多普勒天气雷达原理与应用3-雷达图象识别基础
- 格式:ppt
- 大小:55.32 MB
- 文档页数:197
1多普勒天气雷达原理与应用第六部分 多普勒天气雷达原理与应用(周长青)我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品第一章 我国新一代天气雷达原理一、了解新一代天气雷达的三个组成部分和功能新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA )、雷达产品生成子系统(RPG )、主用户处理器(PUP )。
二、了解电磁波的散射、衰减、折射散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。
衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。
折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性(密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。
2/3730/776.0T e T P N +=波束直线传播波束向上弯曲波束向下弯曲000=><dz dN dzdN dzdN三、了解雷达气象方程在瑞利散射条件下,雷达气象方程为:其中Pr 表示雷达接收功率,Z 为雷达反射率,r 为目标物距雷达的距离。
Pt 表示雷达发射功率,h 为雷达照射深度,G 为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K 表示与复折射指数有关的系数,C 为常数,之决定于雷达参数和降水相态。
四、了解距离折叠最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c 为光速,PRF 为脉冲重复频率。
距离折叠是指雷达对雷达回波位置的一种辨认错误。
当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。
当目标位于最大不模糊距离(Rmax )以外时,会发生距离折叠。
多普勒雷达的应用原理概述多普勒雷达是一种基于多普勒效应的雷达技术,它通过测量目标的运动速度来实现目标检测和速度测量。
多普勒雷达在军事、气象、交通等领域有着广泛的应用。
本文将介绍多普勒雷达的应用原理及其工作原理。
多普勒效应多普勒效应是指当光源与观察者之间有相对运动时,光的频率将发生变化。
这个现象也适用于雷达波。
当雷达波与运动的目标相互作用时,波的频率将发生变化,这一现象就被称为多普勒效应。
多普勒雷达的工作原理多普勒雷达主要通过测量电磁波的频率变化来获得目标的速度信息。
其工作原理可以分为两个主要步骤:发射和接收。
发射多普勒雷达会向目标发射一束电磁波,这个电磁波可以是微波或者射频信号。
发射的波束通常是一个连续的信号,而不是脉冲信号。
这是因为连续的信号可以提供更长的目标观测时间,从而获得更精确的速度测量结果。
接收目标接收到雷达发射的电磁波后,会对波进行回波。
当目标和雷达之间有相对运动时,回波的频率将发生变化。
多普勒雷达通过测量回波的频率变化来计算目标的速度。
信号处理与结果显示接收到回波后,多普勒雷达会将信号进行处理,通常会使用FFT(快速傅里叶变换)来分析波的频谱。
通过分析频谱,可以确定回波的频率变化,从而计算出目标的速度信息。
最后,多普勒雷达将速度信息以数字或图形的形式展示出来。
多普勒雷达的应用交通领域多普勒雷达在交通领域有着广泛的应用。
比如,在交通监控系统中,多普勒雷达可以用于测量车辆的速度和运动方向,从而实现交通流量统计、超速检测等功能。
此外,多普勒雷达还可以应用于自动驾驶系统中,帮助车辆实现定位和避障功能。
气象领域多普勒雷达在气象领域也有着重要的应用。
气象雷达可以利用多普勒效应测量云层中的降水速度和方向。
通过分析多普勒雷达的测量结果,可以预测暴雨、龙卷风等极端天气的发生。
军事领域多普勒雷达在军事领域有着广泛的应用。
它可以用于目标检测与识别、导弹预警系统等方面。
多普勒雷达可以检测到高速运动的目标,从而对敌方的机动部队进行监测和跟踪。