轴对称现象--北师大版
- 格式:ppt
- 大小:304.00 KB
- 文档页数:19
5.1 轴对称现象一.选择题(共1小题)1.如图,以平面镜AD和DC为两个侧面的一个黑盒子的另一个侧面BC上开有一个小孔P,一位观察者在盒外沿与BC平行方向走过时,则通过小孔能几次看到光源S所发出的光线()(第1题图)A.1次B.2次C.3次D.4次二.填空题(共6小题)2.如图,一束光线从点O射出,照在经过A(1,0)、B(0,1)的镜面上的点D,经AB反射后,反射光线又照到竖立在y轴位置的镜面,经y轴再反射的光线恰好通过点A,则点D的坐标为.(第2题图)3.如图,是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在从剩余的13个白色小正方形中选出一个涂成黑色,使涂成黑色的四个小正方形所构成的图形是轴对称图形,则这样的白色小正方形有个.(第3题图)4.如图,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A,B.若击打小球A,经过球台边的反弹后,恰好击中小球B,那么小球A击出时,应瞄准球台边上的点.(P1至P4点)(第4题图)5.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为步.(第5题图)6.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中的一个小正方形涂黑,所得图案是一个轴对称图形,则涂黑的小正方形可以是(填出所有符合要求的小正方形的标号)(第6题图)7.弹子盘为长方形ABCD,四角有洞,弹子从A出发,路线与小正方形的边成45°角,撞到边界即反弹(如图所示).AB=4,AD=3,弹子最后落入B洞.那么,当AB=9,AD=8时,弹子最后落入洞,在落入洞之前,撞击BC边次.(第7题图)三.解答题(共5小题)8.对于特殊四边形,通常从定义、性质、判定、应用等方面进行研究,我们借助于这种研究的过程与方法来研究一种新的四边形﹣﹣﹣﹣﹣筝形.定义:在四边形ABCD中,若AB=AD,BC=CD,我们把这样四边形ABCD称为筝形性质:按下列分类用文字语言填写相应的性质:从对称性看:筝形是一个轴对称图形,它的对称轴是;从边看:筝形有两组邻边分别相等;从角看:;从对角线看:.判定:按要求用文字语言填写相应的判定方法,补全图形,并完成方法2的证明.方法1:从边看:运用筝形的定义;方法2:从对角线看:;如图,四边形ABCD中,.求证:四边形ABCD是筝形应用:如图,探索筝形ABCD的面积公式(直接写出结论).(第8题图)9.已知:如图所示,在四边形ABCD中,AD=BC,∠DAB=∠CBA.(1)试判断AB与CD的位置关系,并说明理由;(2)四边形ABCD是轴对称图形吗?试说明理由.(第9题图)10.如图,在△ABC中,高线CD将∠ACB分成20°和50°的两个小角.请你判断一下△ABC是轴对称图形吗?并说明你的理由.(第10题图)11.△ABC的三边长分别为:AB=2a2﹣a﹣7,BC=10﹣a2,AC=a,(1)求△ABC的周长(请用含有a的代数式来表示);(2)当a=2.5和3时,三角形都存在吗?若存在,求出△ABC的周长;若不存在,请说出理由;(3)若△ABC与△DEF成轴对称图形,其中点A与点D是对称点,点B与点E是对称点,EF=4﹣b2,DF=3﹣b,求a﹣b的值.12.如图,表示把长方形纸片ABCD沿对角线BD进行折叠后的情况,图中有没有轴对称图形?有没有关于某条直线成轴对称的图形.(第12题图)参考答案一.1.D二.2.(,)3.4 4.P25.3 6.2,3,4,5,7 7.D,4三.8.解:性质:从对称性看:筝形是轴对称图形,它的对称轴是其中一条对角线所在直线.从角看:筝形只有一组对角相等;从对角线看:有且只有一条对角线被另一条对角线垂直平分.判定:结合性质定理,可得出:方法二:从对角线看:有且只有一条对角线被另一条对角线垂直平分.结合方法二可知缺少的条件为:AC垂直平分BD于O点,且AO≠CO.证明:按照题意,画出图形1.(第8题答图)∵AC垂直平分BD,∴AB=AD,CB=CD.又∵AB=,BC=,AO≠CO,∴AB≠BC,∴由筝形定义得,四边形ABCD是筝形.应用:筝形面积为对角线乘积的一半;∵S筝形ABCD=S△ABD+S△CBD=BD•AO+BD•CO=BD(AO+CO)=BD•AC,∴筝形面积为对角线乘积的一半.9.解:(1)AB∥CD.理由如下:在△ABD和△BAC中.∴△ABD≌△BAC(SAS).∴∠OAB=∠OBA,BD=AC.∴OA=OB.∴AC﹣OA=BD﹣OB.∴OD=OC.∴∠ODC=∠OCD.∵∠ODC+∠OCD+∠COD=180°,∠OAB+∠OBA+∠AOB=180°,∴2∠ODC+∠COD=180°.2∠OBA+∠AOB=180°.又∠COD=∠AOB,∴∠CDO=∠OBA.∴AB∥CD.(2)四边形ABCD是轴对称图形.理由如下:延长AD、BC交于点P,∵∠DAB=∠CBA,∴AP=BP.∴点P在AB的垂直平分线上.又OA=OB,∴点O在AB的垂直平分线上.∴OP垂直平分线段AB,∴点A与点B关于直线OP对称①.∵AB∥DC,∴∠PDC=∠PAB∠PCD=∠PBA.∴∠PDC=∠PCD.∴DP=CP,∴点P在DC的垂直平分线上.又OD=OC,∴点O在DC的垂直平分线上.∴OP垂直平分线段DC.∴点C与点D关于直线OP对称②.所以,综上①②所述,四边形ABCD是轴对称图形.(第9题答图)10.解:△ABC是轴对称图形.∵∠BCD=20°,∴∠B=90°﹣∠BCD=70°,∴∠ACB=∠B=70°,∴△ABC是等腰三角形,∴△ABC是轴对称图形.11.解:(1)△ABC的周长=AB+BC+AC=2a2﹣a﹣7+10﹣a2+a=a2+3.(2)当a=2.5时,AB=2a2﹣a﹣7=2×6.25﹣2.5﹣7=3,BC=10﹣a2=10﹣6.25=3.75,AC=a=2.5,∵3+2.5>3.75,∴当a=2.5时,三角形存在,周长=a2+3=6.25+3=9.25;当a=3时,AB=2a2﹣a﹣7=2×9﹣3﹣7=8,BC=10﹣a2=10﹣9=1,AC=a=3,∵3+1<8.∴当a=3时,三角形不存在.(3)∵△ABC与△DEF成轴对称图形,点A与点D是对称点,点B与点E是对称点,∴EF=BC,DF=AC,∴10﹣a2=4﹣b2,即a2﹣b2=6;a=3﹣b,即a+b=3、把a+b=3代入a2﹣b2=6,得3(a﹣b)=6∴a﹣b=2.12.解:五边形ABCDE是轴对称图形,△ABE与△CDE,△ABD与△CDB成轴对称.。
北师大版数学五年级上册第2单元《轴对称和平移》说课稿 (2)一. 教材分析《轴对称和平移》是北师大版数学五年级上册第2单元的一节课程。
本节课主要引导学生认识和理解轴对称和平移的概念,掌握它们的基本性质和运用。
教材通过丰富的实例和实践活动,让学生在操作中感知,体验中理解,应用中提升。
二. 学情分析五年级的学生已经具备了一定的空间观念和几何直观能力,他们对轴对称和平移现象在生活中有所了解。
但学生的认知水平参差不齐,部分学生对概念的理解还比较模糊,需要通过实例和实践活动来加深理解。
三. 说教学目标1.知识与技能:学生能够理解轴对称和平移的概念,掌握它们的基本性质,能够运用轴对称和平移解决实际问题。
2.过程与方法:学生通过观察、操作、交流等活动,培养空间观念和几何直观能力。
3.情感态度与价值观:学生体验数学与生活的密切联系,培养学习数学的兴趣。
四. 说教学重难点1.教学重点:学生能够理解轴对称和平移的概念,掌握它们的基本性质。
2.教学难点:学生能够运用轴对称和平移解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例分析法、小组合作法、实践活动法等。
2.教学手段:多媒体课件、实物模型、学习单、几何画板等。
六. 说教学过程1.导入:通过展示生活中的轴对称和平移现象,引发学生对课题的兴趣,引导学生思考轴对称和平移的特点。
2.新课导入:介绍轴对称和平移的概念,引导学生通过观察、操作、交流等活动,理解轴对称和平移的性质。
3.实例分析:通过分析具体实例,让学生进一步理解轴对称和平移的概念,掌握它们的基本性质。
4.实践活动:学生分组进行实践活动,运用轴对称和平移解决实际问题,培养学生的动手能力和解决实际问题的能力。
5.总结提升:引导学生总结轴对称和平移的性质和运用,巩固所学知识。
七. 说板书设计板书设计要突出轴对称和平移的概念、性质和运用,简洁明了,便于学生理解和记忆。
八. 说教学评价教学评价主要包括过程性评价和终结性评价。
《对称现象》说课稿2篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!《对称现象》说课稿2篇《对称现象》说课稿1一、教材分析《轴对称现象》是北师大版《义务教育课程标准实验教科书》七年级下册第七章第一节的内容。
北师大版三年数学下册《第二单元轴对称(一)》说课稿一. 教材分析北师大版三年数学下册《第二单元轴对称(一)》这一节主要讲述了轴对称的概念和性质。
教材通过丰富的实例,让学生感受和理解轴对称的意义,学会寻找对称轴,并能够运用轴对称的性质解决实际问题。
本节课的内容是学生对几何图形认识的一次提升,同时也是对他们的空间想象能力和抽象思维能力的培养。
二. 学情分析三年级的学生已经具备了一定的几何图形认知基础,他们能够识别一些基本的二维图形,并能够进行简单的图形变换。
但是,对于轴对称的概念,他们可能是第一次接触,因此需要通过具体的实例和活动,让学生感受和理解轴对称的意义。
同时,学生还需要培养观察、思考和解决问题的能力。
三. 说教学目标1.知识与技能:学生能够理解轴对称的概念,学会寻找对称轴,并能够运用轴对称的性质解决实际问题。
2.过程与方法:学生通过观察、操作、思考,培养空间想象能力和抽象思维能力。
3.情感态度与价值观:学生感受数学与生活的联系,培养对数学的兴趣和好奇心。
四. 说教学重难点1.教学重点:学生能够理解轴对称的概念,学会寻找对称轴,并能够运用轴对称的性质解决实际问题。
2.教学难点:学生能够通过观察和操作,发现和总结轴对称的性质。
五. 说教学方法与手段1.教学方法:采用情境教学法、活动教学法和启发式教学法,引导学生通过观察、操作、思考,培养空间想象能力和抽象思维能力。
2.教学手段:利用多媒体课件、实物模型、对称卡片等,帮助学生直观地理解轴对称的概念。
六. 说教学过程1.导入:通过展示一些生活中的对称现象,如剪纸、衣服、建筑等,引导学生发现和感受对称的美,激发学生的学习兴趣。
2.新课导入:教师简要介绍轴对称的概念,让学生初步认识对称轴,并通过实例让学生寻找和确认对称轴。
3.教学展开:教师引导学生通过观察和操作,发现和总结轴对称的性质,如对称轴两侧的图形是完全相同的,对称轴将图形分为两个对称的部分等。
4.应用拓展:教师设计一些实际问题,让学生运用轴对称的性质进行解决,如剪纸设计、衣服搭配等。
北师大版七年级数学(下)轴对称现象说课稿(通用7篇)七年级数学下轴对称现象说课稿篇1教学目标:1、经历观察、分析现实生活实例和典型图案的过程,认识轴对称和轴对称图形培养学生探索知识的能力与分析问题、思考问题的习惯。
2、会找出简单对称图形的对称轴。
了解轴对称和轴对称图形的联系与区别。
教学重点难点:本节课的重点是通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴。
找出简单轴对称图形的对称轴与理解轴对称和轴对称图形的联系与区别是难点。
教学方法:教学用具:活动准备:收集各类有关对称的图案和各种现实生活中有关对称的实例,作为教学时互相交流的资料。
教学过程:一、看一看:1、投影或演示各类具有轴对称特点的图案(如课本上所绘的图象或由学生课前收集的各类具有对称特点的图案)2、分析各类图案的特点,让学生经历观察和分析,初步认识轴对称图形。
二、议一议1、试举例说明现实生活中也具有轴对称特征的物体,发展学生想象能力。
2、让学生感到具有轴对称特征的物体,它们都是关于一条直线形成对称。
三、做一做1、把具有轴对称特征的图形沿某一条直线对折,使直线两旁的部分能够互相重合把具有轴对称特征的图形沿某一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
让学生说出以前学习过的轴对称图形,并找出它的对称轴2、弄清楚轴对称与轴对称图形的区别对于两个图形,如果沿一条直线对折后,它们能完全重合,那么这两个图形成轴对称,这条直线就是对称轴。
轴对称是指两个图形之间的形状和位置关系。
而轴对称图形是对一个图形而言的,轴对称图形是一个具有特殊形状的图形。
它们都有没某条直线对折使直线两旁的图形能重合的特征。
小结:今天我们经历观察和分析了现实生活实例和图案,了解了现实生活中存在许多有关对称的事例,认识了轴对称与轴对称图形,并能找出一些简单轴对称图形的对称轴。
教后记:学生对于判断是否轴对称图形较清楚,但是对轴对称图形和两个图形成轴对称这两个概念较难掌握,在举例的过程中学生的积极性被完全调动起来,上课的气氛较好。