∴直线AC 与直线BD 不可能垂直,∴四边形ABCD 不可能是菱形或正方形,故选项①④正确,故答案为:①④.31.【解答】解:∵四边形ABCD 是矩形,点A 的坐标为(2,1),∴点D 的横坐标为2,点B 的纵坐标为1,当x =2时,y =62=3,当y =1时,x =6,则AD =3﹣1=2,AB =6﹣2=4,则矩形ABCD 的周长=2×(2+4)=12,故答案为:12.32.【解答】解:在反比例函数y =2x 中k =2>0,∴x <0时,y 的值随着x 的增加而减小,∵x 1<x 2<0,∴y 1>y 2.故答案为:>.三.解答题(共7小题)33.【解答】解:(1)∵点E (﹣4,12)在y =k x 上, ∴k =﹣2,∴反比例函数的解析式为y =−2x ,∵F (m ,2)在y =−2x上, ∴m =﹣1.(2)函数y =k x 图象在菱形ABCD 内x 的取值范围为:﹣4<x <﹣1或1<x <4.34.【解答】解:(1)过点P 作x 轴垂线PG ,连接BP ,∵P 是正六边形ABCDEF 的对称中心,CD =2,∴BP =2,G 是CD 的中点,∴PG =√3,∴P (2,√3),∵P 在反比例函数y =k x 上,∴k =2√3,∴y =2√3x ,由正六边形的性质,A (1,2√3),∴点A 在反比例函数图象上;(2)D (3,0),E (4,√3),设DE 的解析式为y =mx +b ,∴{3m +b =04m +b =√3, ∴{m =√3b =−3√3, ∴y =√3x ﹣3√3,联立方程{y =2√3x y =√3x −3√3解得x =3+√172, ∴Q 点横坐标为3+√172;(3)A (1,2√3),B (0,√3),C (1,0),D (3,0),E (4,√3),F (3,2√3), 设正六边形向左平移m 个单位,向上平移n 个单位,则平移后点的坐标分别为 ∴A (1﹣m ,2√3+n ),B (﹣m ,√3+n ),C (1﹣m ,n ),D (3﹣m ,n ),E (4﹣m ,√3+n ),F (3﹣m ,2√3+n ),①将正六边形向左平移两个单位后,E (2,√3),F (1,2√3);则点E 与F 都在反比例函数图象上;②将正六边形向右平移一个单位,再向上平移√3个单位后,C (2,√3),B (1,2√3) 则点B 与C 都在反比例函数图象上;35.【解答】解:(1)∵f(x)=1x2+x(x<0),∴f(﹣3)=1(−3)2−3=−269,f(﹣4)=1(−4)2−4=−6316故答案为:−269,−6316(2)∵﹣4<﹣3,f(﹣4)<f(﹣3)∴函数f(x)=1x2+x(x<0)是增函数故答案为:增(3)设x1<x2<0,∵f(x1)﹣f(x2)=1x12+x1−1x22−x2=(x1﹣x2)(1−x1+x2x12x22)∵x1<x2<0,∴x1﹣x2<0,x1+x2<0,∴f(x1)﹣f(x2)<0∴f(x1)<f(x2)∴函数f(x)=1x2+x(x<0)是增函数36.【解答】解:(1)把点(﹣t+52,﹣2)代入反比例函数y=−3x得,(﹣t+52)×(﹣2)=﹣3,解得,t=1;(2)①当x1>0,x2>0,且x1=x2+2时,这两个点在第四象限,y2−y1 y1y2=1y1−1y2=−x13+x23=x2−x13=−23;②根据函数的图象可知,Ⅰ)当0>x1>x2时,y1>y2>0,Ⅱ)当x1>0>x2时,y1<0<y2,Ⅲ)当x1>x2>0时,0>y1>y2,37.【解答】解:(1)x=−12时,y=−2x+1=5,∴m=5,x =3时,y =−2x +1=13,∴n =13;故答案为:5,13; (2)把y 轴左边各点和右边各点,分别用条光滑曲线顺次连接起来,如图:(3)根据图象可得:①在y 轴左边,y 随x 增大而增大,故答案为:增大;②函数y =x−2x 的图象是由y =−2x 的图象向上平移1个单位得到的, 故答案为:上,1;③函数图象关于点 (0,1)中心对称,故答案为:(0,1).38.【解答】解:(1)由分式的分母不为0得:x ﹣1≠0,∴x ≠1;故答案为:x ≠1.(2)当x =﹣1时,y =1x−1+1=12,当x =32时,y =1x−1+1=3, ∴m =12,n =3, 故答案为:12,3. (3)如图:(4)①观察函数图象,可知:函数图象经过原点且关于点(1,1)对称,故答案为:函数图象经过原点且关于点(1,1)对称.②观察函数图象,可知:当函数值1x−1+1>32时,x的取值范围是1<x<3,故答案为:1<x<3.39.【解答】解:(1)∵正方形ABCD的边长为2,点E的坐标为(3,n),∴OB=3,AB=AD=2,∴D(1,2),∵反比例函数y=kx在第一象限的图象经过点D,∴k=1×2=2,∴反比例函数的解析式为:y=2 x,∵反比例函数y=kx在第一象限的图象交BC于E,∴n=2 3;(2)设D(x,2),∵点E是BC的中点,∴E(x+2,1),∵反比例函数y=kx在第一象限的图象经过点D、点E,∴2x=x+2,解得x=2,∴D(2,2),∴OA=AD=2,∴OD=√OA2+AD2=2√2.。
第二十六章检测卷(120分钟150分)一、选择题(本大题共1.已知反比例函数y=的图象过点A(1,-2),则k的值为A.1B.2C.-2D.-12.若反比例函数y=经过点(a,2a),a≠0,则此反比例函数的图象在A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限3.对于反比例函数y=-,下列说法不正确的是A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,-2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y24.已知一个矩形的面积为24 cm2,其长为y cm,宽为x cm,则y与x之间的函数关系的图象大致在A.第一、三象限,且y随x的增大而减小B.第一象限,且y随x的增大而减小C.第二、四象限,且y随x的增大而增大D.第二象限,且y随x的增大而增大5.在下列选项中,是反比例函数关系的为A.在直角三角形中,30°角所对的直角边y与斜边x之间的关系B.在等腰三角形中,顶角y与底角x之间的关系C.圆的面积S与它的直径d之间的关系D.面积为20的菱形,其中一条对角线y与另一条对角线x之间的关系6.若a≠0,则函数y=与y=-ax2+a在同一平面直角坐标系中的大致图象可能是7.某人对地面的压强与他和地面接触面积的函数关系如图所示.若某一沼泽地地面能承受的压强不超过300 N/m2,那么为了不至于下陷,此人需要站立在木板上,则该木板的面积为(木板的重量忽略不计)A.至少2 m2B.至多2 m2C.2 m2D.无法确定8.如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是A.1<x<6B.x<1C.x<6D.x>19.如图,A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B,C在x轴上,点D在y 轴上,则平行四边形ABCD的面积为A.1B.3C.6D.1210.在同一平面直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为A.1B.mC.m2D.二、填空题(本大题共4小题,每小题5分,满分20分)11.若反比例函数y=k-在各自象限内y随x的增大而增大,则k的值为-.12.点A(a,b)是一次函数y=x-1与反比例函数y=的交点,则a2b-ab2=4.13.已知A,B两点分别在反比例函数y=(m≠0)和y=-的图象上,若点A与点B关于x轴对称,则m的值为1.14.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”,当双曲线y=(k>0)的眸径为6时,k的值为.三、(本大题共2小题,每小题8分,满分16分)15.如果函数y=x2m-1为反比例函数,求m的值.:16.学校食堂用1200元购买大米,写出购买的大米质量y(kg)与单价x(元)之间的函数解析式,y是x的反比例函数吗?四、(本大题共2小题,每小题8分,满分16分)17.已知点A(2,-3),P,Q(-5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求a+的值.18.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=的图象经过点C(3,m).(1)求菱形OABC的周长;(2)求点B的坐标.五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(-1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,求△BCE的面积.20.已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.六、(本题满分12分)21.已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1-y2=4时,求m的值;(2)如图,过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标.(不需要写解答过程)七、(本题满分12分)22.:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?八、(本题满分14分)23.我们可以把一个假分数写成一个整数加上一个真分数的形式,如=3+.同样的,我们也可以把某些分式写成类似的形式,如----=3+-.这种方法我们称为“分离常数法”.(1)如果-=1+,求常数a的值;(2)利用分离常数法,解决下面的问题:当m取哪些整数时,分式--的值是整数?(3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x的图象向下平移1个单位长度得到,函数y=的图象可以看成是由反比例函数y=的图象向左平移1个单位长度得到.那么请你分析说明函数y=--的图象是由哪个反比例函数的图象经过怎样的变换得到?第二十六章检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.已知反比例函数y=的图象过点A(1,-2),则k的值为A.1B.2C.-2D.-12.若反比例函数y=经过点(a,2a),a≠0,则此反比例函数的图象在A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限3.对于反比例函数y=-,下列说法不正确的是A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,-2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y24.已知一个矩形的面积为24 cm2,其长为y cm,宽为x cm,则y与x之间的函数关系的图象大致在A.第一、三象限,且y随x的增大而减小B.第一象限,且y随x的增大而减小C.第二、四象限,且y随x的增大而增大D.第二象限,且y随x的增大而增大5.在下列选项中,是反比例函数关系的为A.在直角三角形中,30°角所对的直角边y与斜边x之间的关系B.在等腰三角形中,顶角y与底角x之间的关系C.圆的面积S与它的直径d之间的关系D.面积为20的菱形,其中一条对角线y与另一条对角线x之间的关系6.若a≠0,则函数y=与y=-ax2+a在同一平面直角坐标系中的大致图象可能是7.某人对地面的压强与他和地面接触面积的函数关系如图所示.若某一沼泽地地面能承受的压强不超过300 N/m2,那么为了不至于下陷,此人需要站立在木板上,则该木板的面积为(木板的重量忽略不计)A.至少2 m2B.至多2 m2C.2 m2D.无法确定8.如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是A.1<x<6B.x<1C.x<6D.x>19.如图,A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B,C在x轴上,点D在y轴上,则平行四边形ABCD的面积为A.1B.3C.6D.1210.在同一平面直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为A.1B.mC.m2D.二、填空题(本大题共4小题,每小题5分,满分20分)11.若反比例函数y=k-在各自象限内y随x的增大而增大,则k的值为-.12.点A(a,b)是一次函数y=x-1与反比例函数y=的交点,则a2b-ab2=4.13.已知A,B两点分别在反比例函数y=(m≠0)和y=-的图象上,若点A与点B关于x轴对称,则m的值为1.14.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”,当双曲线y=(k>0)的眸径为6时,k的值为.三、(本大题共2小题,每小题8分,满分16分)15.如果函数y=x2m-1为反比例函数,求m的值.解:∵y=x2m-1是反比例函数,∴2m-1=-1,解得m=0.16.学校食堂用1200元购买大米,写出购买的大米质量y(kg)与单价x(元)之间的函数解析式,y是x的反比例函数吗?解:∵由题意得xy=1200,∴y=,∴y是x的反比例函数.四、(本大题共2小题,每小题8分,满分16分)17.已知点A(2,-3),P,Q(-5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求a+的值.解:(1)设反比例函数解析式为y=,把A点坐标(2,-3)代入得k=2×(-3)=-6,所以反比例函数的解析式为y=-.(2)把P点坐标代入y=-,得3×=-6,解得a=-4,把Q点坐标(-5,b)代入y=-,得-5b=-6,解得b=,所以a+=-4+=-4+1=-3.18.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=的图象经过点C(3,m).(1)求菱形OABC的周长;(2)求点B的坐标.解:(1)∵反比例函数y=的图象经过点C(3,m),∴m=4.作CD⊥x轴于点D,由勾股定理,得OC==5,∴菱形OABC的周长为20.(2)作BE⊥x轴于点E,∵BC=OA=5,OD=3,∴OE=8.又∵BC∥OA,∴BE=CD=4,∴B(8,4).五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(-1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,求△BCE的面积.解:如图,过D点作GH⊥x轴,过A点作AG⊥GH,过B点作BM⊥HC于点M.设D点坐标为,∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=-x-1,∴DG=BM,∴1-=-x-1-,x=-2,∴D点坐标为(-2,-3),CH=DG=BM=1-=4,-∵AG=DH=-1-x=1,∴点E的纵坐标为-4,当y=-4时,x=-,∴E点坐标为--,∴EH=2-,∴CE=CH-HE=4-,∴S△CEB=CE·BM=×4=7.20.已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.解:(1)将B点坐标代入函数解析式,得=2,解得k=6,∴反比例函数的解析式为y=.(2)∵B(3,2),点B与点C关于原点O对称,∴C点坐标(-3,-2).∵BA⊥x轴于点A,CD⊥x轴于点D,∴A点坐标(3,0),D点坐标(-3,0).∴S△ACD=AD·CD=×[3-(-3)]×|-2|=6.六、(本题满分12分)21.已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1-y2=4时,求m的值;(2)如图,过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标.(不需要写解答过程)解:(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(-4,-3),∴k=-4×(-3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),点C(6m,y2),∴y1=,y2=,∵y1-y2=4,∴=4,∴m=1.(2)设BD与x轴交于点E.∵点B,点C,∴D点坐标为,BD=.∵三角形PBD的面积是8,∴BD·PE=8,∴·PE=8,∴PE=4m,∵E点坐标为(2m,0),点P在x轴上,∴点P的坐标为(-2m,0)或(6m,0).七、(本题满分12分)22.:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?解:(1)函数解析式为y=.表格中数从左至右:300,50.(2)2104-(30+40+48+50+60+80+96+100)=1600.当x=150时,y==80.1600÷80=20(天).答:余下的这些海产品预计再用20天可以全部售出.(3)1600-80×15=400(千克).400÷2=200(千克).即如果正好用2天售完,那么每天需要售出200千克.当y=200时,x==60.答:新确定的价格最高不超过60元/千克才能完成销售任务.八、(本题满分14分)23.我们可以把一个假分数写成一个整数加上一个真分数的形式,如=3+.同样的,我们也可以把某些分式写成类似的形式,如----=3+-.这种方法我们称为“分离常数法”.(1)如果-=1+,求常数a的值;(2)利用分离常数法,解决下面的问题:当m取哪些整数时,分式--的值是整数?(3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x的图象向下平移1个单位长度得到,函数y=的图象可以看成是由反比例函数y=的图象向左平移1个单位长度得到.那么请你分析说明函数y=--的图象是由哪个反比例函数的图象经过怎样的变换得到?解:(1)∵--=1+-,∴a=-4.(2)---------=-3--,∴当m-1=3或-3或1或-1时,分式的值为整数,解得m=4或m=-2或m=2或m=0.(3)y=------=3+-,∴将y=的图象向右移动2个单位长度得到y=-的图象,再向上移动3个单位长度得到y-3=-,即y=--.。
2022---2023学年度人教版九年级数学下册第二十六章反比例函数单元检测题一、选择题(36分)1.若函数的图像y=kx经过点(2,3),则该函数的图像一定经过( )A. (1,6)B. (-1,6)C. (2,-3)D. (3,-2)2.当路程S一定时,速度υ与时间t之间的函数关系是 ( )A. 正比例函数B. 反比例函数C. 一次函数D. 二次函数3.如果矩形的面积为6,那么它的长y与宽x间的函数关系用图像表示( )4.如图,反比例函数y=在第二象限的图象上有一点A,过点A作AB⊥x轴于B,且S△AOB=2,则k的值为()A.﹣4B.2C.﹣2D.45.在函数(为常数)的图象上有三点,,,则函数值的大小关系是 ( )A. B.C. D.6.若a≠0,则函数y=ax与y=-ax2+a在同一平面直角坐标系中的大致图象可能是7.某人对地面的压强与他和地面接触面积的函数关系如图所示.若某沼泽地地面能承受的压强不超过300 Pa,那么为了不下陷,此人需要站立在木板上,则该木板的面积为(木板的重量忽略不计)A.至少2 m2B.至多2 m2C.2 m2D.无法确定8.若A(x1,y1),B(x2,y2)都在函数y=2019x的图象上,且x1<0<x2,则A.y1<y2B.y1=y2C.y1>y2D.y1=-y29.如图,▱OABC的顶点O,B在y轴上,顶点A在反比例函数y=-53x上,顶点C在反比例函数y=72x上,则▱OABC的面积是A.3112B.53C.72D.31610.如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A.若△OPA的面积为S,则当x增大时,S的变化情况是()A.S的值增大B.S的值减小C.S的值先增大,后减小D.S的值不变14题11.如图,平行四边形ABCD 的顶点C 在y 轴正半轴上,CD 平行于x 轴,直线AC 交x 轴于点E ,BC ⊥AC ,连接BE ,反比例函数y =(x >0)的图象经过点D.已知S △BCE =2,则k 的值是( )A.2B.-2C.3D.412.如图,已知A ,B 是反比例函数y=(k >0,x >0)图象上的两点,BC ∥x 轴,交y 轴于点C ,动点P 从坐标原点O 出发,沿O →A →B →C (图中“→”所示路线)匀速运动,终点为C ,过P 作PM ⊥x 轴,垂足为M.设三角形OMP 的面积为S ,P 点运动时间为t ,则S 关于x 的函数图象大致为( )A. B. C. D.二、填空题(24分)13.如果y =1k x+是反比例函数,则k 的取值范围是 ; 14.如图2,A 是双曲线xky =上一点,AT ⊥y 轴于T ,三角形OAT 的面积为2,则k 的值等于 。
第二十六章反比例函数数学九年级下册-单元测试卷-人教版(含答案)一、单选题(共15题,共计45分)1、函数y=的图象经过点(2,8),则下列各点不在y=图象上的是()A.(4,4)B.(-4,-4)C.(8,2)D.(-2,8)2、关于反比例函数y=的图象,下列说法正确的是( )A.必经过点(1,1)B.两个分支分布在第二、四象限C. 两个分支关于x轴成轴对称D.两个分支关于原点成中心对称3、反比例函数y=的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果S△MON=2,则k的值为()A.2B.-2C.4D.-44、如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上,则点E的坐标是()A. B. C. D.5、如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.26、双曲线y1、y2在第一象限的图象如图所示,已知y1=,过y1上的任意一点A,作△ABC轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是()A.y2= B.y2= C.y2= D.y2=7、若反比例函数y= 的图象位于第一、三象限,则a的取值范围是()A.a>0B.a>3C.a>D.a<8、在1,2,3,-4这四个数中,任选两个数的积作为k的值,使反比例函数的图象在第二、四象限的概率是()A. B. C. D.9、反比例函数y=的图象的对称轴条数是()A.0B.1C.2D.410、已知反比例函数y=,下列结论中不正确的是()A.图象必经过点(1,﹣5)B.y随x的增大而增大C.图象在第二、四象限内 D.若x>1,则﹣5<y<011、如图,函数的图象所在坐标系的原点是()A.点B.点C.点D.点12、下列函数的图象,一定经过原点的是()A. B. C. D.13、已知反比例函数(x>0)的图象经过等腰三角形OAB(OB=AB)的顶点B,等腰三角形OAB的面积为2个平方单位,则k的值为()A.1B.1.5C.2D.2.514、如图,点P(2,1)是反比例函数y=的图象上一点,则当y<1时,自变量x的取值范围是()A.x<2B.x>2C.x<2且x≠0D.x>2或x<015、如图,A 、 B是曲线上的点,经过A、 B两点向x 轴、y轴作垂线段,若S阴=1 则 S1+S2 =( )影A.4B.5C.6D.8二、填空题(共10题,共计30分)16、若反比例函数的图象经过点(3,-1),则该反比例函数的表达式为________.17、如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为________.18、如图,平面直角坐标系中,以O为圆心,在第一象限内画圆弧,与双曲线交于两点,点C是圆弧上一个动点,连结CO并延长交第三象限的双曲线于点D(a,b),作CF⊥x轴,DE⊥y轴,只有当-3<b<-1时,S△COF>S△ODE,则⊙O的半径为________。
人教版数学九年级下册第二十六章《反比例函数》测试卷[时间:100分钟满分:120分]一、选择题(每小题3分,共30分)1. 下列函数中,y是x的反比例函数的是()A. y=-12xB. y=-29xC. y=86xD. y=1-6x2.反比例函数y=5nx的图象经过点(2,3),则n的值是()A. -2B. -1C. 0D. 13. 反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A. 第二、三象限B. 第一、三象限C. 第三、四象限D. 第二、四象限4.已知反比例函数y=3x,下列结论中不正确的是()A. 图象经过点(-1,-3)B. 图象在第一、三象限C. 当x>1时,0<y<3D. 当x<0时,y随着x的增大而增大5. 已知反比例函数y=-10x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A. y1<y2<0B. y1<0<y2C. y1>y2>0D. y1>0>y26.如图所示,直线y=x+2与双曲线y=kx相交于点A,点A的纵坐标为3,则k的值为()A. 1B. 2C. 3D. 4第6题第7题7.已知二次函数y=-(x-a)2-b的图象如图所示,则反比例函数y=abx与一次函数y=ax+b的图象可能是()A B C D8. 在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图所示,当V =10 m 3时,气体的密度是( )A. 1 kg/m 3B. 2 kg/m 3C. 100 kg/m 3D. 5 kg/m 3第8题 第9题9.如图,A ,B 两点在反比例函数y =1k x 的图象上,C ,D 两点在反比例函数y =2kx的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1的值为( )A. 4B.143 C. 163D. 6 10. 某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( )A. 16小时B. 1578小时C. 151516小时 D. 17小时二、填空题(每小题3分,共24分)11.请写出一个图象在第二、四象限的反比例函数的解析式:.12. 若反比例函数y=(m-1)x|m|-2,则m的值是.13.若函数y=2mx的图象在每个象限内y的值随x值的增大而增大,则m的取值范围为.14. 如图,Rt△ABC的两个锐角顶点A,B在函数y=kx(x>0)的图象上,AC∥x轴,AC=2.若点A的坐标为(2,2),则点B的坐标为.15.已知反比例函数y=4x,当函数值y≥-2时,自变量x的取值范围是________.16.若变量y与x成反比例,且当x=3时,y=-3,则y与x之间的函数关系式是________,在每个象限内函数值y随x的增大而________.17.某闭合电路,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间的函数关系的图象,当电阻R为6 Ω时,电流I为________A.第17题第18题18. 如图,四边形OABC是矩形,ADEF是正方形,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为________.三、解答题(共66分)19. (8分)已知y与x-1成反比例,且当x=-5时,y=2.(1)求y与x的函数关系式;(2)当x=5时,求y的值.20. (8分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.(1)写出y与S的函数关系式;(2)当面条粗为1.6 mm2时,求面条总长度.21. (12分)已知反比例函数y=4 x .(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=4x(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移到C2处所扫过的面积.22. (12分)如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=ax的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.23. (12分)如图,在平面直角坐标系xOy中,直线y=x-2与y轴相交于点A,与反比例函数y=kx在第一象限内的图象相交于点B(m,2).(1)求该反比例函数的关系式;(2)若直线y=x-2向上平移后与反比例函数y=kx在第一象限内的图象相交于点C,且△ABC的面积为18,求平移后的直线对应的函数关系式.24. (14分)为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒.已知药物燃烧时室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物燃烧后,y与x成反比例(如图所示).请根据图中提供的信息,解答下列问题:(1)药物燃烧后y与x的函数关系式为;(2)当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;(3)当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?。
2021—2022学年度人教版九年级数学下册《第二十六章反比例函数》单元测试题
一、选择题(30分) 1.对于反比例函数6
y x
=
,下列结论错误的是( ) A .函数图象分布在第一、三象限 B .函数图象经过点(﹣3,﹣2)
C .函数图象在每一象限内,y 的值随x 值的增大而减小
D .若点A (x 1,y 1),B (x 2,y 2)都在函数图象上,且x 1<x 2,则y 1>y 2 2.下列各点在反比例6
y x
=的图象上的是( ) A .(2,-3)
B .(-2,3)
C .(3,2)
D .(3,-2)
3.若点()2,3P 在反比例函数1
k y x
-=的图象上,则抛物线24y x x k =-+与x 轴的交点个数是( ) A .2
B .1
C .0
D .无法确定
4.如图,在直角坐标系中,O 为坐标原点,函数6y x =
与2
y x
=在第一象限的图象分别为曲线1l ,2l ,点P 为曲线1l 上的任意一点,过点P 作y 轴的垂线交2l 于点A ,交y 轴于点M ,作x 轴的垂线交2l 于点B ,则AOB 的面积是( )
A .8
3
B .3
C .
103
D .4
5.反比例函数y =6
x
(x >0)的图象经过点A (2,m ),过点A 作y 轴的垂线交y 轴于点B .当点C 在x 轴正半轴上运动
时△ABC 的面积为( )
A .3
B .6
C .12
D .先变大后减小
6.在同一坐标系中,函数k
y x
=
和3y kx =+的图像大致是( ) A . B . C . D .
7.已知函数(0)k
y k x
=≠中,在每个象限内,y 随x 的增大而增大,那么它和函数y =kx (k ≠0)在同一直角坐标平面内
的大致图象是( )
A .
B .
C .
D .
8.如图,AOB 和BCD △均为等腰直角三角形,且顶点A 、C 均在函数(0)k y x x
=>的图象上,连结AD 交BC 于点E ,连结OE .若4OAE S =△,则k 的值为( )
A .22
B .23
C .4
D .42
9.如图,曲线AB 是顶点为B 与y 轴交于点A 的抛物线242y x x =-++的部分,曲线BC 是双曲线k
y x
=
的一部分,由点C 开始不断重复“A B C --”的过程,形成一组波浪线,点()2024,P m 与点()2032,Q n 均在该波浪线上,过点P 、Q 分别
作x 轴的垂线,垂是为M ,N ,连PQ ,则四边形PMNQ 的面积为( )
A .72
B .36
C .16
D .9
10.如图,等腰ABC 中,5AB AC ==,8BC =,点B 在y 轴上,BC //x 轴,反比例函数k
y x
=(0k >,0x >)的图象经过点A ,交BC 于点D .若AB BD =,则k 的值为( )
A .60
B .48
C .36
D .20
二、填空题(15分)
11.一次函数y =﹣x +1的图象与反比例函数y =k x 的图象交点的纵坐标为2,当﹣3<x <﹣1时,反比例函数y =k
x
中y
的取值范围是 _____. 12.如图,双曲线(0)k
y k x
=
>经过矩形OABC 的边BC 的中点E ,交AB 于点D ,若梯形ODBC 的面积为3,则双曲线的解析式为_____________.
13.如图,A ,B 两点在x 轴上,点P 为反比例函数()0k
y k x
=>图象上一点,连接PO ,PA ,PB ,且PB 与反比例函数()0k
y k x
=
>的图象交于点N ,若PA PO =,PN BN =,PAB △的面积为2,则k 的值为______.
14.如图,点A 在反比例函数()10y x x =
>的图象上,点B 在反比例函数()3
0y x x
=>的图象上,且AB x ∥轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为__________.
15.如图,△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…,△A n ﹣1B n A n ,都是一边在x 轴上的等边三角形,点B 1,B 2,B 3,…,B n 都
在反比例函数y =
x >0)的图象上,点A 1,A 2,A 3,…,A n ,都在x 轴上,则A n 的坐标为_________.
三、解答题(75分)
16.如图,已知一次函数的解析式为3y x =-+,图像与y 轴交于点A ,与反比例函数(0)k
y k x
=≠交于点B ,点B 的横
坐标为1-.
(1)求反比例函数的解析式;
(2)若BC x ⊥轴于点C ,点D 为线段BC 上一点且3BD CD =,过点D 作DE BC ⊥交反比例函数图像于点E ,连接BE 、
AE ,求ABE ∆的面积.
17.如图,在平面直角坐标系xOy 内,正比例函数y =4x 的图象与反比例函数y =k
x
(k ≠0)的图象的公共点A 的纵坐标
为4
(1)求点A 的坐标和反比例函数的解析式;
(2)正比例函数y =4x 的图象上有一点B ,AB =OA (点B 不与点O 重合),过点B 作直线BC △y 轴交双曲线y =k
x
于点
C ,求△ABC 的面积.
18.如图, 在平面直角坐标系中,AOB 是等边三角形.
(1)在 y 轴正半轴取一点 E ,使得 EOB 是一个等腰直角三角形,EB 与 OA 交 于 M ,已知 MB =求 MO ; (2)若等边 AOB 的边长为 6 , 点 C 在边 OA 上, 点 D 在边 AB 上, 且 3OC BD = .反比例函数 ()0k
y k x
=≠ 的图像恰好经过点 C 和点 D , 求反比例函 数解析式.(此题无须写括号理由)
19.如图,正比例函数12y x =与反比例函数2k
y x
=
的图象交于A ,B 两点,点A 的横坐标为2.
(1)求反比例函数的表达式及点B 的坐标; (2)点P 是x 轴上一点,连接P A ,PB ,若20PAB
S =,求点P 的坐标;
(3)请根据图象直接写出不等式2k
x x
≥
的解集. 20.如图,一次函数y =﹣x +b 与反比例函数k
y x
=
(x >0)的图象交于点A (m ,3)和B (3,1). (1)填空:一次函数的解析式为 ,反比例函数的解析式为 ; (2)请直接写出不等式组k
x
≤﹣x +b 的解集是 ;
(3)点P 是线段AB 上一点,过点P 作PD △x 轴于点D ,连接OP ,若△POD 的面积为S ,求S 的最大值和最小值.
21.如图,帆船A 和帆船B 在湖面上训练,教练船静候于定点O ,训练时要求A 、B 两船始终关于O 点对称,以O 为原点,建立如图所示的坐标系x 轴,y 轴的正方向分别表示正东、正北方向,单位长度为百米,设A B 、两船可近似看成在双曲线 4
y x
=
上运动,训练中当教练船与A 、B 两船恰好在直线 y x = 上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南方向上,A 船测得 AC 与AB 的夹角为60,求此时A 点的坐标、C 点的坐标及BC 之间的距离.
22.如图,在平面直角坐标系中,点A (-3,0),B (0,-4),把线段AB 绕点A 逆时针旋转90°到AC ,AC 交y 轴于点D ,反比例函数()0k
y x x
=>的图象经过点C . (1)求k 的值;
(2)当1x >时,写出函数值y 的范围. (3)连接BC ,若点P 在反比例函数()0k
y x x
=
>的图象上,且BDP ABC S S =△△,求点P 的坐标.
23.通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣微增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当0≤x ≤10和10<x <20时,图象是线段;当20≤x ≤45时,图象是反比例函数的一部分,其中BC ∥AD ∥x 轴. (1)求点A 对应的指标值;
(2)张老师在一节课上讲解一道数学综合题需要18分钟,他能否确保学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.
【参考答案】
1.D 2.C 3.C 4.A 5.A 6.A 7.B 8.C 9.B 10.A 11.2
3
<y <2
12.2y x
= 13.4 14.2
15.()
16.(1)反比例函数的解析式为:4
y x
=-;(2)3ABE S ∆=
17.(1)点A 的坐标为(1,4);4
y x
=(2)3
18.(1)2)y = 19.(1)28
y x
=
,()2,4B --(2)()5,0P 或()5,0-(3)2x ≥或20x -≤< 20.(1)y =﹣x +4;3
y x =;(2)1≤x ≤3;(3)最大值是2,最小值是32
21.()2,2A 、(C -、
BC = 22.(1)3k =(2)03y <<(3)略
23.(1)A 对应的指标值为20;(2)张老师能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于
36。