人工神经网络基础
- 格式:ppt
- 大小:706.00 KB
- 文档页数:54
第九章人工神经网络基础人工神经网络(Artificial Neural Network, ANN)是在模拟人脑神经系统的基础上实现人工智能的途径,因此认识和理解人脑神经系统的结构和功能是实现人工神经网络的基础。
而人脑现有研究成果表明人脑是由大量生物神经元经过广泛互连而形成的,基于此,人们首先模拟生物神经元形成人工神经元,进而将人工神经元连接在一起形成人工神经网络。
因此这一研究途径也常被人工智能研究人员称为“连接主义”(connectionism)。
又因为人工神经网络开始于对人脑结构的模拟,试图从结构上的模拟达到功能上的模拟,这与首先关注人类智能的功能性,进而通过算法来实现的符号式人工智能正好相反,为了区分这两种相反的途径,我们将符号式人工智能称为“自上而下的实现方式”,而称人工神经网络称为“自下而上的实现方式”。
人工神经网络中存在两个基本问题。
第一个问题是人工神经网络的结构问题,即如何模拟人脑中的生物神经元以及生物神经元之间的互连方式的问题。
确定了人工神经元模型和人工神经元互连方式,就确定好了网络结构。
第二个问题是在所确定的结构上如何实现功能的问题,这一般是,甚至可以说必须是,通过对人工神经网络的学习来实现,因此主要是人工神经网络的学习问题。
具体地说,是如何利用学习手段从训练数据中自动确定神经网络中神经元之间的连接权值的问题。
这是人工神经网络中的核心问题,其智能程度更多的反映在学习算法上,人工神经网络的发展也主要体现在学习算法的进步上。
当然,学习算法与网络结构是紧密联系在一起的,网络结构在很大程度上影响着学习算法的确定。
本章首先阐述人脑神经系统,然后说明人工神经元模型,进而介绍人工神经网络的基本结构类型和学习方式。
9.1 人脑神经系统人工神经网络是在神经细胞水平上对人脑的简化和模拟,其核心是人工神经元。
人工神经元的形态来源于神经生理学中对生物神经元的研究。
因此,在叙述人工神经元之前,首先介绍目前人们对生物神经元的构成及其工作机理的认识。
引言人工神经网络(Artificial Neural Networks,ANN)是模仿人脑神经元结构和功能的一种计算模型,它在机器学习领域中扮演着至关重要的角色。
通过模拟生物神经网络的工作方式,人工神经网络能够处理复杂的模式识别、分类、预测等问题。
本文将探讨人工神经网络在机器学习中的基础性发现和发明,以及这些技术如何推动了机器人技术的发展。
人工神经网络的基础性发现和发明1.反向传播算法的发明反向传播算法(Backpropagation,BP)是人工神经网络研究中的一个里程碑。
该算法由David Rumelhart、Geoffrey Hinton和Ronald Williams于1986年提出,它使得人工神经网络能够从训练样本中学习统计规律,并对未知事件进行预测。
BP算法的出现极大地推动了神经网络的研究,并使其在模式识别、联想记忆等领域得到了广泛应用。
2.深度学习的兴起深度学习是基于人工神经网络的一种技术,它通过多层神经元的堆叠来提取数据的深层特征。
深度学习模型如卷积神经网络(CNN)、递归神经网络(RNN)等在图像识别、自然语言处理等领域取得了显著的成功。
谷歌大脑项目就是一个典型的例子,该项目构建了一个具有约一亿个连接的深度神经网络,成功地从随机YouTube视频中识别出面部和猫的概念。
3.神经网络的多样性发展随着研究的深入,各种类型的神经网络不断涌现。
例如,自适应神经网络、模糊神经网络等新型神经网络模型被开发出来,用于解决智能控制、组合优化、预测等问题。
这些模型不仅提高了神经网络的性能,还拓宽了其应用范围。
人工神经网络对机器人技术的影响1.提高机器人的感知能力人工神经网络通过模拟生物神经元的工作方式,使机器人能够更好地感知环境。
例如,在机器人学习探索行为的过程中,神经网络可以根据传感器输出调整特征向量,并计算奖励以指导机器人的行动。
这种感知能力的提升使得机器人能够更有效地识别物体并采取相应的行动。
人工神经网络的基础知识及应用前景人工神经网络是一种模拟仿真人类神经系统的计算模型,其工作原理是通过模拟大量神经元之间的交互作用,实现对输入信号的处理和输出结果的预测。
它已经成为了人工智能领域的重要研究方向,具有广泛的应用前景。
一、神经网络的基本概念一般来说,神经网络的基础是由连接器、神经元和权值组成的。
其中连接器是连接神经元的“线路”,神经元则是神经网络的基本计算单元,而权值则是表示神经元之间连接强度的系数。
这三个元素的组合和调整,形成了新一代人工智能技术的基体。
具体来说,神经网络的基本概念涉及到几个方面:1. 神经元:神经元是神经网络的基本计算单元,类似于人体神经系统中的细胞。
它接收从其他神经元传来的信号并对信号进行处理,最后将信号传递到其他神经元。
2. 连接器:连接器是连接神经元的“线路”,类似于人体神经系统中的神经纤维。
连接器传递信号的强度可以根据权值来调整。
3. 权值:权值表示神经元之间连接强度的系数。
这些权值通过不断的训练和调整,可以使神经网络更好地完成分类、识别等任务。
二、神经网络的工作原理神经网络的工作原理类似于人脑的处理方式。
它由多个神经元组成,每个神经元接收输入信号并产生输出信号。
在神经网络中,输入信号被送到第一层神经元中,这些神经元处理输入信号并产生一个新的信号传递到下一层神经元中。
最终结果可以通过输出层获得。
整个过程就像是一种类似反馈机制的过程,在反复的输入和输出过程中,神经网络可以不断调整自身的权值,从而获得更好的性能。
三、神经网络的应用前景随着各种深度学习技术的不断发展,神经网络的应用前景也越来越广泛。
以下是一些常见的应用方向:1. 模式识别:神经网络可以用于分析和识别不同类型的图像、文本、语音和视频等数据,帮助人们进行目标识别和分类。
2. 智能控制:神经网络可以用于智能控制,比如在机器人、自动驾驶和自动化生产线上,可以通过神经网络提高自主决策的能力。
3. 自然语言处理:神经网络可以用于自然语言处理和机器翻译等领域,帮助人们更好地理解和利用语言信息。