并网光伏发电系统的孤岛效应及反孤岛策略
- 格式:ppt
- 大小:341.50 KB
- 文档页数:28
光伏发电系统并网的孤岛特征及反孤岛策略的研究光伏逆变器并网运行中可能发生的孤岛效应会给电力设备和电力员工带来不可估量的危害,因此相关标准规定凡是并网型的光伏发电系统中都一定要装配防孤岛的保护装置,孤岛效应特征与反孤岛策略的研究是当务之急。
分析孤岛效应的发生过程及各项检测标准是研究孤岛检测策略的基本条件,研究了NDZ的表达方式从而给孤岛检测策略的性能进行评价打下基础。
分析了主动移频式检测策略、Sandia频率偏移策略、滑模频率偏移策略这几种主动式反孤岛策略的基本理论、实现手段、盲区分布以及总谐波失真度,由于主动式反孤岛策略必须持续不断地给电网加入扰动量,必然降低并网逆变器输出电流的电能质量。
基于此种情况,本文构建了盲区预评估机制,提出了选择性地引入主动式反孤岛策略的复合式孤岛检测策略,将持续不断地施加扰动量优化成选择性地给输出电流施加扰动量。
该策略具有极小的NDZ,在某些负载情况下可以实现无盲区检测,同时能极大地改善因谐波带来的电能质量差的问题。
由于被动式检测策略无谐波污染的优势明显大于主动式检测策略,本文提出一种结合粒子群算法与BPNN的人工智能孤岛识别策略,实现无NDZ、无谐波污染的孤岛检测。
采用公共耦合点PCC处的电压、并网电流以及频率值三者的变化率作为神经网络的输入层的输入向量,引进PSO优化BPNN的训练过程,改善孤岛识别的准确性与实时性。
通过实验仿真发现,该策略能够准确识别系统的孤岛与各种非孤岛状态。
光伏发电分布式防孤岛保护系统分析根据光伏孤岛理论,推导出了两种孤岛检测方法,分析两种孤岛检测标准,应用于分布式光伏电站,配置相应保护功能装置,使其保障光伏电网安全稳定运行,提高光伏并网的技术。
标签:光伏发电;分布式;防孤岛保护;装置如今光伏发电站在电力系统中所占的份额越来越大,不仅有集中式大面积光伏,还有分布式小型光伏发电站。
随着科学技术的进步,发展成为分布式光伏电源给负荷供电,组成局部孤网运行。
为避免孤网产生,本文从孤岛的检测方法入手进行阐述。
以被动式检测方法与主動式检测方法的特点为主线,结合配置防孤岛保护,减少孤岛现象给电网运行带来的危害。
1、孤岛状态检测方法目前孤岛检测方法主要分为被动检测和主动检测。
1.1 被动式孤岛检测被动检测就是通过检测孤岛形成前后的频率、电压、功率输出等电气量变化,来判断是否与主电网断开。
主要包括低频低压、高频高压、频率变化率法、矢量相移法和功率波动法等。
低频低压与高频高压检测:因光伏电源并网运行,频率和电压不会有很大的波动,总能够在允许的范围之内。
1.2 主动式孤岛检测主动检测通过对系统施加一个外部干扰,然后监视系统的响应来判断是否形成孤岛,一般是通过改变光伏逆变器有功或无功输出,检测电压和频率的响应变化。
主动检测将向系统施加外部干扰,即使是功率完全平衡的孤岛,也可以通过主动干扰来破坏功率平衡,从而被可靠地检测出来。
当系统中包含多个分布式电源时,各电源主动检测装置发出的干扰信号可能互相影响,降低检测效果。
2、分布式光伏电站防孤岛保护2.1分布式光伏电站防孤岛保护配置为了保证分布式光伏电站的安全稳定运行,根据《光伏发电站设计规范》GB 50797和《光伏发电站接入电力系统设计规范》GB/T50866要求,光伏电站应配置独立的防孤岛保护,其中防孤岛保护应与线路保护、重合闸、低电压穿越能力相配合[1]。
基于上述规定,大批分布式光伏电站使用了孤岛保护装置,分布式光伏电站配置的防孤岛保护装置一般都是故障解列装置。
并网光伏发电系统的反孤岛研究与离网光伏发电系统相比较,并网太阳能发电系统具有更高的电能利用率,太阳能发电系统将光伏阵列发出的电能经逆变器逆变后输送到电网1,并网时需满足以下条件:发电系统的电压频率经逆变器逆变后与并网电压频率相同、系统输出电压的最大值与电网电压最大值相同、经逆变后的电压与电网电压的相角差为零2。
光伏并网发电技术作为快速进展的新能源技术之一,带来的孤岛效应问题也亟待解决。
根据现有的技术,孤岛解决方案分为主动方案和被动方案两种。
当并网断开时,发电系统逆变器输出端的电气参数会因为断开电网而变化,以检测电压、频率、相位变化为依据的是被动式方案,被动式方案在负载所需功率和太阳能发电系统输出功率相等时,频率的变化很小,从而无法检测到孤岛故障。
与被动式不同的是向电网注入扰动来检测孤岛效应的方法则是主动式反孤岛策略,该方法更容易实现,克服了被动式无法检测到频率变化的缺陷。
本文的正反馈主动式频率偏移法的提出加快了检测孤岛故障的速度。
1孤岛效应的发生与检测1.1孤岛效应的发生此处以测试原理图来解释孤岛故障,如图1所示。
从孤岛测试原理图中能够看出,太阳能发电系统经逆变后,经过电气设备与电网连接。
当太阳能发电系统正常工作时,用电感、电阻、电容的并联电路来表示发电系统的负载,太阳能发电系统的输出功率用P+jQ表示。
1.2孤岛效应的检测图2所示为太阳能并网发电结构图。
光伏阵列发出的电经IGBT逆变传送到电网,L1、C2组成滤波器能够同意特定的频率通过,用电容C、电阻R、电感L并联来表示负载。
C1充电后表示直流电源。
光伏阵列发出的电经过逆变器逆变后,能够与电网电压同频同相3,这样才能并网。
在图3所示的示意图中,若开关断开后,就会产生孤岛效应问题,开关断开后,发电系统的电压和频率无法操纵,对本地负载会造成危害,当开关重新闭合时,也会影响电网的电能质量。
局部反孤岛策略如图4所示,反孤岛策略主要分为以下两种:被动式方案是在电网发生断电时,以检测电路中的相关参数为依据的,这种方法检测不到电压频率的变化,造成漏检;主动式是向逆变器输出电流注入扰动引起电压频率变化来推断是否发生了孤岛现象4,对于负载来说,若电容过大或电感过大时会有检测盲区,无法检测到故障。
反孤岛效应控制方法所谓孤岛现象[1]是指:当电网供电因故障事故或停电维修而跳脱时,各个用户端的分布式并网发电系统(如:光伏发电、风力发电、燃料电池发电等)未能即时检测出停电状态而将自身切离市电网络,而形成由分布电站并网发电系统和周围的负载组成的一个自给供电的孤岛,如图所示:孤岛一旦产生将会危及电网输电线路上维修人员的安全;影响配电系统上的保护开关的动作程序,冲击电网保护装置;影响传输电能质量,电力孤岛区域的供电电压与频率将不稳定;当电网供电恢复后会造成的相位不同步;单相分布式发电系统会造成系统三相负载欠相供电。
因此对于一个并网系统必须能够进行反孤岛效应检测。
孤岛检测标准电压和频率触发标准根据专用标准IEEE Std.2000-929[2]和UL1741规定,所有的并网逆变器必须具有反孤岛效应的功能,同时这两个标准给出了并网逆变器在电网断电后检测到孤岛现象并将逆变器与电网断开的时间限制,如表1.孤岛分析模型此外,IEEE Std.2000-929还给出一套标准的孤岛测试模型[3]。
具体的反孤岛逆变器测试电路如图2所示,测试电路主要由电网,RLC负载和并网逆变器以及电网隔离开关组成,检测点在电网隔离开关和负载开关之间,其中在选择RLC参数时牵涉到电路的品质因数Q值的选取问题[4],过高的Q值使电路有朝着并保持于谐振频率处工作的趋势。
在使用相位或频率扰动反孤岛检测时,Q值越高,相应的漂移量越小。
因此在进行反孤岛测试时,太小或太大的Q值都是不实际和不可取的。
IEEE P929工作组成员和十几位电网工程师经过讨论认为选取Q=2.5符合电网的实际情况。
孤岛检测方法孤岛检测方法分为两类:第一类称为被动检测,即通过观察电网的电压、频率以及相位的变化来判断有无孤岛产生。
第二类为主动检测,如频率、相位偏移和输出功率变化测量等。
如果光伏系统供电量与电网负载需求相差较大,在孤岛产生后,负载端的电压及频率会发生较大的变动,此时可以利用被动式的检测方法来检测。
反孤岛解决方案1. 孤岛效应所谓孤岛效应,是指当电力公司因故障或停电维修而停止供电时,用户端的并网逆变器系统仍处于工作状态,使得并网逆变器和周围的负载形成了电力公司无法控制的自供电网络。
光伏并网发电系统处于孤岛运行状态时会产生严重的后果:(1)电网无法控制孤岛中的电压和频率,若电压和频率超出允许的范围,可能对用户的设备造成的损坏;(2)若负载容量大于光伏发电系统的容量,光伏发电系统过载运行,易被烧毁;(3)与光伏发电系统连接的电路仍会带电,对检修人员造成危险,降低电网的安全性;(4)对孤岛进行重合闸操作时会导致该线路再次跳闸,还有可能损坏光伏发电系统和其他设备。
因此,光伏并网逆变器具有孤岛检测和反孤岛的功能是很有必要的。
2. 孤岛检测检测孤岛效应的方法有很多种,主要分为两种:被动检测和主动检测。
被动检测就是光伏并网逆变器检测与电网连接处的电网电压或频率的异常来检测孤岛效应。
主动检测是有意的引入一些扰动信号,来监控系统中的电压、频率和阻抗的相应变化,以确定电网的存在与否。
比较被动检测和主动检测的区别,被动检测的软件实现比较简单,但是检测范围有限,无法满足并网发电系统反孤岛保护安全标准的要求,因此我们选择用主动检测的方法;而主动检测可以使孤岛检测的盲区尽可能的小,孤岛检测比较有效,但是软件实现比较复杂,并且会使并网发电系统的发电效率有所降低。
国际上对反孤岛检测方案和响应时间没有明确的规定, IEEE Std.929[2]和IEEE Std.1547[3]根据孤岛效应发生时的具体情况推荐了不同的孤岛效应检测时间。
表1为IEEE Std.1547[3]允许的孤岛效应检测时间。
n n n f 指电网电压的频率值。
对于中国的单相市电,n f 为50Hz 。
经研究讨论,根据逆变器的控制策略,我们选择了两种的孤岛检测的方法,滑膜频率偏移法(slip-mode frequency shift, SMS )和主动电流扰动法。
光伏发电并网系统的孤岛效应及反孤岛策略近年来,随着能源的过度消耗,传统能源对环境带来的影响日益加重,人们逐渐意识到清洁能源的使用可以改善现有能源紧缺的状况,也可以改善能源使用对环境所带来的影响。
太阳能作为一种清洁、环保型的能源不仅无污染、可持续性强而且使用便捷,因此越来越多的人开始使用这种新型能源。
随着使用范围的扩大,它已经从补充型能源向替代型能源逐渐过渡。
孤岛效应是光伏发电中独有的故障,为了能够让清洁能源得到更好的利用,我们必须要制定对应的策略来改善孤岛效应带来的损害。
一、关于孤岛效应(一)概念它是指在光伏发电系统中,整个电力网络由于故障原因或是停电而出现跳闸断电的情况。
而此时各个分布式发电系统并没有检测出对应的故障问题,进而没有及时将光伏发电系统与电力网络断开,从而形成了一个以分布式发电系统以及其他负载组件共同形成的发电孤岛。
(二)危害1.一旦这种发电孤岛形成就会给系统内的电压和频率造成非常直接的影响,甚至会对相应的装置设备造成损害[1]。
2.而当故障解除之后,光伏发电系统在重新接入电力网络时又可能会出现电压不同步的情况,继而出现电流突变的情况,导致电力设备和其他器件受到损害。
3.断电之后的孤岛效应会造成接地故障无法彻底清除,给电力系统造成影响。
4.孤岛效应很容易给工作人员带来认知偏差,认为是电力网络断电,进而做出错误的判断,给工作人员的人身安全带来威胁。
为了避免孤岛效应给设备和工作人员造成危害,就必须要在出现此类情况时具备一定的防御保护能力,进而确保设备完好、人员安全。
二、关于孤岛效应危害的解决策略触发孤岛效应出现的必要条件就是光伏系统内的输出功率与其负载功率相互匹配。
依据孤岛效应的检测规定,当发电系统中所输出的有功功率和负载有功功率之间出现5%的误差且持续时间长达2s以上,便可以确定光伏发电的孤岛效应已经产生。
因此我们可以得出结论,孤岛效应的出现与功率数值是否匹配以及其所能够持续的时间有紧密的联系。
防孤岛保护在光伏电站中的应用摘要:防孤岛保护能够在大电网断电时确保负荷正常供电,降低停电造成的损失;而孤岛的出现会对设备造成损害,对维护人员的人身安全造成危害,对电网的安全和稳定运行产生不利的影响。
在电网恢复电力供应、电压、频率满足容许范围后,将自动关闭并网开关。
其目标是尽量确保光伏发电的效率,同时又不会对全国电网造成严重的影响。
关键词:防孤岛;光伏电站;保护措施引言:在光伏发电系统中存在孤岛现象,也就是在电网因某些故障而导致电压下降时,应该能够迅速监控孤岛,并及时切断与电网的联系。
一旦发生了孤岛现象,将会对电力系统的供电质量和维护人员的生命安全产生不利的影响。
针对这种“孤岛效应”,采用了光电防孤岛防护设备。
防孤岛保护设备可准确地检测并联网点的电压、频率,当电压、频率波动超过一定值时,跳闸出口工作,切断并网。
在低功耗的情况下, GCI通常采用孤岛保护,其基本原则是: GCI通过探测孤岛的工作状况,再进行孤岛保护,从而切断 GCI电源。
孤岛孤岛保护的关键在于GCI的快速、高效的探测。
一、孤岛防护目前常用的孤岛探测技术有源孤岛探测和有源孤岛探测。
被动孤岛探测技术存在着大量的盲点,无法对孤岛进行快速、高效的探测。
主动探测技术可以减少探测的盲区,但是会使 GCI的输出电流变差。
为此,我们设计了一种基于正反馈的频域干扰孤岛检测算法,该算法在不增加干扰 df的情况下,不会使 GCI的输出电流品质变差[1]。
干扰对输出电流的影响很小,因为干扰周期的长度和长度都很短。
一旦电网断电,负荷频率就不能由电网来控制,则会产生一种正向的反馈,从而引起系统的不稳定,同时还会增加干扰,以打破原有的均衡状态,从而导致GCI在正反馈的影响下变得不稳定,如果频率超过一定的频率, GCI就会发现孤岛的存在,从而实现对孤岛的保护。
二、光伏电站中的防孤岛防护功能由电力和负载组成的一种局部电力网,在与主网分离后仍处于隔离状态。
当出现非计划孤岛时由于电力供应状况不明,会对电力系统的维护人员、使用者的人身安全造成危害,是对电网的正常开断,电网无法对孤岛内的电压、频率进行控制,进而对配电装置和使用者设备造成损害。
浅述光伏并网防孤岛问题的主动性预防措施摘要:随着环境问题和能源问题的日益突出,各国都在积极开发新能源,光伏发电设备的使用越来越频繁,孤岛效应发生的概率也增加,由孤岛效应引起的风险已经引起了相关技术人员的广泛关注,解决电网孤岛问题已经成为电网调度运行管理的重点研究课题。
在此基础上,本文讨论了光伏并网发电系统的孤岛效应危害及预防措施。
关键词:光伏并网;发电系统;孤岛效益;措施1 孤岛效应的定义与危害所谓孤岛效应是指当电网因电气故障、自然因素或者误操作而发生停电中断时,各用户端的光伏发电系统没有及时检测出停电状态并脱离市电网络,而是继续保持向电网输送电能,同时与负载形成独立的公共电网无法控制的自给自足的供电孤岛。
孤岛效应不仅给整个电网带来安全隐患,而且降低了整个并网光伏发电系统的效率,主要表现在以下方面:1.1当维修人员对系统进行维护时,出现孤岛现象,因为并网光伏系统继续维持供电的负荷,会危及维修人员的人身安全。
1.2 孤岛效应会导致接地、相间短路等故障,造成电网设备损坏,干扰正常供电系统的自动或手动恢复。
1.3 当孤岛系统与市电网恢复时,一方面,断路器装置的光伏发电系统与电网不同步而破坏,另一方面,恢复并网时,因为电流、电压相位差的影响是非常强的,相关设备会受到损坏。
1.4 单相光伏并网发电系统可能因孤岛效应而导致三相负载供电,造成三相负载相故障,造成三相负荷设备损坏。
2防止出现孤岛效应的方法一般来说,通过孤岛电网系统对电压幅值和频率、相移指数而进行判断,在检测孤岛过程中,主要有主动检测和被动检测两种方法。
在主动检测方法的使用时,第一步会通过并网逆变器的控制,然后输出功率、输出频率和相位会波动,在电网的实际运行中,电网具有自我平衡的能力,干扰不能被检测到,而在电网工作停止时,逆变器的干扰迅速积累,并超过网络允许范围,触摸电路保护,使用这种方法进行检测,有检测盲区小,检测精度高的优点。
而被动检测方法的使用是在公共电网工作停止后,根据并网逆变器的输出电压、输出频率,判断孤岛,使用此方法具有简单、方便的实现判断的优势,但在当电网的电力系统负荷和输出功率一样时,此方法将失败。
浅析光伏发电系统并网技术与反孤岛策略作者:檀英来源:《建筑工程技术与设计》2014年第26期【摘要】本文主要描述了光伏发电系统并网的原理和控制技术,并对并网中的孤岛效应的影响和反孤岛策略进行了阐述。
【关键词】光伏发电系统;逆变器;孤岛效应;策略进入21世纪,随着全球经济增长引发的能源消耗的增长,能源供给与消耗的矛盾也日渐显现,节能减排的问题等问题已经成为全世界所面临的重大问题之一。
我国面临的最大挑战依然是人口、资源和环境问题,实现可持续发展的唯一选择就是全力提高资源的利用效率,最大限度地减少环境污染,太阳能在各种可再生能源技术中具有最理想的可持续发展特征,具有最丰富的资源和最清洁的发电过程,已经成为世界可再生能源发展的最大着力点和亮点。
2010年国务院将太阳能产业纳入国家加快培育和发展的战略性新兴产业,给予重点扶持,大力促进光伏发电产业发展规划的具体实施。
我国光伏发电并网取得了迅猛发展。
下面我就光伏发电系统并网及有关问题做个简要阐述。
一、光伏发电系统原理:(一)并网光伏发电系统的组成及其工作原理并网型太阳能光伏发电系统结构原理并网型光伏发电系统由太阳能电池组件方阵将光能转变成电能,并经直流配电箱进入并网逆变器,有些类型的并网型光伏系统还有配置蓄电池组存储直流电能。
并网逆变器由充放电控制、功率调节、交流逆变、并网保护切换等部分构成。
经逆变器输出的交流电供负载使用,多余的电能通过电力变压器等设备馈入公共电网(称为卖电)。
当并网光伏系统因天气原因发电量不足或自身用电量偏大时,可由公共电网向交流负载供电(称为卖电。
)(二)光伏发电系统入网规定光伏发电所利用的太阳能能力密度低,受季节和昼夜、气候及地理位置等影响大,当光伏发电系统并入电网时,对电网的运行控制带来了一定的困难。
因此我国对光伏发电系统入网做出了如下规定:1、谐波和波形畸变。
光伏发电站并网运行时,各次谐波应限制在一定百分比以内(如下表)。
此范围的偶次谐波应小于奇次谐波限制的25%。