圆曲线坐标计算(坐标正算法)
- 格式:ppt
- 大小:512.00 KB
- 文档页数:16
一、坐标正算与坐标反算 1、坐标正算 已知 点的坐标、 边的方位角、 两点间的水平距离,计算待 定点 的坐标,称为坐标正算。
如图 6-6 所示,点的坐标可由下式计 算:式中 、 为两导线点坐标之差,称为坐标增量,即:【例题 6-1】已知点 A 坐标, =1000 、 =1000 、方位角 =35°17'36.5", 两点水平距离 =200.416 ,计算 点的坐标?35o17'36.5"=1163.580 35o17'36.5"=1115.793 2、坐标反算 已知 两点的坐标,计算 两点的水平距离与坐标方位角, 称为坐标反算。
如图 6-6 可知,由下式计算水平距离与坐标方位角。
(6-3) (6-4) 式中反正切函数的值域是-90°~+90°,而坐标方位角为 0°~ 360°,因此坐标方位角的值,可根据 、 的正负号所在象限,将反 正切角值换算为坐标方位角。
【例题 6-2】 =3712232.528 、 =523620.436 、 =3712227.860 、 =523611.598 ,计算坐标方位角计算坐标方位角、水平距离 。
=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过 A 点坐标纵轴至直线 的坐标方位角,若所求坐标方位角为,则应是 A 点坐标减 点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题 6-3】坐标反算,已知 =2365.16 、 =1181.77 、=1771.03 、 =1719.24 ,试计算坐标方位角 、水平距离 。
键入 1771.03-2365.16 按等号键[=]等于纵坐标增量,按储存键[ ],键入 1719.24-1181.77 按等号键[=]等于横坐标增量,按[ ]键输入,按[ ]显示横坐标增量,按[ ]键输入,按第二功能键[2ndF],再按[ ]键,屏显为距离,再按[ ]键,屏显为方位角。
坐标正算的公式是什么在地图制图和定位导航系统中,坐标正算是一种重要的计算方法,用于计算出给定地理位置的坐标值。
坐标正算通常基于已知的参考点或者经纬度等信息,计算出目标点的坐标。
本文将介绍坐标正算的公式和计算过程。
坐标正算的基本原理坐标正算基于几何学和数学原理,通过一些特定的计算公式,将地理位置的描述转换为具体的坐标值。
在进行坐标正算之前,需要明确一些基本信息,例如已知参考点的坐标、目标点与参考点的距离和方位角等。
计算目标点坐标的步骤下面是一个常见的坐标正算的步骤:1.确定参考点坐标:首先需要确定至少一个已知坐标的参考点,可以是已知的地理位置或者其他参考点的坐标。
2.测量目标点与参考点之间的距离和方位角:使用合适的测量方法,测量目标点与参考点之间的水平距离和方位角。
这些信息可以由仪器测量,也可以通过其他方法估算得出。
3.计算目标点的坐标:根据已知的参考点坐标、目标点与参考点的距离和方位角,应用特定的计算公式进行坐标计算。
不同的计算方法可能有不同的公式,但基本原理是一致的。
常用的坐标正算公式在不同的坐标系统和进行坐标正算的方法中,可能会使用不同的公式和算法。
以下是一些常见的坐标正算的公式:•平面坐标正算公式:对于平面坐标系统,常见的方法是使用平面直角坐标系或UTM坐标系统。
在这种情况下,可以使用已知参考点的坐标、目标点与参考点的距离和方位角来计算目标点的坐标。
具体的公式可以根据不同的坐标系统而有所不同。
•大地坐标正算公式:对于大地坐标系统,常用的方法是使用经纬度来表示坐标。
在这种情况下,可以通过已知参考点的经纬度以及目标点与参考点的距离和方位角,应用大地测量学中的公式计算目标点的经纬度。
•三角形法:坐标正算中常用的计算方法是三角形法。
通过已知点的坐标和目标点与已知点之间的距离和方位角,可以构建一个三角形模型,然后使用三角函数和三角关系来计算目标点的坐标。
这种方法在平面坐标和大地坐标系统中都可以使用。
坐标正反算定义及公式坐标正算和反算是地图投影中的重要概念,用于将地球表面上的经纬度坐标转换为平面坐标(正算),或将平面坐标转换为经纬度坐标(反算)。
这种转换是为了方便地图上的测量和计算。
坐标正算是指根据地球表面上的经纬度坐标,计算出对应的平面坐标。
在这个过程中,需要考虑地球的形状、椭球体模型以及地图投影方法等因素。
不同的投影方法会导致不同的坐标正算公式,下面简单介绍两种常用的投影方法及其公式。
1.经纬度-平面直角坐标投影(简称平面直角投影)平面直角投影是将地球表面上的经纬度坐标转换为平面直角坐标的一种常用方法。
在平面直角投影中,地球被近似为一个大椭球体,通过将经纬度坐标映射到一个平面上完成转换。
公式如下:X = N * (L - L0) * cosφ0Y=N*(φ-φ0)其中,X和Y为平面直角坐标,L和φ分别为经纬度坐标,L0和φ0分别为中央经线和标准纬线,N为椭球的半径。
2.地心正投影(简称球面正投影或者高斯正算)地心正投影是一种在地心球面上进行的坐标正算方法,适用于小范围的地图投影。
在地心正投影中,将地球看作一个球体,并通过一个中央经线来进行投影。
公式如下:X = A * (L - L0) * cosφY=A*(φ-φ0)其中,X和Y为平面直角坐标,L和φ分别为经纬度坐标,L0和φ0分别为中央经线和标准纬线,A为一个与椭球参数相关的常数。
坐标反算是指根据平面坐标计算出对应的经纬度坐标。
在坐标反算中,需要将平面坐标反映射回地球表面,恢复为经纬度坐标。
与坐标正算类似,不同的投影方法会导致不同的坐标反算公式,下面介绍两种常用的投影方法及其公式。
1.平面直角坐标-经纬度投影(平面直角反算)平面直角反算是将平面直角坐标转换为地球表面上的经纬度坐标的一种方法。
利用与坐标正算相反的操作,将平面直角坐标通过逆转换还原为经纬度坐标。
公式如下:φ=φ0+Y/NL = L0 + X / (N * cosφ0)其中,φ和L分别为经纬度坐标,φ0和L0分别为标准纬线和中央经线,X和Y为平面直角坐标,N为椭球的半径。
带有缓和曲线的圆曲线逐桩坐标计算
例题:某山岭区二级公路,已知交点的坐标分别为JD1(40961.914,91066.103 )、JD2 (40433.528,91250.097 )、JD3(40547.416,91810.392),JD2里程为
K2+200.000, R=150m缓和曲线长度为40m,计算带有缓和曲线的圆曲线的逐桩坐标。
(《工程测量》第202页36题)
解:(1)转角、缓和曲线角、曲线常数、曲线要素、主点里程、主点坐标计算
方法一:偏角法(坐标正算)
(2)第一缓和段坐标计算-0=7 3822 5 = 160 48 03
X Y
(4)第二缓和段坐标计算.0 = 7 38 22
方法二:切线支距法(坐标系转换)
(2)第一缓和段坐标计算
:-12 =160 48 03
X j =X Z H+ xcosot12+ y si n%2X=X ZH+ xs in a12 - yco^t12(本题为左转曲线)
(3) 圆曲线段坐标计算
0=73822 p = 0.444m q = 19.988m
12 =160 48 03 ZH( 40576.543 , 91200.296)
X i = X ZH xcos:12 ysin:12 Y =Y ZH xsin:12一ycos:12
:12=78 30 37
X i =X HZ—xcosc(23 +ysin o(23 Y =Y HZ— xsin53 _yco^t23 (本题为左转曲线)。
一 方位角:在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a 表示。
1、第一象限的方位角YX第一象限第二象限第三象限第四象限oAa图12、第二象限的方位角Y X第一象限第二象限第三象限第四象限oAa图23、第三象限的方位角YX第一象限第二象限第三象限第四象限o Aa图34、第四象限的方位角YX第一象限第二象限第三象限第四象限oAa图4方位角计算公式:x=a -1tanA Y O Y -AX OX-方位角的计算器计算程序:Pol(X A -X O ,Y A -Y O )直线OA 方位角度值赋予给计算器的字母J ,0≤J <360。
直线段OA 的距离值赋予给计算器的字母I,I >0 直线OA 与直线AO 的方位角关系: 1、当直线OA 的方位角≤180°时,其反方位角等于a+180°。
2、 当直线OA 的方位角>180°时,其反方位角等于a-180°。
二 方位角的推算 (一)几个基本公式 1、坐标方位角的推算或:注意:若计算出的方位角>360°,则减去360°;若为负值,则加上360°。
例题:方位角的推算已知:α12=30°,各观测角β如图,求各边坐标方位角α23、α34、α45、α51。
13图5解: α23= α12-β2+180°=30°-130°+180°=80°α34= α23-β3+180°=80°-65°+180°=195°α45=α34-β4+180°=195°-128°+180°=247°α51=α45-β5+180°=247°-122°+180°=305°α12=α51-β1+180°=305°-95°+180°=30°(检查)三坐标正算一、直线段的坐标计算oB DACEaap图6设起点O的坐标(X O,Y O),直线OP的方位角为F op,求A、C、E点的坐标1、设直线段OA长度为L,则A点坐标为X A=X O+L×Cos(F op)Y A=Y O+L×Sin(F op)2、设直线段OB长度为L OB,直线段BC长度为L BC,则C点坐标为X B=X O+L OB×Cos(F op)Y B=Y O+L OB×Sin(F op)直线BC的方位角F BC=F op+aIF F B C>360°:Then F BC-360°→F BC:IfEndX C=X B+L BC×Cos(F BC)Y C=Y B+L BC×Sin(F BC)3、设直线段OD长度为L,直线段DE长度为L DE,则E点坐标为ODX D=X O+L OD×Cos(F op)Y D=Y O+L OD×Sin(F op)直线DE的方位角F DE=F op-aIF F DE<0°:Then F DE+360°→F DE:IfEndX E=X D+L DE×Cos(F DE)Y E=Y D+L DE×Sin(F DE)二、缓和曲线段的坐标计算x Y 00=L- +=L 40R L 52s 2L3456R L 94s 4L 6R L 3s L 336R L 7s 33-90 L πRL sO2切线角=设完整缓和曲线起点O 的坐标为O (XO,YO ),方位角为F ,曲线长度为L S ,曲线上任一点的曲线长度为L,当线路右转时直线CP 的方位角Fcp=F+90°IF F cp >360°:Then F cp-360°→F cp :IfEnd当线路左转时直线CP 的方位角Fcp=F-90°IF F cp<0°:Then F cp+360°→F cp:IfEndX P=X O+Abs(x O)×Cos(F)+Abs(y O)×COS(F CP)Y P=Y O+Abs(x O)×Sin(F)+Abs(y O)×Sin(F CP)三、圆曲线段的坐标计算圆曲线的已知点数据为起点S的桩号K s、走向方位角αs、起点S 坐标为(X o,Y o)、圆曲线半径为R与曲线长为L。
坐标正反算一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:=1000、=1000、方位角【例题6-1】已知点A坐标,=35°17'36.5\,2、坐标反算已知两点的坐标,计算两点水平距离=200.416,计算点的坐标?35o17'36.5\35o17'36.5\两点的水平距离与坐标方位角,称为坐标反算。
如图6-6可知,由下式计算水平距离与坐标方位角。
(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据正切角值换算为坐标方位角。
、的正负号所在象限,将反【例题6-2】=3712227.860、、水平距离=3712232.528、=523620.436、=523611.598,计算坐标方位角计算坐标方位角。
=62°09'29.4\29.4\注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题6-3】坐标反算,已知=1771.03、=2365.16、=1181.77、、水平距离。
=1719.24,试计算坐标方位角键入1771.03-2365.16按等号键[=]等于纵坐标增量,按储存键[],键入1719.24-1181.77按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],再按[]键,屏显为距离,再按[]键,屏显为方位角。
【例题6-4】坐标正算,已知坐标方位角=200.40,试计算纵坐标增量横坐标增量=294°42'51\,。