2016级线代试卷解答
- 格式:pdf
- 大小:1.04 MB
- 文档页数:4
2009年10月全国自考线性代数历年真题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A.-3B.-2C. 2D. 3答案:D2.下列矩阵中不是初等矩阵的为()A. AB. BC. CD. D答案:C3.A. AB. BC. CD. D答案:A 4.A. AB. BC. CD. D 答案:A5.A. AB. BC. CD. D 答案:C6.A. AB. BC. CD. D答案:B7.A. AB. BC. CD. D答案:C8.A. AB. BC. CD. D答案:D9.A. AB. BC. CD. D答案:D10.A. 1B. 2C. 3D. 4答案:B二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1. 图中空白处应为:___答案:-12. 图中空白处应为:___答案:3.图中空白处应为:___答案:4.图中空白处应为:___答案:5.图中空白处应为:___答案:26.图中空白处应为:___答案:17.图中空白处应为:___答案:-18.图中空白处应为:___答案:-19.图中空白处应为:___答案:2410.图中空白处应为:___答案:-3<a<1三、计算题(本大题共6小题,每小题9分,共54分)1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:四、证明题(本题6分)1.答案:以下是附加文档,不需要的朋友下载后删除,谢谢顶岗实习总结专题13篇第一篇:顶岗实习总结为了进一步巩固理论知识,将理论与实践有机地结合起来,按照学校的计划要求,本人进行了为期个月的顶岗实习。
这个月里的时间里,经过我个人的实践和努力学习,在同事们的指导和帮助下,对村的概况和村委会有了一定的了解,对村村委会的日常工作及内部制度有了初步的认识,同时,在与其他工作人员交谈过程中学到了许多难能可贵经验和知识。
拟题学院(系): 数理学院适用专业: 全校 2015-2016学年 1 学期 线性代数(必修)B 卷 试题标准答案(答案要注明各个要点的评分标准)一、填空题(每小题3分,共15分)1. -2M2.11B A --3.111,,336- 4. 0 5. 2k >二、选择题(每小题3分,共15分)1. C2. D3. A4. B5. B三、计算题(每小题10分,共20分)1.解:888811111511151181151115111151115==原式——————————————————————5分11110400851200400004==2. 解:()22AX B X A E X B =+⇒-=1112012,002A E ⎛⎫ ⎪-=- ⎪ ⎪⎝⎭ ————————————3分()1111101001112,012102~010100,002202001101A E B ⎛⎫⎛--⎫⎪ ⎪-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭———————————— 8分所以111100101X --⎛⎫ ⎪= ⎪ ⎪⎝⎭。
—————————————————————— 10分四、计算题(第1题10分,第2题15分,第3题15分,共40分)拟 题 人: 周红燕书写标准答案人: 周红燕1.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎪⎪⎭⎫⎝⎛-------=00000100000120011221~10000500000120011221~13600512000240011221~46063332422084211221),(b A ————————————8分3)(,2)(==B R A R 因此 ——————————————————10分2. 解:111111101152321130012263(,)01226300000054331200000B A b ----⎛⎫⎛⎫⎪ ⎪-⎪ ⎪==→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭————8分基础解系为123115226,,100010001ξξξ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,特解为23000η-⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,—————————————13分通解为112233x k k k ξξξη=+++。
考研数学一(线性代数)历年真题试卷汇编16(题后含答案及解析) 题型有:1. 选择题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0,必有A.(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解.B.(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解.C.(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解.D.(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.正确答案:A解析:若x满足Ax=0,两端左乘AT,得ATAx=0,故Ax=0的解都是ATAx=0的解;若x满足ATAx=0,两端左乘xT,得(xTAT)(Ax)=0,即(Ax)T(Ax)=0,或‖Ax‖2=0,得Ax=0,所以ATAx=0的解也都是Ax=0的解.因此(Ⅰ)与(Ⅱ)同解,只有选项A正确.知识模块:线性方程组2.4个平面aix+biy+ciz=di(i=1,2,3,4)交于一条直线的充要条件是对应的联立线性方程组的系数矩阵A与增广矩阵=A.1B.2C.3D.4正确答案:B解析:记4个平面方程联立所得方程组为Ax=b,则4个平面交于一条直线→Ax=b的通解为x=(x0,y0,z0)…+c(l,m,n)’→r(A)=r(A┆b)且Ax=0的基础解系所含解向量个数为3一r(A)=1→r(A)=r(A)=2,只有选项B正确.知识模块:线性方程组3.设A是n阶矩阵,α是n维列向量,且则线性方程组A.Ax=α必有无穷多解.B.Ax=α必有唯一解.C.=0仅有零解.D.=0必有非零解.正确答案:D解析:因为方程组=0是n+1元齐次线性方程组,而它的系数矩阵的秩为:秩=秩(A)≤n<n+1,故该齐次线性方程组必有非零解,即(D)正确.注意,在题设条件下,有秩(A)=秩[A┊α].故方程组AX=α必有解,但不能肯定它是有无穷多解还是有唯一解,故(A)、(B)都不对.知识模块:线性方程组4.设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.B.仅含一个非零解向量.C.含有两个线性无关的解向量.D.含有3个线性无关的解向量.正确答案:B解析:由A*≠0知A*至少有一个元素Aij=(一1)i+jMij≠0,故A的余子式Mij≠0,而Mij为A的n一1阶子式,故r(A)≥n一1,又由Ax=b有解且不唯一知r(A)<n,故r(A)=n一1.因此Ax=0的基础解系所含向量个数为n—r(A)=n 一(n一1)=1,只有B正确.知识模块:线性方程组5.设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为A.+k1(η2—η1).B.+k1(η2—η1).C.+k1(η2—η1)+k2(η3—η1).D.+k1(η2—η1)+k2(η3—η1).正确答案:C解析:首先,由A[(η2+η3)]=β,知(η2+η3)是Ax=β的一个特解;其次,由解的性质或直接验证,知η2—η1及η3—η1均为方程组Ax=0的解;再次,由η1,η2,η3线性无关,利用线性无关的定义,或由[η2—η1,η3—η1]=[η1,η2,η3]及矩阵的秩为2,知向量组η2—η1,η3—η1线性无关,因此,方程组Ax=0至少有2个线性无关的解,但它不可能有3个线性无关的解(否则,3一r(A)=3,→r(A)=0,→A=O,这与Aη1=β≠0矛盾),于是η2—η1,η3—η1可作为Ax=0的基础解系,Ax=0的通解为k1(η2—η1)+k2(η3—η1),再由非齐次线性方程组解的结构定理即知只有选项C正确.知识模块:线性方程组解答题解答应写出文字说明、证明过程或演算步骤。