第六组 基于RFID的考勤系统设计 -(DOC)
- 格式:doc
- 大小:537.00 KB
- 文档页数:21
移动通信课程设计班级:姓名:学号:指导教师:设计时间:成绩:评基于RFID 的考勤系统设计一、 RFID系统原理介绍1.RFID技术RFID是Radio Frequency Identification的缩写,即射频识别,俗称电子标签。
它是用无线射频方式进行非接触双向通信,以达到识别目的并交换数据的一项新技术。
它主要与当今数字化商务相适应,可以实现自动识别和远程监控及管理。
其通信距离范围可从几厘米到几十米,而且依据读写方式不同,可以输入几千字节的数字信息,具有极高的保密性。
RFID技术的环境适应性强,可全天候、无接触地完成自动识别、跟踪和管理功能,且穿透能力和抗干扰能力强。
RFID技术可识别高速运动物体,并可同时识别多个标签,操作快捷方便。
因此,RFID 技术已在世界各地得到广泛应用,如工业自动化、商业自动化、交通运输控制管理等众多领域。
2.RFID系统的组成最基本的RFID系统由电子标签、读写器(阅读器)、天线三部分组成。
而一个完整的RFID系统还需要管理软件。
RFID的基本组成部分:1)RFID标签RFID标签俗称电子标签,也称为应答器(Tag,Transponder, Responder)。
电子标签是指由IC芯片和无线通信天线组成的超微型的小标签,其内置的射频天线用于和读写器进行通信。
根据工作方式可分为主动式(有源)和被动式(无源)两大类。
当RFID标签进入读写器的作用区域,就可以根据电感耦合原理(近场作用范围内)或电磁反向散射耦合原理(远场作用范围内)在标签天线两端产生感应电势差,并在标签芯片通路中形成微弱电流,如果这个电流强度超过一个阈值,就将激活RFID标签芯片电路工作,从而对标签芯片中的存储器进行读/写操作,微控制器还可以进一步加入诸如密码或防碰撞算法等复杂功能。
RFID 标签芯片的内部结构主要包括射频前端、模拟前端、数字基带处理单元和EEPROM 存储单元四部分。
电子标签内部结构如图所示.电子标签内部结构2)阅读器阅读器也称读写器、询问器(Reader,Interrogator),是对RFID标签进行读/写操作的设备,主要包括射频模块和数字信号处理单元两部分。
读写器的频率决定了RFID系统工作的频段,,其功率决定了射频识别的有效距离。
读写器是RFID系统中最重要的基础设施。
一方面,RFID标签返回的微弱电磁信号通过天线进入读写器的射频模块中转换为数字信号,再经过读写器的数字信号处理单元对其进行必要的加工整形,最后从中解调出返回的信息,完成对RFID标签的识别或读/写操作;另一方面,上层中间件及应用软件与读写器进行交互,实现操作指令的执行和数据汇总上传。
在上传数据时,读写器会对RFID标签原子事件进行去重过滤或简单的条件过滤,将其加工为读写器事件后再上传,以减少与中间件及应用软件之间数据交换的流量,因此在很多读写器中还集成了微处理器和嵌入式系统,实现一部分中间件的功能,如信号状态控制、奇偶位错误校验与修正等。
读写器内部结构如图所示.读写器内部结构图3)天线天线(Antenna)是RFID标签和读写器之间实现射频信号空间传播和建立无线通讯连接的设备。
RFID系统中包括两类天线,一类是RFID标签上的天线,由于它已经和RFID标签集成为一体,因此不再单独讨论,另一类是读写器天线,既可以内置于读写器中,也可以通过同轴电缆与读写器的射频输出端口相连。
目前的天线产品多采用收发分离技术来实现发射和接收功能的集成。
天线在RFID 系统中的重要性往往被人们所忽视,在实际应用中,天线设计参数是影响RFID 系统识别范围的主要因素。
4)中间件中间件(Middleware)是一种面向消息的、可以接受应用软件端发出的请求、对指定的一个或者多个读写器发起操作并接收、处理后向应用软件返回结果数据的特殊化软件。
中间件在RFID应用中除了可以屏蔽底层硬件带来的多种业务场景、硬件接口、适用标准造成的可靠性和稳定性问题,还可以为上层应用软件提供多层、分布式、异构的信息环境下业务信息和管理信息的协同。
中间件的内存数据库还可以根据一个或多个读写器的读写器事件进行过滤、聚合和计算,抽象出对应用软件有意义的业务逻辑信息构成业务事件,以满足来自多个客户端的检索、发布/订阅和控制请求。
5)应用软件应用软件(Application Software)是直接面向RFID应用最终用户的人机交互界面,协助使用者完成对读写器的指令操作以及对中间件的逻辑设置,逐级将RFID原子事件转化为使用者可以理解的业务事件,并使用可视化界面进行展示。
3.RFID系统的工作原理由读写器通过发射天线发送特定频率的射频信号,当电子标签进入发射天线有效工作区域是产生感应电流,从而获得能量被激活,使电子标签将自身编码信息通过内置射频天线发送出去:读写器的接受天线接收到从标签(射频卡)发送过来的调制信号,经天线调节器传送到读写器信号处理模块,经解调和解码后将有效信息送至后台主机系统进行相关处理:主机系统根据逻辑运算判断该卡的合法性,识别该标签的身份,针对不同的设定做出相应的处理和控制,最终发出指令信号控制读写器完成不同的读写操作。
一套完整的RFID系统,是由阅读器(Reader)与电子标签(Tag)也就是所谓的应答器(Transponder)以及应用软件系统三部分组成,其工作原理是Reader 发射一特定频率的无线电波能量给Transponder,用以驱动Transponder电路将内部的数据送出,此时Reader便依序接收解读数据,送给应用程序做相应的处理。
二、基于RFID的考勤系统设计的芯片选型一个考勤系统硬件主要构成:单片机,RC500读写系统芯片,12864液晶,实时钟模块,E2PROM存储器,以及键盘,单片机。
1.单片机芯片选型1)STC89C516RD+选择理由:a)加密性强,无法解密b)超强抗干扰c)高抗静电(ESD保护)d)轻松过2KV/4KV快速脉冲干扰(EFT测试)e)宽电压,不怕电源抖动f)宽温度范围,-40℃~85℃g)I/O口经过特殊处理h)单片机内部的电源供电系统经过特殊处理i)单片机内部的时钟电路经过特殊处理j)单片机内部的复位电路经过特殊处理k)单片机内部的看门狗电路经过特殊处理三大降低单片机时钟对外部电磁辐射的措施:a)禁止ALE输出b)如选6时钟/机器周期,外部时钟频率可降一半c)单片机时钟振荡器增益可设为1/2gaind)超低功耗e)掉电模式:典型功耗<0.1μAf)空闲模式:典型功耗2mAg)正常工作模式:典型功耗4mA-7mAh)在系统可编程,无需编程器,可远程升级2)MFRC50MFRC50系统射频芯片采用Philips 公司的MRFC50,它应用于13.56MHZ 高频频段,采用非接触式通信,是高度集成了RFID 读写功能的集成芯片系列中的一员,它完全集成了在1356MHZ 下所有类型的被动非接触式的通信方式和协议,支持ISO1443A 所有层的功能,其内部的收发器部分不需要增加有源电路就能够直接通过天线读写.接收器部分利用一个高效、可靠的解调和解码电路,用于接收与ISO1443A 兼容的一卡通信号,此外它还支持用验证MIFARE 系列产品的快速CRYPTO1加密算法. 特点:给阅读器的设计提供了极大的灵活性。
MF RC500可方便的用于各种基于ISO /IEC 14443A 标准并且要求低成本、小尺寸、高性能以及单电源的非接触式通信的应用场合。
功能:NCSA2-A0D0-D7 ALENRDNWR地址译码地址线 数据线高 读选通写选通地址线MF RC500内部包括并行微控制器接口、双向。
FIFO缓冲区、中断、数据处理单元、状态控制单元、安全和密码控制单元、模拟电路接口及天线接口。
MF RC500的外部接口包括数据总线、地址总线、控制总线(包含读写信号和中断等)和电源等。
MF RC500的并行微控制器接口自动检测连接的8位并行接口的类型。
它包含一个易用的双向FIFO缓冲区和一个可配置的中断输出,为连接各种MCU 提供了很大的灵活性。
即使采用成本非常低的器件也能满足高速非接触式通信的要求。
数据处理部分执行数据的并行一串行转换。
支持的帧包括CRC和奇偶校验。
MF RC500以完全透明的模式进行操作.因而支持IS014443A的所有层。
状态和控制部分允许对器件进行配置以适应环境的影响,并将性能调节到最佳状态.2.E2PROM存储器串行E2PROM是可在线电擦除和电写入的存储器,具有体积小、接口简单、数据保存可靠、可在线改写、功耗低等特点,而且为低电压写入,在单片机系统中应用十分普遍。
串行E2PROM按总线形式分为三种,即I2C总线、Microwire总线及SPI总线三种。
1)I2C总线型I2C总线,是INTER INTEGRATED CIRCUIT BUS的缩写,即“内部集成电路总线”。
I2C总线采用时钟(SCL)和数据(SDA)两根线进行数据传输,接口十分简单。
Microchip公司的24XX系列串行E2PROM存储容量从128位(16×8)至256k 位(32k×8),采用I2C总线结构。
24XX中,XX为电源电压范围。
a)引脚24AA00/24LC00/24C00型128位I2C总线串行E2PROM的引脚图SDA是串行数据脚。
该脚为双向脚,漏极开路,用于地址、数据的输入和数据的输出,使用时需加上拉电阻。
SCL是时钟脚。
该脚为器件数据传输的同步时钟信号。
SDA和SCL脚均为施密特触发输入,并有滤波电路,可有效抑制噪声尖峰信号,保证在总线噪声严重时器件仍能正常工作。
在单片机系统中,总线受单片机控制。
单片机产生串行时钟(SCL),控制总线的存取,发送STRAT和STOP信号。
b)总线协议仅当总线不忙(数据和时钟均保持高电平)时方能启动数据传输。
在数据传输期间,时钟(SCL)为高电平时数据(SDA)必须保持不变。
在SCL为高电平时数据线(SDA)从高电平跳变到低电平,为开始数据传输(START)的条件,开始数据传输条件后所有的命令有效;SCL为高电平时,数据(SDA)从低电平跳变到高电平,为停止数据传输(STOP)的条件,停止数据传输条件后所有的操作结束。
开始数据传输START后、停止数据传输STOP前,SCL高电平期间,SDA上为有效数据。
字节写入时,每写完一个字节,送一位传送结束信号ACK,直至STOP;读出时,每读完一个字节,送一位传送结束信号ACK,但STOP前一位结束时不送ACK 信号。
c)器件寻址START后,单片机发送一个控制字,该控制字包括Start位(S)、受控地址(7位,对24XX00来说前四位为1010,后三晃薰叵?、读写(R/W)选择位(“1”为读,“0”为写)及传送结束位ACK。