膜的污染及其控制方法
- 格式:doc
- 大小:83.00 KB
- 文档页数:7
浅析反渗透膜技术中防治膜污染的主要方法
反渗透膜技术是一种先进的水处理技术,可以实现对水中溶解性物质和微粒子的有效去除。
但是,在实际运行过程中,反渗透膜常常会受到膜污染的影响,导致处理效率下降和膜寿命缩短。
为了保证反渗透设备的持久稳定运行,需要采取一系列措施来防止和治理膜污染,本文将对反渗透膜技术中防治膜污染的主要方法进行浅析。
1.物理清洗法
物理清洗法是一种通过机械力和水流来清除膜表面污染的方法。
该方法适用于膜污染较轻的情况,可以有效地减少污染物的附着和沉积。
常见的物理清洗方法包括气体脉冲清洗、水脉冲清洗、化学喷雾清洗、超声波清洗等。
2.化学清洗法
4.污染预防控制
污染预防控制是一种通过预先控制污染物来源和限制其入侵来防治膜污染的方法。
该方法适用于避免污染物在膜表面积累和附着,有助于提高反渗透膜的工作效率和延长使用寿命。
常见的污染预防控制方法包括水预处理、定期检查和维护、优化生产流程等。
综上所述,反渗透膜技术中防治膜污染的主要方法包括物理清洗法、化学清洗法、生物清洗法和污染预防控制。
不同的方法可以根据膜污染的特点和程度灵活运用,以达到最佳的防治效果。
同时,还要合理运用不同的方法,以达到清洗效果最佳的效果。
膜的污染及其控制方法以下的三种污染即沉淀污染、吸附污染、生物污染,有时会同时发生,而且发生一种污染又可能加速另一种污染。
进行膜处理时,应对原水组分进行分析,识别造成膜污染的主要原因,以便更好地消除影响,延长膜的使用寿命。
1 沉淀污染以压力为推动力的膜分离技术有反渗透(RO),纳滤(NF),超滤(UF)和微滤(MF)。
根据不同膜与水中微粒的相互关系,可知沉淀污染对RO和NF的影响尤为显著。
当原水中盐的浓度超过了其溶解度,就会在膜上形成沉淀或结垢。
普遍受人们关注的污染物是钙、镁、铁和其它金属的沉淀物,如氢氧化物、碳酸盐和硫酸盐等。
设在溶液中有化学反应:x A y- +y B x+ =A x B y当不考虑盐类之间的相互作用时,溶度积K sp = γx A [A y- ] x γ y B [B x+ ] y 为常数。
其中,γ A 、γ B 为自由离子A和B的平均活度系数;[A],[B]为溶液中的摩尔浓度;x,y为化学配比系数。
平均活度系数可用离子强度[I ]的函数来估测:logγ A =-0.509 Z A I 1/2,logγ B =0.509 Z B I 1/2 ;Z A 、Z B 为自由离子的化合价。
对稀溶液,如大多数天然水体,其活度系数γ A 、γ B 近似等于1。
2 吸附污染有机物在膜表面的吸附通常是影响膜性能的主要因素。
随时间的延长,污染物在膜孔内的吸附或累积会导致孔径减少和膜阻增大,这是难以恢复的。
腐殖酸和其他天然有机物(NOM) 即使在较低浓度下,对渗透率的影响也大大超过了粘土或其它无机胶粒。
与纯化水ro膜污染相关的有机物特征包括它们对膜的亲和性,分子量,功能团和构型。
带负电荷功能团的有机聚合电解质(如腐殖酸和富里酸)会与带有负电荷的膜表面之间存在静电斥力。
用在水和废水处理中的聚砜、醋酸纤维树脂、陶瓷和薄表层复合膜表面都带有一定程度的负电荷。
一般来讲,膜表面电荷密度越大,膜的亲水性就越强。
超滤膜在水处理中的污染及其控制措施关键词:超滤膜膜污染污染机理一、前言膜滤技术在水处理工艺中应用得到飞速发展,它能有效地分离去除水中的微生物、细菌、无机颗粒和有机物质等,并且具有处理水质稳定高效、占地面积小、节省药剂投加量、易于实现自动化操作等优点。
但由于膜表面极易污染堵塞,造成膜通量减少,只有通过增加反冲洗频繁,保证制水能力,导致膜的使用寿命大大缩短,从而增加了运行和经营成本。
膜过滤工艺的最终目标是要实现最低能耗下的高膜通量,现以陕西陕焦化工有限公司(下称陕焦)脱盐水站程控超滤的运行状况为基础分析如何控制膜污染速度。
二、膜污染过程机理掌握膜污染的机理是膜滤技术的关键,影响膜污染的最主要的因素是处理溶液中粒子与膜材料的互相作用,广义的膜污染不仅包括由于堵塞引起的污染,不可逆的吸附污染,而且包括由于浓差极化形成的凝胶层的可逆污染。
在水处理中比超滤膜孔径大的溶解性有机物是构成膜污染的主要成分,产生的膜阻力超过总膜阻力的50%,整个膜污染过程分为三个阶段:第一阶段是随着生物聚合物浓度的不断提高,可供使用的活性孔数量越来越少;第二阶段是迁移性生物聚合物沉积在孔内吸附的生物聚合物上,从而形成膜污染。
第三阶段,越来越多的迁移性生物聚合物聚集在膜表面,形成凝胶层和泥饼层。
随着生物聚合物浓度的变化,膜污染阶段可以合并变成两个阶段或阶段之间可相互转换。
三、膜污染的影响因素影响膜污染的因素主要有:膜结构及特性、膜使用条件、原水水质。
1.膜结构及特性膜结构及特性对控制膜污染十分重要。
在超滤过程中,膜、溶质和溶剂之间的相互作用受到膜材质、膜孔结构、膜的憎水性、膜表面电荷、膜的表面粗糙度等因素的影响,同时膜表面特性对于细菌的生存也起着重要作用。
当膜孔与粒子或溶质的尺寸相近时,极易产生堵塞作用,而当膜孔小于粒子或溶质的尺寸时,由于横切流作用,它们在膜表面很难停留聚集,不易堵孔。
膜孔径分布或分割分子量敏锐性,也对膜污染产生重大影响。
1引言膜生物反应器是膜技术与生物反应器有机结合的产物,较早作为化工工业中一种高效的分离手段。
当它被引入环境工程领域用于污水处理时,其优良的水质、紧凑的结构及低污泥产量是传统工艺难以超越的。
通常提到的膜生物反应器,实际是三类反应器的总称,它们分别是膜-曝气生物反应器(Membrane Aeration Bioreactor)、萃取膜生物反应器(Extractive Membrane Bioreactor)和膜分离生物反应器(Biomass Separation Membrane Bioreactor)。
目前进行了大量富有成效的研究并已投入实际使用的只有膜分离生物反应器(Biomass Separation Membrane Bioreactor),这里主要对该种膜生物反应器(Membrane Bioreactor)中膜污染控制的研究现状作简单评述。
尽管该类膜生物反应器的技术可行性早已被人们认可,但处理工艺的费用较高,在一定程度上限制了它的推广。
G.Owen指出,膜工艺的费用主要来自膜价格、膜更换频率和能耗需求。
随着制膜水平的提高,膜的价格已大大下降;膜的更换频率与膜的稳定运行有关,但膜污染问题大大影响了膜系统的稳定运行;能耗高的原因是多重的,其中之一是膜污染造成通量下降而迫使能耗加大以维持通量。
由此可见膜污染是影响MBR经济性和推广应用的主要原因。
2膜污染的形式在膜生物反应器中,膜处于由有机物、无机物及微生物等组成的复杂的混合液中,特别是生物细胞具有活性,有着比物理过程、化学反应更为复杂的生物化学反应。
因此膜污染是一个很复杂的过程,其机理目前尚不完全清楚。
此外,由于MBR多应用微滤膜和超滤膜,膜的污染问题较纳滤和反渗透膜更为严重。
从污染物的位置来划分,膜污染分为膜附着层污染和膜堵塞。
在附着层中,发现有悬浮物、胶体物质及微生物形成的滤饼层,溶解性有机物浓缩后粘附的凝胶层,溶解性无机物形成的水垢层,而特定反应器中膜面附着的污染物随试验条件和试验水质不同而不同。
超滤膜在水处理中的污染及其控制措施超滤膜污染控制技术是超滤膜技术推广的关键,超滤膜污染受到膜结构和特性,温度、压力、水中杂质、原生水质等因素的影响,造成超滤膜通水量减少、能耗增加、生产成本升高。
超滤膜清洗时比较复杂,并且还要使用化学药剂,会对周围水质造成再次污染。
超滤膜清洗难度大,在对超滤膜进行清洗过程中要对超滤膜污染问题进行区别对待,提前做好各项准备,当超滤膜污染超标时,及时地进行超滤膜清洗。
通过超滤膜与粉末活性炭的组合工艺、混凝剂超滤膜组合工艺等工艺创新可以提高超滤膜污染工作效率。
本文通过对超滤膜在水处理中污染的原理和特点的分析,根据对超滤膜污染影响因素的探究,提出超滤膜在水处理中的污染控制措施,以期促进超滤膜技术的发展。
标签:超滤膜;水处理;污染;控制措施引言随着科学技术的发展,膜过滤技术得到较快的发展,使用膜过滤技术可以有效去除水中的微生物、细菌、无机颗粒和有机物,超滤膜水处理技术具有良好的物化性能和分析性能,能够满足环境工程水质要求。
超滤膜技术可以实现对水的净化、浓缩、分析,有效实现水体净化,并且成本低,有着较好的发展前景。
可以通过促进科技创新,逐步转变经济发展方式对超滤膜进行技术创新,促进企业健康发展,企业在获得经济效益的同时可以获得社会效益和生态效益。
1、超滤膜技术概念1.1 超滤膜技术工作原理。
超滤膜技术是在压差推动力作用下进行的筛孔分离过程,即在一定的压力作用下,当含有大、小分子物质两类溶质的溶液流过被支撑的膜表面时,溶剂和小分子溶质(如无机盐类)将透过膜,作为透过物被收集起来;大分子溶质(如有机胶体等)则被膜截留而作为浓缩液被回收,从而可以实现对水质净化和浓缩,分离出相关溶液的技术。
超滤膜技术在应用中介于微滤和纳滤之间,膜孔径范围为0.005-0.1μm,截留分子量为1000-500,000道尔顿左右。
超滤膜工作原理主要体现在一定压力下进行过滤的半透性的膜。
受到压力的作用,溶液中的溶剂和低分子量的溶质会通过超滤膜上的孔洞到达膜的另一侧。
MBR在城市污水深度处理中的应用及膜污染控制摘要:膜生物反应器(MBR)是一种将膜分离技术与传统污水生物处理工艺有机结合的新型高效污水处理与回用工艺。
本文介绍了MBR工艺在平谷洳河污水处理厂二期工程中作为深度处理技术的应用情况。
针对该系统在实际运行过程中出现的膜污染和运行成本较高的问题,提出了可行性措施。
为MBR工艺在市政污水处理过程中的应用和生产运行提供了指导。
关键词:MBR;市政污水;膜污染控制;污水回用背景概述MBR膜处理工艺是基于膜分离材料的水处理新技术。
膜生物反应器(MBR)的最早研究始于20世纪60年代的美国。
1966年,由美国Dorr-Oliver公司首创研究开发。
膜分离技术的工程应用开始于20世纪60年代的海水淡化。
以后随着各种新型膜的不断问世,膜技术也逐步扩展到城市生活饮用水净化和城市污水处理以及医药、食品、生物工程等领域。
在全球水资源紧缺,受污染日益严重的今天,膜技术作为一种新型的再生水回用技术,近年来在国内外水处理技术领域日益得到广泛关注。
目前,MBR工艺因其自身诸多的优势正逐渐在国内的污水处理领域中得到了应用,但因该技术应用于生产在我国还属于起步阶段,对该工艺的运行和管理都相对缺乏经验。
平谷洳河污水处理厂是北京市平谷区重点环境保护项目之一,也是平谷区建设的第一座城市污水处理厂,承担着平谷城区的污水收集与治理任务。
该项目总投资1.93亿元,采用国内目前最先进的A2/O+MBR组合处理工艺。
本文着重介绍了MBR工艺的特点,以及该工艺平谷洳河污水处理厂中的设计和运行情况。
针对实践运行过程中所出现的膜污染问题,提出了多种行之有效的控制措施。
最后对MBR工艺的运行成本做了简要分析。
MBR工艺的特点膜生物反应器是一种将膜分离技术与传统污水生物处理工艺有机结合的新型高效污水处理与回用工艺。
膜生物反应器主要由池体、膜组件、鼓风曝气系统、泵及管道阀门仪表等组成。
污水中的有机污染物经过生物反应器内微生物的降解作用而被去除。
膜生物反应器工艺中膜污染因素及控制研究膜生物反应器工艺中膜污染因素及控制研究摘要:膜生物反应器是一种将生物反应器与膜分离技术相结合的新型工艺,广泛应用于水处理、废水处理和废气治理等领域。
然而,在膜生物反应器运行过程中,膜污染问题一直是制约其应用的主要因素之一。
本文将从生物膜污染和膜表面污染两个方面,对膜生物反应器工艺中的膜污染因素进行探讨,并对膜污染控制方法进行分析和总结。
一、引言随着环境污染问题的加剧和水资源的日益紧张,传统的水处理技术已经不能满足对水质的要求。
膜分离技术作为一种高效、节能的处理技术,受到了广泛关注。
膜生物反应器是将膜分离技术与生物反应器相结合的新型工艺,具有处理效率高、能耗低等优点。
然而,膜生物反应器的应用受到膜污染问题的制约,限制了其进一步发展和应用。
二、膜生物反应器的膜污染因素(一)生物膜污染膜生物反应器中的微生物会附着于膜表面,形成生物膜。
随着反应器运行时间的延长,生物膜会越来越厚,从而导致膜通量的降低。
生物膜污染是导致膜生物反应器膜污染的主要因素之一。
(二)膜表面污染膜表面污染主要包括物理性污染和化学性污染。
物理性污染是指微粒物质附着于膜表面,形成污染层,阻碍溶质的传递。
化学性污染是指水中的有机物、无机盐和金属离子等物质通过吸附、化学反应等方式附着于膜表面。
三、膜污染的控制方法(一)生物膜污染的控制方法1. 水力剪切:通过调整进水速度和膜反应器的几何结构,增加水力剪切力,破坏生物膜的生长。
2. 清洗操作:定期进行化学清洗和生物清洗,去除已形成的生物膜,恢复膜的通量。
3. 生物膜抑制剂:添加适量的生物膜抑制剂,抑制生物膜的形成和生长。
(二)膜表面污染的控制方法1. 物理清洗:使用高压水、超声波等物理清洗方法,破坏物理性污染层。
2. 化学清洗:使用酸碱、氧化剂等化学清洗剂,去除化学性污染层。
3. 膜封闭:在膜表面形成一层保护膜,减少物质的吸附和附着。
四、膜污染控制技术的研究进展(一)生物膜污染控制技术的研究进展1. 生物膜抑制剂的研究:研究不同种类和浓度的生物膜抑制剂对生物膜形成和生长的抑制效果。
膜的污染及其控制方法控制方法, 污染简介:反渗透系统在日常的运行中,难免会出现系统的无机物结垢、胶体颗粒物的沉积、微生物的滋生、化学污染以及其它问题,这些因素影响着系统安全稳定的运行。
关键字:反渗透结垢胶体污染SDI 化学污染相关站中站:膜技术产品及应用反渗透系统在日常的运行中,难免会出现系统的无机物结垢、胶体颗粒物的沉积、微生物的滋生、化学污染以及其它问题,这些因素影响着系统安全稳定的运行。
下面主要阐述膜系统在日常中出现的问题及控制方法。
一、无机物的结垢在水中存在Ca2+、Mg2+、Ba2+、Sr2+、CO32-、SO42-、PO43-、SiO2等离子。
在一般的情况下是不会造成无机物结垢,但是在反渗透系统中,由于源水一般浓缩4倍,并且pH也有较大的提高,因此比较难溶解的物质就会沉积,在膜表面形成硬垢,导致系统压力升高、产水量下降,严重的还会造成膜表面的损伤,使系统脱盐率降低。
衡量水质是否结垢有两种计算方法:控制苦咸水结垢指标对于浓水含盐量TDS≤10,000mg/L的苦咸水,朗格利尔指数(LSIC)作为表示CaCO3结垢可能性的指标:LSIC=pHC-pHS式中:LSIC:反渗透浓水的朗格利尔指数pHC:反渗透浓水pH值pHS:CaCO3溶液饱和时的pH值当LSIC≥0,就会出现CaCO3结垢。
控制海水及亚海水结垢指标及处理方法:当浓水含盐量TDS>10,000mg/L的高盐度苦咸水或海水水源,斯蒂夫和大卫饱和指数(S&DSIC)作为表示CaCO3结垢可能性的指标。
S&DSIC=pHC-pHS式中:S&DSIC:反渗透浓水的斯蒂夫和大卫饱和指数pHC:反渗透浓水pH值pHS:CaCO3溶液饱和时的pH值当S&DSIC≥0,就会出现CaCO3结垢。
其它无机盐结垢预处理的控制方案碳酸钙结垢预处理的控制方案在反渗透系统的结垢中,以碳酸盐垢为主,大多数地表水和地下水中的CaCO3几乎呈饱和状态,由下式表示CaCO3化学平衡:Ca2+ + HCO3– <---> H+ + CaCO3从化学平衡式可以看出,要抑制CaCO3的结垢,有几种途径:降低Ca2+的含量降低了Ca2+含量,可以使化学平衡向左侧移动,不利于形成CaCO3垢。
反渗透膜生物污染的影响因素及控制方法的研究进展I. 研究背景随着现代水处理技术的不断发展,反渗透膜在水资源处理领域得到了广泛应用。
然而反渗透膜在使用过程中可能会受到生物污染的影响,这不仅会导致水质恶化,还可能影响到反渗透膜的使用寿命和处理效果。
因此研究反渗透膜生物污染的影响因素及控制方法具有重要的理论和实际意义。
近年来国内外学者对反渗透膜生物污染的研究取得了显著的进展。
他们通过实验研究、理论分析等多种手段,揭示了反渗透膜生物污染的形成机制、影响因素以及控制方法。
这些研究成果为提高反渗透膜的处理效果和使用寿命提供了有力的理论支持和技术保障。
首先研究者们发现,微生物是导致反渗透膜生物污染的主要原因之一。
不同类型的微生物在不同的水质条件下会产生不同的污染效应,如细菌、病毒、真菌等。
此外水温、pH值、溶解氧等因素也会影响微生物的生长和繁殖,从而加剧反渗透膜的生物污染问题。
其次研究人员还发现,水中有机物的存在也是导致反渗透膜生物污染的重要因素。
有机污染物可以为微生物提供营养物质和生长环境,促进其在反渗透膜上的附着和繁殖。
此外水中的无机盐类、胶体颗粒等也可能与微生物共存,共同影响反渗透膜的性能。
随着反渗透膜在水处理领域的广泛应用,研究其生物污染的影响因素及控制方法具有重要的理论和实际意义。
未来随着科学技术的不断进步,相信我们能够找到更加有效的方法来解决这一问题,为保护水资源和实现可持续发展做出更大的贡献。
反渗透膜在水处理中的应用随着水资源的日益紧张和水环境污染问题的严重性,反渗透膜作为一种高效、节能、环保的技术手段,在水处理领域得到了广泛的应用。
反渗透膜是一种具有高度选择性的膜分离技术,它能够有效地去除水中的溶解性固体、有机物、胶体物质以及微生物等污染物,从而实现对水质的净化。
目前反渗透膜在饮用水、工业用水、污水处理等领域都有着广泛的应用。
在饮用水处理方面,反渗透膜技术已经成为了一种主流的净水方法。
通过反渗透膜的过滤作用,可以有效地去除水中的硬度离子、色度、异味等污染物,提高水质的透明度和口感。
膜生物反应器工艺中膜污染因素及控制研究膜生物反应器工艺中膜污染因素及控制研究摘要:膜生物反应器(MBR)是一种高效的废水处理技术,具有较高的出水质量和较小的占地面积,但膜污染问题限制了其应用范围和经济效益。
本文通过对膜生物反应器中膜污染因素的探究,并提出了一些有效的膜污染控制方法,旨在优化MBR工艺,提高废水处理效果。
一、引言随着环境污染问题的日益突出,废水处理技术得到了广泛的关注和研究。
膜生物反应器作为一种新兴的废水处理技术,具有出水质量高、占地面积小等优点,已经成为研究的热点。
然而,膜污染问题一直困扰着MBR的工程应用和发展,限制了其在废水处理领域的应用。
二、膜污染因素分析1. 生物污染膜生物反应器中存在大量的微生物生长,微生物附着于膜表面形成生物膜,使膜孔堵塞,导致通量下降。
生物污染主要由胶体、细菌和微生物附着引起,可通过适当的操作控制附着菌和生物活性。
2. 物理污染物理污染是指膜表面附着有机颗粒物、胶体、沉淀物等,导致膜阻力增加和膜通量下降。
物理污染可以通过膜预处理和适当的操作控制进行减少。
3. 化学污染化学污染是指废水中的溶解物质沉积在膜表面,形成氧化物堆积,引起膜表面的粘附和分子扩散受阻。
化学污染可以通过废水预处理和添加适量的化学药剂来控制。
三、膜污染控制方法1. 膜表面改性通过改变膜的表面特性,如表面电荷、亲水性等,可减少污染物在膜表面的吸附和附着,从而降低膜污染的发生。
2. 适当的应激措施可通过适当的应激措施,如适当提高水力剪切力、增加通气量等,促进膜表面的气泡切割和颗粒物的分散,减少物理污染。
3. 膜清洗和维护定期进行膜清洗和维护是控制膜污染的关键措施。
膜清洗可采用物理清洗和化学清洗相结合的方法,选择合适的清洗剂和清洗工艺,有效去除膜表面的污染物。
4. 持续监测与优化通过持续监测膜系统的运行状况和水质等指标,及时发现问题并采取相应措施;同时,可通过优化MBR工艺,如调整通气量、曝气方式等,来改善废水处理效果和降低膜污染的风险。
试论膜法水处理中膜污染的化学控制研究进展1. 引言1.1 水处理中膜法的重要性在膜法水处理中,通过半透膜的选择性透过和阻滞作用,能够有效地去除水中的悬浮固体、细菌、病毒等微小颗粒及化学物质,从而实现水的净化和回收利用。
与传统方法相比,膜法水处理具有更高的过滤效率和更小的处理体积,能够有效解决水资源的短缺和水污染的问题。
膜法水处理在现代水资源管理和保护中具有举足轻重的地位,对改善水环境、保障人民健康、促进可持续发展具有重要意义。
通过不断的研究和创新,膜法水处理技术必将在未来的水处理领域发挥更加重要的作用。
【内容达到2000字】。
1.2 膜污染对水处理的影响膜污染是指在膜分离过程中,因污染物的积累导致膜性能下降的现象。
膜污染会影响水处理系统的效率和稳定性,严重影响水质处理效果,甚至导致设备故障和停机。
膜污染会导致膜通量下降、截污性能减弱、能耗增加、运行成本升高等问题。
膜污染还可能会引起膜表面结构破坏、膜孔径变大、膜孔堵塞等现象,降低膜的寿命和稳定性。
有效控制膜污染对于水处理系统的正常运行和长期稳定性至关重要。
化学控制方法是目前应用最广泛、效果最明显的膜污染治理手段之一,具有调节作用、高效节能、易操作等优点。
通过科学合理的化学控制方法,可以有效预防和减轻膜污染带来的负面影响,提高膜分离系统的运行效率和稳定性。
2. 正文2.1 膜污染的类型与特点膜污染是指在膜分离过程中,随着操作时间的推移,水中的各种杂质和有机物逐渐在膜表面或膜孔道中沉积、吸附、结晶或凝聚形成的膜层。
膜污染的类型多种多样,主要包括物理性污染、化学性污染和生物性污染。
物理性污染主要指在膜表面或孔道中沉积的颗粒物、胶体物质、微生物等。
这些物质会堵塞膜孔道,降低膜通透性,导致膜通量下降,增加膜的阻力,影响膜的使用寿命。
化学性污染是指水中的化学物质与膜表面发生化学反应,形成结晶、凝聚或分解产物在膜表面沉积。
这些化学物质可能会破坏膜的结构,改变其表面性质,导致膜的性能下降。
生物膜影响因素及其在环境污染控制中的研究近年来,生物膜作为一种生物学现象在环境科学领域中得到了广泛应用。
生物膜是一种结构相对稳定的复合生物组织,由微生物、胶体物质和周围液体组成。
生物膜的形成受多种因素的影响,如温度、pH、营养物浓度、微生物群落结构等。
本文将着重探讨生物膜形成的影响因素以及如何利用生物膜控制环境污染。
一、生物膜形成的影响因素1. 温度温度是影响生物膜形成的一个重要因素。
一般来说,生物膜在较高的温度下形成较快,但随着温度的升高,热能使微生物细胞死亡或减弱其形成能力,因此在高温环境下生物膜的生长速率反而降低。
2. pH值pH值是环境因素中对微生物生长和代谢影响最大的因素之一。
不同类型的微生物对pH值的适应性存在差异。
一些酸耐受菌,如果胶酸杆菌、大肠杆菌等可以在酸性环境下生长并形成生物膜,但其他菌种则不能。
因此,针对不同的微生物种类要确定合适的pH值范围来促进生物膜的形成。
3. 营养物质营养物质是影响生物膜形成的决定性因素之一。
微生物在生长过程中需要吸收各种营养物质来维持其正常生长和代谢活动。
有研究表明,细菌生长和生物膜形成会受到有机物和无机物的浓度限制。
例如,铜、铁等金属离子可以通过控制营养物质的转运来抑制细菌生长和生物膜形成。
4. 其他因素除了上述因素外,生物膜的形成还受到微生物的群落结构、氧气浓度、悬浮物浓度等多种环境因素的影响。
二、生物膜在环境污染控制中的应用由于生物膜本身具有耐受性、剪切强度高等特点,使之成为一种有效的污染控制手段。
以下是生物膜在环境污染控制中的应用。
1. 氨氮去除氨氮是污染物的重要成份之一,也是水体中一种普遍存在的问题。
该问题可以通过生物膜技术解决。
将生物膜制成固定化颗粒后投入污染水体中,生物活性的微生物可以吸附并降解水中的氨氮。
该技术被广泛应用于养殖、废水处理等领域。
2. 重金属去除重金属是污染水体中的常见污染物,在高浓度下有毒害性。
利用生物膜技术将微生物固定在多孔的介质中,可实现对重金属污染水体中的去除。
膜的污染名词解释膜,是一种常见于日常生活中的物质,具有广泛的应用领域,从科学技术到工业生产,从医疗器械到日常用品,都能看到膜的身影。
而污染,则是当膜表面或内部被外界因素所影响时,膜性能发生了改变,产生了污染物的存在。
在本文中,我们将探讨膜的污染现象及其相关的名词解释。
1. 膜的类型与应用膜,是一种较薄的物质层,具有特殊的物理结构和化学特性。
根据其制备方式和使用范围的不同,膜可分为多种类型,如过滤膜、分离膜、反渗透膜等。
这些膜在不同领域的应用广泛,如水处理、医疗、食品加工等。
2. 膜的污染现象膜的污染现象主要包括表面污染和内部污染两种形式。
表面污染是指膜表面被各种杂质覆盖、沉积或吸附,从而影响膜的透水性和分离性能。
内部污染则是指膜孔隙内部产生的污染物积聚,导致膜的传质效率下降。
3. 膜的表面污染膜的表面污染主要来源于悬浮物、蛋白质、胶体颗粒等。
这些污染物在水处理等应用中普遍存在,会沉积在膜表面形成附着物,称为膜污染层。
膜污染层的形成会导致膜的通量下降、阻力增加,降低了膜的使用寿命。
4. 膜的内部污染膜的内部污染主要来自胶体、沉淀物、微生物等。
这些物质会进入膜孔隙内部,形成膜表面和孔道的封闭性附着物,影响膜的通透性和选择性。
严重的内部污染会引发膜的堵塞和变形,从而使膜丧失分离能力。
5. 膜的污染控制与治理为了防止和减少膜的污染,需要采取一系列控制和治理方法。
首先,合理设计膜系统的操作参数,如水流速度、压力等,以减少对膜的污染。
其次,定期清洗膜表面和刷新膜孔隙,去除附着物和污染物。
最后,选择合适的防污涂层和预处理技术,提高膜的抗污染能力。
6. 膜的污染评价与分析为了对膜的污染程度进行评价和分析,可以采用多种方法,如扫描电子显微镜观察膜表面形貌,测量透水通量和溶质截留率,分析膜周围水体中的污染物浓度等。
通过这些指标的比较分析,可以判断膜系统的污染状况并制定相应的处理策略。
7. 膜污染物的生物降解为了彻底清除污染物并降低膜的污染程度,研究人员也致力于开发膜污染物的生物降解技术。
污水处理中的膜污染控制在当今的污水处理领域,膜技术因其高效的分离性能而得到了广泛的应用。
然而,膜污染问题却始终是制约膜技术进一步发展和广泛应用的关键因素。
膜污染不仅会降低膜的过滤性能,增加运行成本,还会缩短膜的使用寿命。
因此,深入研究膜污染的控制策略具有重要的现实意义。
膜污染是指在膜过滤过程中,污水中的污染物在膜表面或膜孔内的积累和沉积,从而导致膜通量下降、跨膜压差升高以及过滤效率降低等现象。
膜污染的形成机制非常复杂,涉及到物理、化学和生物等多个方面。
从物理角度来看,膜表面的粗糙度和孔隙结构是影响膜污染的重要因素。
粗糙的膜表面容易吸附污染物,而较小的膜孔隙则容易被污染物堵塞。
此外,污水中的悬浮颗粒和胶体物质也会在膜表面形成滤饼层,增加过滤阻力。
化学污染主要是由于污水中的有机物、无机物与膜材料之间发生化学反应,导致膜表面性质的改变。
例如,有机物在膜表面的吸附和沉积可能会引起膜的亲水性下降,从而增加膜与污染物之间的相互作用。
无机物如钙、镁等离子可能会形成水垢,堵塞膜孔。
生物污染则是由微生物在膜表面的生长和繁殖引起的。
微生物会分泌胞外聚合物(EPS),形成生物膜,进一步加重膜污染。
为了有效控制膜污染,需要采取一系列的措施。
首先,优化膜的预处理工艺是至关重要的。
在膜过滤之前,对污水进行适当的预处理,如格栅过滤、沉淀、混凝沉淀等,可以去除污水中的大部分悬浮颗粒、胶体物质和有机物,减轻膜的污染负荷。
其次,选择合适的膜材料和膜组件也能在一定程度上控制膜污染。
具有良好亲水性和抗污染性能的膜材料能够减少污染物在膜表面的吸附和沉积。
同时,合理设计膜组件的结构,如增加膜的装填密度、优化流道设计等,可以提高膜的冲刷效果,减少污染物的积累。
膜的清洗也是控制膜污染的重要手段。
根据膜污染的类型和程度,选择合适的清洗方法,如物理清洗(反冲洗、气水冲洗等)、化学清洗(酸洗、碱洗、氧化剂清洗等)和生物清洗。
定期的清洗可以有效地恢复膜的性能,但需要注意的是,过度清洗可能会对膜造成损伤,缩短膜的使用寿命。
MBR技术在污水处理中的应用 1膜生物反应器(MembraneBioreactor,简称MBR),是由膜分离和生物处理结合而成的一种新型、高效的污水处理技术。
膜分离技术最早应用于微生物发酵工业,随着膜材料和制膜技术的发展,其应用领域不断扩大,已经涉及到化工、电子、轻工、纺织、冶金、食品、石油化工和污水处理等多个领域。
1 MBR技术在国外污水处理中的研究及应用膜分离技术在污水处理中的应用开始于20世纪60年代末#1969年美国的Smith等人首次将活性污泥法与超滤膜组件相结合用于处理城市污水的工艺研究,该工艺大胆地提出了用膜分离技术取代常规活性污泥法中的二沉池,利用膜具有高效截留的物理特性,使生物反应器内维持较高的污泥浓度,在F/M低比值下工作,这样就可以使有机物尽可能地得到氧化降解,提高了反应器的去除效率,这就是MBR的最初雏形。
进入20世纪70年代,有关MBR的研究进一步深入开展#1970年,Hardt等人使用完全混合生物反应器与超滤膜组合工艺处理生活污水,获得了98%的COD去除率和100%去除细菌的结果。
1971年,Bemberis等人在污水处理厂进行了MBR试验,取得了良好的试验结果。
1978年,Bhattacharyya等人将超滤膜用于处理城市污水,获得了非饮用回用水。
1978年,Grethlein利用厌氧消化池与膜分离进行了处理生活污水的研究,BOD和TN的去除率分别为90%和75%。
在这一时期,尽管各国学者对MBR工艺做了大量的研究工作,并获得了一定的研究成果,但是由于当时膜组件的种类很少,制膜工艺也不是十分成熟,膜的寿命通常很短,这就限制了MBR工艺长期稳定的运行,从而也就限制了MBR技术在实际工程中的推广应用。
进入20世纪80年代以后,随着材料科学的发展与制膜水平的提高,推动了膜生物反应器技术的向前发展,MBR工艺也随之得到迅速发展。
日本研究者根据本国国土狭小!地价高的特点对MBR技术进行了大力开发和研究,并在MBR技术的研究和开发上走在了前列,使MBR技术开始走向实际应用。
20世纪90年代以后,MBR技术得到了最为迅猛的发展,人们对MBR在生活污水处理!工业废水处理!饮用水处理等方面的应用都进行了研究,MBR已经进入实际应用阶段,并得到了快速的推广。
20世纪的最后几年,人们围绕着膜生物反应器的关键问题进行了较多的研究,并取得了一些成果。
有关膜生物反应器的研究从实验室小试!中试规模走向了生产性试验,应用MBR的中、小型污水处理厂也逐渐见诸报道。
1998年初,欧洲第一座应用一体式膜生物反应器的生活污水处理厂在英国的Porlock建成运行,成为英国膜生物反应器技术的里程碑。
本世纪初,人们对膜生物反应器的研究方兴未艾,使得该项技术正在逐渐趋于成熟。
2 MBR技术在国内污水处理中的研究及应用我国对膜生物反应器的研究虽然起步较晚,但发展速度很快。
1991年,芩运华对膜生物反应器的应用进行了综述,介绍了MBR在日本的研究状况,这是我国学者对膜生物反应器做的较早的报道。
随后,江成璋等人进行了中空纤维超滤膜在生物技术中的应用研究。
1995年,樊耀波将MBR 用于石油化工污水净化的研究,研制出一套实验室规模的好氧分离式MBR。
从1995年以来,我国对膜生物反应器污水处理技术的研究工作开始全面展开,多家科研院所进行了此方面的研究,清华大学、哈尔滨工业大学、中国科学院生态环境研究中心、天津大学、同济大学等对膜生物反应器的运行特性、膜通量的影响因素、膜污染的防止与清洗等方面做了大量细致的研究工作。
2000年,顾平采用国产中空纤维膜对生活污水做了中试规模的MBR研究,结果表明:MBR工艺出水悬浮物为零,细菌总数优于饮用水标准,COD和氨氮的去除率都高于95%,出水可直接回用。
2001年,张立秋等对一体式MBR处理生活污水的主要设计参数HR T、SR T等进行了理论推导,为实际工程设计提供了参考,并对膜堵塞机理进行了深入研究探讨,提出了膜内部生物堵塞的存在。
虽然,我国在MBR技术的研究探讨方面取得了显著的成绩,但是同日本、英国、美国等国家相比,我国的研究试验水平还比较落后,由于国产膜组件的种类较少,膜质量较差,寿命通常较短,因此在实际应用中存在一定的问题。
虽然在我国膜生物反应器用于处理生活污水已有应用,但到目前为止,设计完善、运行良好的应用膜生物反应器的生活污水处理厂还未见报道。
3 MBR工艺的分类膜生物反应器主要是由膜组件和生物反应器两部分组成#根据膜组件与生物反应器的组合方式可将膜生物反应器分为以下三种类型:分置式膜生物反应器、一体式膜生物反应器和复合式膜生物反应器。
3.1 分置式膜生物反应器分置式膜生物反应器是指膜组件与生物反应器分开设置,相对独立,膜组件与生物反应器通过泵与管路相连接#分置式膜生物反应器的工艺流程如图1所示。
该工艺膜组件和生物反应器各自分开,独立运行,因而相互干扰较小,易于调节控制,而且,膜组件置于生物反应器之外,更易于清洗更换#但其动力消耗较大,加压泵提供较高的压力,造成膜表面高速错流,延缓膜污染,这是其动力费用大的原因,每吨出水的能耗为2~10kWh,约是传统活性污泥法能耗的10~20倍,因此能耗较低的一体式膜生物反应器的研究逐渐得到了人们的重视。
3.2 一体式膜生物反应器一体式膜生物反应器起源于日本,主要用于处理生活污水,近年来,欧洲一些国家也热衷于它的研究和应用#一体式膜生物反应器是将膜组件直接安置在生物反应器内部,有时又称为淹没式膜生物反应器(SMBR),依靠重力或水泵抽吸产生的负压或真空泵作为出水动力#一体式膜生物反应器工艺流程如图2所示。
该工艺由于膜组件置于生物反应器之中,减少了处理系统的占地面积,而且该工艺用抽吸泵或真空泵抽吸出水,动力消耗费用远远低于分置式膜生物反应器,每吨出水的动力消耗约是分置式的1/10。
如果采用重力出水,则可完全节省这部分费用。
但由于膜组件浸没在生物反应器的混合液中,污染较快,而且清洗起来较为麻烦,需要将膜组件从反应器中取出。
3.3 复合式膜生物反应器复合式膜生物反应器也是将膜组件置于生物反应器之中,通过重力或负压出水,但生物反应器的型式不同#复合式MBR,是在生物反应器中安装填料,形成复合式处理系统,其工艺流程如图3所示。
在复合式膜生物反应器中安装填料的目的有两个:一是提高处理系统的抗冲击负荷,保证系统的处理效果;二是降低反应器中悬浮性活性污泥浓度,减小膜污染的程度,保证较高的膜通量。
复合式膜生物反应器中,由于填料上附着生长着大量微生物,能够保证系统具有较高的处理效果并有抵抗冲击负荷的能力,同时又不会使反应器内悬浮污泥浓度过高,影响膜通量。
4 MBR工艺的特点4.1 对污染物的去除效率高MBR对悬浮固体(SS)浓度和浊度有着非常良好的去除效果。
由于膜组件的膜孔径非常小(0.01~1μm),可将生物反应器内全部的悬浮物和污泥都截留下来,其固液分离效果要远远好于二沉池,MBR对SS的去除率在99%以上,甚至达到100%;浊度的去除率也在90%以上,出水浊度与自来水相近。
由于膜组件的高效截留作用,将全部的活性污泥都截留在反应器内,使得反应器内的污泥浓度可达到较高水平,最高可达40~50g/L。
这样,就大大降低了生物反应器内的污泥负荷,提高了MBR对有机物的去除效率,对生活污水COD的平均去除率在94%以上,BOD的平均去除率在96%以上。
同时,由于膜组件的分离作用,使得生物反应器中的水力停留时间(HRT)和污泥停留时间(SRT)是完全分开的,这样就可以使生长缓慢、世代时间较长的微生物(如硝化细菌)也能在反应器中生存下来,保证了MBR除具有高效降解有机物的作用外,还具有良好的硝化作用。
研究表明,MBR在处理生活污水时,对氨氮的去除率平均在98%以上,出水氨氮浓度低于1mg/L。
此外,选择合适孔径的膜组件后,MBR对细菌和病毒也有着较好的去除效果,这样就可以省去传统处理工艺中的消毒工艺,大大简化了工艺流程。
另外,在DO浓度较低时,在菌胶团内部存在缺氧或厌氧区,为反硝化创造了条件。
仅采用好氧MBR工艺,虽然对TP的去除效率不高,但如果将其与厌氧进行组合,则可大大提高TP的去除率。
研究表明,采用A/O复合式MBR工艺,对TP的去除率可达70%以上。
4.2 具有较大的灵活性和实用性在城市污水或工业废水处理中,传统的处理工艺(格栅+沉砂池+初沉池+曝气池+二沉池+消毒池)流程较长,占地面积大,而出水水质又不能保证。
而MBR工艺(筛网过滤+MBR)则因流程短、占地面积小!处理水量灵活等特点,而呈现出明显优势#MBR的出水量根据实际情况,只需增减膜组件的片数就可完成产水量调整,非常简单、方便。
对于传统的活性污泥法工艺中出现的污泥膨胀现象,MBR由于不用二沉池进行固液分离,可以轻松解决。
这样,就大大减轻了管理操作的复杂程度,使优质!稳定的出水成为可能。
同时,MBR工艺非常易于实现自动控制,提高了污水处理的自动化水平。
4.3 解决了剩余污泥处置难的问题剩余污泥的处置问题,是污水处理厂运行好坏的关键问题之一#MBR工艺中,污泥负荷非常低,反应器内营养物质相对缺乏,微生物处在内源呼吸区,污泥产率低,因而使得剩余污泥的产生量很少,SRT得到延长,排除的剩余污泥浓度大,可不用进行污泥浓缩,而直接进行脱水,这就大大节省了污泥处理的费用。
有研究得出,在处理生活污水时,MBR最佳的排泥时间在35d左右。
由上述可知,MBR工艺所具有的优越性,是目前其他处理工艺无法比拟的#该工艺在城市污水或生活污水处理!高浓度有机废水、难降解有机废水以及中水回用等方面都具有广阔的应用前景。
摘要:膜的污染问题大体可分为沉淀污染、吸附污染、生物污染。
对各自形成的机理或原因进行了分析,并且提出了相应的控制方法。
关键词:膜沉淀污染吸附污染生物污染机理控制方法膜污染是指在膜过滤过程中,水中的微粒、胶体粒子或溶质大分子由于与膜存在物理化学相互作用或机械作用而引起的在膜表面或膜孔内吸附、沉积造成膜孔径变小或堵塞,使膜产生透过流量与分离特性的不可逆变化现象[1]。
实际上,膜的可靠性是目前阻碍膜技术推广应用的关键之一,而污染问题又是影响其可靠性的决定性因素。
据调查,就超滤而言,污染仍是其主要问题,污染的消除将使超滤过程效率提高30%以上,使投资减少15%,而且能提高分离效果,使超滤范围拓宽[2]。
对膜污染种类及其成因的具体分析,将有助于采取合适的措施减弱或消除它的不良影响。
1沉淀污染以压力为推动力的膜分离技术有反渗透(RO),纳滤(NF),超滤(UF)和微滤(MF)。
根据不同膜与水中微粒的相互关系[3],可知沉淀污染对RO和NF的影响尤为显著。
当原水中盐的浓度超过了其溶解度,就会在膜上形成沉淀或结垢。