去括号与添括号
- 格式:ppt
- 大小:394.00 KB
- 文档页数:18
去括号添括号法则及练习一、去括号法则:1、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;字母表示:a +(b + c)= a + b + c例如:23+(77+56)=23+77+56a +(b - c)= a + b - c例如:38+(62-48)=38+62-482、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变为相反的符号;字母表示:a -(b + c)= a - b - c例如:159-(59+26)=159-59-26a -(b - c)= a - b + c例如:378-(78-39)=378-78+393、去括号时,应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.x+(y-z)-(-y-z-x) =4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.a+3(2b+c-d)=5、遇到多层括号一般由里到外,逐层去括号,也可由外到里,数"-"的个数.24-(176+24)+[276-72-(134-72)+234]例题:4+(5+2) 4-(5+2)= =a+(b+c) a-(b+c)= =去括号练习:(1)a+(-b+c-d)=(2)a-(-b+c-d) =(3)-(p+q)+(m-n)=(4)(r+s)-(p-q) =(5)x+(y-z)-(-y-z-x) =(6)(2x-3y)-3(4x-2y)=下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c =-x-y+xy-1二、添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号。
去括号与添括号【知识要点】一、去括号法:如果括号前面是加号或乘号,去括号后,原来括号里的符号都不变;如果括号前面是减号或除号,去括号后,原来括号里的加号变为减号。
减号变为加号,乘号变为除号,除号变为乘号。
二、添括号法:如果需要改变运算顺序,就要添加括号;如果括号前面是加号或乘号,括到里面的各个数都不用改变符号;如果括号前面的是减号或除号,括到括号里面的数原来是加号要变成减号,原来是减号要变为加号,乘号变为除号,除号变为乘号。
例1: 78+(329+22) 134+(82-34)例2: 185-(36-15) 127-(27+50)【小试牛刀】1、 55+(45+8) 723+(82-23)2、 716-(116-84) 877-(182+77)3、342+(34-42)-(28+34)+28例3: 125×(8×76) 600×(252÷6)例4: 540÷(18×6) 500÷(125÷2)【小试牛刀】1、 270×(15÷90) 45×(20×38)2、 186÷(3÷2)4200÷(70×12)3、 125×(8÷4)÷(25×2)例5: 756+78+522 368+1859-859例6: 875-29-371 492-193+93【小试牛刀】1、 582+393-293 786+455+5452、 175-57-43 392-145+453、 2756-2478+1478+2244-2244例7: 93×25×4 1300×81÷9例8: 7200÷25÷4 210÷42×6【小试牛刀】1、 23×63÷7 345×8×1252、 1000÷50÷2 3600÷18×63、 875×40×25÷125÷8例9: (125-10) ×8 (99+88)÷11 例10: 195×81+19×195 25÷4+75÷4【小试牛刀】1、(230-46) ÷23 (40+2) ×252、 101×25-25 556÷2+444÷23、计算下面各题。
去括号和添括号的法则一、去括号法则在代数表达式中,有时候我们需要去除括号来简化表达式。
去括号法则适用于求和、求差和乘法运算。
下面是去括号的三个法则:1.同号相乘法则:当括号外面有一个正号或者一个负号时,我们可以通过将括号里面的每一项与括号外面的符号相乘来去括号。
例如,对于表达式(a+b+c),如果去除括号,则结果为a+b+c。
2.一正一负相乘法则:当括号外面有一个正号,而括号里面的每一项前面有一个负号时,我们可以通过去除括号并反转每一项的正负号来去括号。
例如,对于表达式(a-b-c),如果去除括号,则结果为a-b-c。
3.乘法分配律:当括号外面有一个数与括号里面的每一项相乘时,我们可以通过将括号里面的每一项与括号外面的数相乘来去括号。
例如,对于表达式3(a+b+c),如果去除括号,则结果为3a+3b+3c。
这些去括号法则是非常有用的,因为它们可以使复杂的表达式变得简洁,并且可以更容易地进行计算。
二、添括号法则添括号法则正好与去括号法则相反,它适用于求和、求差和乘法运算。
添加括号可以改变表达式的结构和优先级。
下面是添括号的两个法则:1.加减添括号法则:当一个数和一个和式相加或相减时,我们可以通过在和式的前后添加括号来添括号。
例如,对于表达式a+b-c,我们可以添括号为(a+b)-c,或者a+(b-c),这样可以改变运算的顺序和结果。
2.乘法添括号法则:当一个数与一个乘积相乘时,我们可以通过在乘积的前后添加括号来添括号。
例如,对于表达式a*b+c,我们可以添括号为(a*b)+c,或者a*(b+c),这样可以改变运算的顺序和结果。
添括号法则在对表达式进行化简、分解或重组时非常有用。
它可以帮助我们更好地理解和计算复杂的代数运算。
三、应用场景和示例示例1:简化表达式考虑以下代数表达式:3(a+b)+2(b-c)。
使用乘法分配律和去括号法则,我们可以简化这个表达式为3a+3b+2b-2c。
示例2:重组表达式考虑以下代数表达式:a*b+c*d。
去括号和添括号的法则G在数学中,括号是一个非常重要的符号,它用于表示运算的顺序以及改变运算的优先级。
在数学中有一个叫做"括号和添括号法则G"的规则,它可以帮助我们去掉或者添加括号以简化数学表达式。
本文将详细介绍括号和添括号法则G。
首先,让我们来考虑如何去掉括号。
在数学中,去掉括号通常是为了简化运算,合并相似的项,或者改变运算的顺序。
下面是几个常见的去括号法则:1.去分配律:当一个括号前面有负号时,可以通过去分配律将负号分配给括号内的每一项。
例如,-(a+b)=-a-b。
2.去结合律:当一个括号前面没有符号时,可以通过去结合律将括号内的项合并。
例如,a+(b+c)=a+b+c。
3.去合并同类项:当括号内有多项并且它们具有相同的指数或者是相同的变量时,可以通过合并同类项的方法将这些项合并。
例如,3x+(2x+4x)=3x+6x=9x。
接下来,让我们来考虑如何添括号。
在数学中,添括号通常是为了明确运算的顺序,提高运算的清晰度以及简化计算。
下面是几个常见的添括号法则:1.添结合律:为了明确运算的顺序,可以通过添结合律将一些项放在一个括号内。
例如,a+b+c可以改写为(a+b)+c。
2.添分配律:为了改变运算的优先级,可以通过添分配律将一些项乘以一个因子后放在一个括号内。
例如,3(a+b)可以改写为3a+3b。
3.添开平方:为了简化计算,可以通过添开平方将一些项开平方后放在一个括号内。
例如,√(a+b)可以添开平方为√a+√b。
通过运用上述的去括号法则和添括号法则,我们可以简化数学表达式,提高计算效率,减少错误的发生。
当我们进行运算时,需要仔细观察表达式中的括号,判断是否需要去掉括号或者添上括号。
同时,根据具体问题的情况,也可以运用其他的去括号和添括号的方法。
总结起来,括号和添括号法则G是数学中一个重要的规则,它可以帮助我们去掉或者添加括号以简化数学表达式。
通过运用这些法则,我们可以提高运算的效率,减少错误的发生。