第四章拉普拉斯变换、连续时间系统的S域分析 基本要求 通过本章的学习
- 格式:doc
- 大小:788.00 KB
- 文档页数:10
第4章 连续时间系统的S 域分析4.1拉普拉斯变换的定义、收敛域(一) 定义拉氏正变换:()()()0stf t F s f t e dt ∞-==⎡⎤⎣⎦⎰拉氏逆变换:()()112j st j F s F s e ds j σσπ+∞--∞=⎡⎤⎣⎦⎰ (二) 常用函数的拉氏变换[1] 阶跃函数()01stste u t e dt ss∞-∞-==-=⎡⎤⎣⎦⎰ [2] 指数函数()01a s tatat ste ee e dt a sa s∞-+∞---⎡⎤==-=⎣⎦++⎰ (σ>a -) [3] n t 函数[]21t s =232t s ⎡⎤=⎣⎦1!nn n t s +⎡⎤=⎣⎦[4] 冲激函数()()01stt t e dt δδ-∞-==⎡⎤⎣⎦⎰ ()()0000st stt t t t e dt e δδ-∞---=-=⎡⎤⎣⎦⎰4.2拉普拉斯逆变换(一) 部分分式分解[1]极点为实数,无重根例 求下示函数的逆变换()()()3259712s s s F s s s +++=++ 解 用分子除以分母(长除法)可得()()()()()()322222222225971232277323232232332323221212s s s F s s s s s s s s s s s s s s s s s s s s s s s s s s s +++=++++++=++++++++++=++++++++=++-++ 故有()()()222t t f t t t e e δδ--'=++- ()0t ≥[2]包含共轭复数极点()()12cos sin tA jB A jB e A t B t s j s j αββαβαβ--⎡⎤+-+=-⎡⎤⎢⎥⎣⎦+-++⎣⎦例 求下面函数的逆变换()()()223252s F s s s s +=+++ 解()()()()()()()()2222220123252312231212221212s F s s s s s s s s s j s j s k k k s s j s j +=++++=⎡⎤+++⎣⎦+=+++-+=++++-++下面分别求系数012,,k k k()()02725s k s F s =-=+=()()21123121225s j s j k s j s =-++-+==+++ 也即12,55A B =-=,故而可以得到其逆变换的函数表达式 ()()()27122cos 2sin 2555t t f t e e t t --⎡⎤=-+⎢⎥⎣⎦()0t ≥ [3]多重极点设有()()()()()()()()()()1111121111k kkk A s A s F s B s s p D s E S K K K s p D S s p s p -==-=++⋅⋅⋅++---现记()()()11kF S s p F s =-则个系数的计算公式为:()()1111111!i i i s p d K F s i ds --==-例 求下示函数的逆变换()()321s F s s s -=+解 将()F s 写成展开式()()()131112232111K K K K F s s ss s =++++++ 容易求得:()202s K sF s ===-为求出与重根有关的个系数,令()()()3121s F s s F s s-=+=故有11123S s K s=--==12122S d s K ds s =--⎛⎫== ⎪⎝⎭213211222S d s K ds s =--⎛⎫== ⎪⎝⎭于是有()()()323222111F s s ss s =++-+++ 所求逆变换为()232222t t t f t t e te e ---=++- ()0t ≥4.3微分方程的S 域求解对于二阶连续时间LTI 系统,描述系统的微分方程为()()()()()1010,0y t a y t a y t b x t b x t t ''''++=+≥()()0,0y y --'为系统的初始状态。
拉普拉斯变换、连续时间系统的S 域分析基本要求通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用;能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应;能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性;理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系;会判定系统的稳定性;知识要点1. 拉普拉斯变换的定义及定义域 (1) 定义单边拉普拉斯变换:正变换0[()]()()stf t F s f t dt e ζ∞--==⎰ 逆变换 1[()]()()2j stj F s f t F s ds j e σσζπ+∞-∞==⎰双边拉普拉斯变换: 正变换 ()()stB s f t dt e F ∞--∞=⎰逆变换1()()2j stB j f t s ds j e F σσπ+∞-∞=⎰(2) 定义域 若0σσ>时,lim ()0tt f t eσ-→∞=则()tf t eσ-在0σσ>的全部范围内收敛,积分0()stf t dte +∞--⎰存在,即()f t 的拉普拉斯变换存在;0σσ>就是()f t 的单边拉普拉斯变换的收敛域;0σ与函数()f t 的性质有关;2. 拉普拉斯变换的性质 (1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则11221122[()()]()()f t f t F s F s ζκκκκ+=+(2) 原函数微分 若[()]()f t F s ζ=则()[]()(0)df t sF s f dtζ-=- 式中()(0)r f-是r 阶导数()r rd f t dt 在0-时刻的取值;(3) 原函数积分 若[()]()f t F s ζ=,则(1)(0)()[()]tf F s f t dt s sζ---∞=+⎰式中0(1)(0)()f f t dt ---∞=⎰(4) 延时性若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---=(5) s 域平移若[()]()f t F s ζ=,则[()]()at f t e F s a ζ-=+ (6) 尺度变换若[()]()f t F s ζ=,则1[()]()s f at F a aζ=a >0 (7) 初值定理lim ()(0)lim ()t o s f t f sF s ++→→∞==(8) 终值定理lim ()lim ()t s f t sF s →+∞→∞=(9) 卷积定理若11[()]()f t F s ζ=,22[()]()f t F s ζ=,则有1212[()()]()()f t f t F s F s ζ*=12121[()()][()()]2f t f t F s F s jζπ=*=121()()2j j F p F s p dp j σσπ+∞-∞-⎰3. 拉普拉斯逆变换(1) 部分分式展开法首先应用海维赛展开定理将()F s 展开成部分分式,然后将各部分分式逐项进行逆变换,最后叠加起来即得到原函数()f t ; 2留数法留数法是将拉普拉斯逆变换的积分运算转化为求被积函数()st F s e 在围线中所有极点的留数运算,即(1)11[()]()()[()]22j st st st j cF s F s e ds F s e ds F s e j jσσζππ+∞--∞===∑⎰⎰极点的留数若i p 为一阶级点,则在极点i s p =处的留数21[()()]insti i i s p i r s p F s e X ===-∑若i p 为k 阶级点,则111[()()](1)!ik k st i i s p k d r s p F s e k ds-=-=--4. 系统函数网络函数Hs (1) 定义系统零状态响应的拉普拉斯变换与激励的拉普拉斯变换之比称为系统函数,即()()()zs R s H s E s =冲激响应()h t 与系统函数()H s 构成变换对,即()[()]H s h t ζ=系统的频率响应特性()()()()j w s jwH jw H s H jw e ϕ===式中,()H jw 是幅频响应特性,()w ϕ是相频响应特性; (2) 零极点分布图1212()()()()()()()()()m n K s z s z s z N s H s D s s p s p s p ---==--- 式中,K 是系数;1z ,2z ,m z 为()H s 的零点;1p ,2p ,,n p 为()H s 的极点;在s 平面上,用“”表示零点,“X ”表示极点;将()H s 的全部零点和极点画在s 平面上得到的图称为系统的零极点分布图;对于实系统函数而言,其零极点要么位于实轴上,要么关于实轴成镜像对称分布; (3) 全通函数如果一个系统函数的极点位于左半平面,零点位于右半平面,而且零点与极点对于jw 轴互为镜像,那么这种系统函数称为全通函数,此系统则为全通系统或全通网络;全通网络函数的幅频特性是常数; (4) 最小相移函数如果系统函数的全部极点和零点均位于s 平面的左半平面或jw 轴,则称这种函数为最小相移函数;具有这种网络函数的系统为最小相移网络; (5) 系统函数()H s 的求解方法 ①由冲激响应()h t 求得,即()[()]H s h t ζ=;②对系统的微分方程进行零状态条件下的拉普拉斯变换,然后由()()()zs R s H s E s =获得;③根据s 域电路模型,求得零状态响应的像函数与激励的像函数之比,即为()H s ; 5. 系统的稳定性若系统对任意的有界输入,其零状态响应也是有界的,则此系统为稳定系统; 1稳定系统的时域判决条件()h t dt M +∞-∞≤⎰充要条件 ① 若系统是因果的,则①式可改写为0()h t dt M +∞≤⎰ (2) 对于因果系统,其稳定性的s 域判决条件①若系统函数()H s 的全部极点落于s 左半平面,则该系统稳定;②若系统函数()H s 有极点落于s 右半平面,或在虚轴上具有二阶以上的极点,则该系统不稳定;③若系统函数()H s 没有极点落于s 右半平面,但在虚轴上有一阶极点,则该系统临界稳定;内容摘要例题·求拉氏变换·求拉氏变换,拉氏变换的性质 ·拉氏变换的微分性质 ·系统函数,求解系统的响应 ·用拉氏变换法分析电路·例4-1求下列函数的拉氏变换 ()()1-=t tu t f 分析拉氏变换有单边和双边拉氏变换,为了区别起见,本书以()s F 表示()t f 单边拉氏变换,以 ()s F B 表示()t f 双边拉氏变换;若文字中未作说明,则指单边拉氏变换;单边拉氏变换只研究0≥t 的时间函数,因此,它和傅里叶变换之间有一些差异,例如在拉氏变换的和典型信号的拉氏变换二.单边拉氏变换逆变换的求法围线积分法 三.拉氏变换的 四.五.系统函数一.拉普拉斯时移定理,微分定理和初值定理等方面;本例只讨论时移定理;请注意本例各函数间的差异和时移定理的正确应用; 解答例4-2求三角脉冲函数)(f t 如图4-2a 所示的象函数 分析和傅里叶变换类似,求拉氏变换的时,的性质,; 解答方法一:按定义式求解方法二:利用线性叠加和时移性质求解 方法三:利用微分性质求解 方法四:利用卷积性质求解 方法一:按定义式求解方法二:利用线性叠加和时移性质求解 由于于是 方法三:利用微分性质求解 分析信号的波形仅由直线组成,信号导数的象函数容易求得,或者信号经过几次微分后出现原信号,这时利用微分性质比较简单; 将()t f 微分两次,所得波形如图4-2b 所示;()()()2222e 11e e 211s s s sss F ----=+-=根据微分性质 由图4-2b 可以看出 于是方法四:利用卷积性质求解()t f 可看作是图4-2c 所示的矩形脉冲()t f 1自身的卷积于是,根据卷积性质 而所以例4-3应用微分性质求图4-3a 中 的象函数下面说明应用微分性质应注f()1t f 因而这是应用微分性质应特别注意的问题;由图4-3b 知例4-4某线性时不变系统,在非零状条件不变的情况下,三种不同的激励信号作用于系()()s s s F --=e 111()()22e 11sss F --=图4-2c()()t f t f t f 321),(,(),1t f ()()()t f t f t f 321,,'''图4-4(b)为图中所示的矩形脉冲时,求此时系统的输出阶跃响应则 例4-5电路如图4-5a 所示 1求系统的冲激响应; 2求系统的起始状态使系统的零输入响应等于冲激响应; 3求系统的起始状态, 解答1求系统的冲激响应;系统冲激响应()t h 与系统函数()s H 是一对拉氏变换的关系;对()s H 求逆变换可求得()t h ,这种方法比在时域求解微分方程简便;利用s 域模型图4-5b 可直写出图4-5a 电路的系统函数 冲激响应2求系统的起始状态为求得系统的零输入响应,应写出系统的微分方程或给出带有初值的s 域模型;下面我们用s 域模型求解;图4-5a 电路的s 域模型如图4-5b; 由图4-5b 可以写出上式中第二项只和系统起始状态有关,因此该项是零输入响应的拉氏变换;依题意的要求,该项应和()s H 相等,从而得()t x 3当输入()。
第4章拉普拉斯变换、连续时间系统的s域分析第4章拉普拉斯变换、连续时间系统的s 域分析4.1 基本要求1. 深刻理解拉普拉斯变换的定义、收敛域的概念;2. 熟练掌握拉普拉斯变换的性质、卷积定理的意义和它们的运用;3. 能根据时域电路模型画出s 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应;4. 能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性;5. 理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅立叶变换的关系;6. 会判断系统的稳定性。
4.2 公式摘要1. 拉氏变换、傅氏变换和算子符号之间的区别和联系(1)拉氏变换法在求解问题时能够把初始条件的作用计入,而算子符号则不能。
但是拉氏变换不能反映出零输入响应,可能会丢失一些固有频率,而算子符号则不会。
(2)傅氏变换为时域到频域变换,ω只能描述振荡重复频率;拉氏变换为时域到复频域变换,s 不仅能描述振荡,也能反映振荡幅度的衰减或增长速率。
(3)拉氏变换收敛域坐标00σ>则对应傅立叶不存在;收敛坐标00σ<则对应傅立叶变换只需将s 用j ω替换即可;收敛坐标00σ=,则不能简单地用j ω替换s 得到对应的傅立叶变换,除此之外还将出现冲激项。
2. 利用拉氏变换性质求拉氏变换(1)单边拉氏变换收敛域形式为Re[]s a >,极点在a 左边。
(2)利用延时定理求解拉氏变换适用于00()()f t t u t t --且00t >。
利用尺度变换求解拉氏变换适用于()f at 且0a >。
(3)利用时域微积分特性求解单边拉氏变换需要注意起始值(0)f-和积分值01(0)()f f d ττ----∞=?。
必须理解采用0-的原因是需要把0t =处可能有的冲激考虑在内。
(4)注意单边拉氏变换的卷积定理要求参与卷积的信号为因果信号。
(5)务必注意:对信号作各种操作后,会对收敛域有影响。
3. 求双边拉氏变换及其收敛域(1)反因果信号2()()()f t f t u t =-的双边拉氏变换求解时需将它的积分区间通过变量替换为0到正无穷,以便判断收敛域范围。