第8章 定时器计数器
- 格式:pdf
- 大小:1.19 MB
- 文档页数:55
第八章可编程定时器/计数器8253及其应用【回顾】可编程芯片的概念,端口的概念。
【本讲重点】定时与计数的基本概念及其意义,定时/计数器芯片Intel8253的性能概述,内、外部结构及其与CPU的连接。
8.1 定时与计数1.定时与计数在微机系统或智能化仪器仪表的工作过程中,经常需要使系统处于定时工作状态,或者对外部过程进行计数。
定时或计数的工作实质均体现为对脉冲信号的计数,如果计数的对象是标准的内部时钟信号,由于其周期恒定,故计数值就恒定地对应于一定的时间,这一过程即为定时,如果计数的对象是与外部过程相对应的脉冲信号(周期可以不相等),则此时即为计数。
2.定时与计数的实现方法(1) 硬件法专门设计一套电路用以实现定时与计数,特点是需要花费一定硬设备,而且当电路制成之后,定时值及计数范围不能改变。
(2) 软件法利用一段延时子程序来实现定时操作,特点,无需太多的硬设备,控制比较方便,但在定时期间,CPU不能从事其它工作,降低了机器的利用率。
(3) 软、硬件结合法即设计一种专门的具有可编程特性的芯片,来控制定时和计数的操作,而这些芯片,具有中断控制能力,定时、计数到时能产生中断请求信号,因而定时期间不影响CPU的正常工作。
8.2 定时/计数器芯片Intel8253Intel8253是8086微机系统常用的定时/计数器芯片,它具有定时与计数两大功能。
一、8253的一般性能概述1.每个8253芯片有3个独立的16位计数器通道;2.每个计数器通道都可以按照二进制或二—十进制(BCD码)计数;3.每个计数器的计数速率可以高达2MHz;4.每个通道有6种工作方式,可以由程序设定和改变;5.所有的输入、输出电平都与TTL兼容。
二、8253内部结构8253的内部结构如图8-1所示,它主要包括以下几个主要部分:图8-1 8253的内部结构1.数据总线缓冲器实现8253与CPU数据总线连接的8位双向三态缓冲器,用以传送CPU向8253的控制信息、数据信息以及CPU从8253读取的状态信息,包括某时刻的实时计数值。
单片机中的定时器和计数器单片机作为一种嵌入式系统的核心部件,在各个领域都发挥着重要的作用。
其中,定时器和计数器作为单片机中常用的功能模块,被广泛应用于各种实际场景中。
本文将介绍单片机中的定时器和计数器的原理、使用方法以及在实际应用中的一些典型案例。
一、定时器的原理和使用方法定时器是单片机中常见的一个功能模块,它可以用来产生一定时间间隔的中断信号,以实现对时间的计量和控制。
定时器一般由一个计数器和一组控制寄存器组成。
具体来说,定时器根据计数器的累加值来判断时间是否到达设定的阈值,并在时间到达时产生中断信号。
在单片机中,定时器的使用方法如下:1. 设置定时器的工作模式:包括工作在定时模式还是计数模式,以及选择时钟源等。
2. 设置定时器的阈值:即需要计时的时间间隔。
3. 启动定时器:通过控制寄存器来启动定时器的运行。
4. 等待定时器中断:当定时器计数器的累加值达到设定的阈值时,会产生中断信号,可以通过中断服务函数来进行相应的处理。
二、计数器的原理和使用方法计数器是单片机中另一个常见的功能模块,它主要用于记录一个事件的发生次数。
计数器一般由一个计数寄存器和一组控制寄存器组成。
计数器可以通过外部信号的输入来触发计数,并且可以根据需要进行计数器的清零、暂停和启动操作。
在单片机中,计数器的使用方法如下:1. 设置计数器的工作模式:包括工作在计数上升沿触发模式还是计数下降沿触发模式,以及选择计数方向等。
2. 设置计数器的初始值:即计数器开始计数的初始值。
3. 启动计数器:通过控制寄存器来启动计数器的运行。
4. 根据需要进行清零、暂停和启动操作:可以通过控制寄存器来实现计数器的清零、暂停和启动操作。
三、定时器和计数器的应用案例1. 蜂鸣器定时器控制:通过定时器模块产生一定频率的方波信号,控制蜂鸣器的鸣叫时间和静默时间,实现声音的产生和控制。
2. LED呼吸灯控制:通过定时器模块和计数器模块配合使用,控制LED的亮度实现呼吸灯效果。
这一讲我们了解定时/计数器的作用和原理我先讲一下什么是定时器单片机就是"放在一个芯片里的计算机" ,所以光有CPU还不算单片机,还需要有内存,外存,输入输出接口和外部设备,这个芯片里就有一台完整的小电脑了.所以叫"单个芯片的计算机" 简称单片机内存,外存,输入输出我们都好理解,外部设备有哪些呢?主要就是串行通信控制器(串口)和定时/计数器今天这课就是讲定时/计数器定时/计数器是即能定时,又能计数的器件单片机不能完全靠人来控制比如你按什么键它就执行什么事,那么你不按呢?它就傻等着,这可不行,那么我们给单片机制定了工作日程表,总不能一直用人盯着提醒它做什么吧。
这样我们给它提供了一个闹钟,就是这个定时器,我们把要做的时安排好时间,然后定时器到了时间就提醒CPU做该做的事,这样就自动化了再说计数器如果用单片机来计数,一般可以通过用CPU来计算,可是这样一来,CPU就不能集中精力做事了比如它想知道生产线上一共传送了多少个产品,那么有一个办法就是让它一直等,有一个产品它就计数加1,可是它也不知道下一个产品什么时候来,所以只好一直等,那它就没办法专心做别的事了,开发人员想了,干脆给它派个助手吧,专门在那等着计数,然后CPU 也不管它计了多少,什么时候想知道了就到计数器那里去问一下。
定时器和计数器其实是一回事!!!只不过定时器是对系统的时钟信号进行计数。
我们通常用用电是200V 50HZ 我想前面那个我不用解释了吧。
后面那个的意思就是一秒钟有50次的频率。
也就是50HZ。
那么6M也就是6MHZ也就是600万次的频率。
也就是说一秒钟600万次。
比如我们用6M的晶振,那么12个时钟周期执行一条指令。
就是一个指令周期。
我们用计数器对指令周期计数。
6M=600万600万/12=500K (k是指千)就是一秒钟有500K个指令周期。
一个指令周期就是1秒/500K=2微秒那么我们想定时1毫秒500*2微秒=1000微秒=1毫秒就设定计数器记录500个时钟周期就行了那么要得到1秒呢?就是1000个1毫秒,无非就是改变计数的值现在我们来总结一下这个定时/计数器,其实就是个计数器。