现代光信息处理(2)
- 格式:ppt
- 大小:5.58 MB
- 文档页数:97
概述2_数字信号处理的发展课件一、概览数字信号处理(Digital Signal Processing,DSP)作为现代电子信息技术领域的重要组成部分,其发展日新月异,不断推动着相关行业的创新与进步。
随着数字技术的不断进步和计算能力的飞速提升,数字信号处理的应用领域日益广泛,涵盖了通信、音频处理、图像处理、生物医学工程等多个领域。
本篇课件旨在提供一个关于数字信号处理发展历程的全面概述。
从概念起源来看,数字信号处理始于20世纪后半叶,伴随着数字计算机的出现和普及而逐渐发展成熟。
数字信号处理主要用于军事和通信领域,解决信号传输过程中的干扰和失真问题。
随着技术的不断进步,数字信号处理的应用范围逐渐扩大,开始涉及到音频和图像的处理。
数字信号处理已经渗透到了各个领域,发挥着不可替代的作用。
在技术层面,数字信号处理的核心技术涵盖了离散数学理论、信号处理算法、计算机体系结构等多个方面。
随着数字信号处理技术的不断发展,新的算法和理论不断涌现,如小波分析、神经网络等先进技术的应用,使得数字信号处理在性能上得到了极大的提升。
随着嵌入式系统、云计算等技术的发展,数字信号处理的硬件平台也在不断进步,为数字信号处理提供了更加强大的计算能力和更加灵活的处理方式。
数字信号处理仍将继续发挥其在各个领域的重要作用。
随着物联网、人工智能等技术的飞速发展,数字信号处理将在智能感知、大数据分析等领域发挥更加重要的作用。
新的技术挑战和发展机遇也将不断涌现,如信号处理的实时性要求更高、算法复杂度更高等问题需要行业专家进行深入研究和解决。
数字信号处理作为一门重要的技术学科,其发展前景广阔,将继续为各个行业的发展提供强有力的支撑。
1. 数字信号处理(DSP)简介好的,我将按照您的要求撰写“数字信号处理的发展课件”中有关“数字信号处理(DSP)简介”段落的内容:数字信号处理是数字信息处理技术的一种,它通过数学模型来操控信号的某些参数并尽可能在转换过程中保持信号的真实性和完整性。
信息光学是现代光学前沿阵地的一个重要组成部分。
信息光学采用信息学的研究方法来处理光学问题,采用信息传递的观点来研究光学系统,这之所以成为可能,是由于下述两方面的原因。
首先,物理上可以把一幅光学图象理解为一幅光学信息图。
一幅光学图象,是一个两维的光场分布,它可以被看作是两维空间分布序列,信息寓于其中。
而信息学处理的电信号可以看作是一个携带着信息的一维时间序列,因此,有可能采用信息学的观点和方法来处理光学系统。
然而,仅仅由于上述原因就把信息学的方法引入光学还是远远不够的。
在光学中可以引入信息学方法的另一个重要原因是光学信号通过光学系统的行为及其数学描述与电信号通过信息网络的行为及其数学描述有着极高的相似性。
在信息学中,给网络输入一个正弦信号,所得到的输出信号仍是一个正弦波,其频率与输入信号相同,只不过输出波形的幅度和位相(相对于输入信号而言)发生了变化,这个变化与、且仅与输入信号的性质以及网络特点有关。
在光学中,一个非相干的光强按正弦分布的物场通过线性光学系统时,所得到的像的光强仍是同一频率的正弦分布,只不过相对于物光而言,像的可见度降低且位相发生了变化,而且这种变化亦由、且仅由物光的特性和光学系统的特点来决定。
很显然,光学系统和网络系统有着极强的相似性,其数学描述亦有共同点。
正因为如此,信息学的观点和方法才有可能被借鉴到光学中来。
信息学的方法被引入光学以后,在光学领域引起了一场革命,诞生了一些崭新的光学信息的处理方法,如模糊图象的改善,特征的识别,信息的抽取、编码、存贮及含有加、减、乘、除、微分等数学运算作用的数据处理,光学信息的全息记录和重现,用频谱改变的观点来处理相干成像系统中的光信息的评价像的质量等。
这些方法给沉寂一时的光学注入了新的活力。
信息光学和网络系统理论的相似是以正弦信息为基础的,而实际的物光分布不一定是正弦分布,因此,在信息光学中自然必须引入傅里叶分析方法。
用傅里叶分析法可以把一般光学信息分解成正弦信息,或者把一些正弦信息进行傅里叶叠加。
传感器技术发展动态与展望现代信息技术的三大支柱是传感器技术、通信技术和计算机技术, 它们分别完成对被测量的信息提取、信息传输及信息处理。
目前, 信息传输与处理技术已取得突破性进展, 然而传感器的发展相对滞后。
在今天信息时代, 各种控制系统自动化程度、复杂性以及环境适应性(如高温、高速、野外、地下、高空等)要求越来越高, 需要获取的信息量越来越多,它不仅对传感器测量精度、响应速度、可靠性提出了很高的要求, 而且需求信号远距离传输。
显然,传统的传感器已很难满足要求,发展集成化、微型化、智能化、网络化传感器将成为传感器技术的主流和方向。
传感器的集成化传感器的集成化是利用集成电路制作技术和微机械加工技术将多个功能相同、功能相近或功能不同的传感器件集成为一维线型传感器或二维面型(阵列)传感器;或利用微电子电路制作技术和微型计算机接口技术将传感器与信号调理、补偿等电路集成在同一芯片上。
前一种集成具体可分为三种类型:(1)将多个功能相同的敏感元件集成在同一芯片上,检测被测量的线状、面状、甚至体状的分布信息,例如固态图像传感器(CCD阵列光敏器件,它不仅在自动化生产线上发挥“视觉”作用(例如纺织品质量检查及大规模集成电路图形检查等),而且在天文罗盘、星体跟踪、卫星遥感装置上也开始应用。
(2)将多个结构相似、功能相近的敏感元件集成在同一芯片上,在保证测量精度的扩大传感器的测量范围。
例如将不同气敏元件集成在一起组成,利用各种气敏元件对不同气体的敏感效应,采用神经网络及模式识别等先进的数据处理技术,对混合气体的各组分同时监测,得到混合气体的有关信息,同时提高气敏传感器的测量精度。
这种方式还可将不同量程的传感元件进行集成, 根据被测量的大小在各传感元件之间进行切换。
(3)将多个不同功能的敏感元件集成在同一芯片上,使传感器能测量不同性质的参数,实现综合检测。
例如集成压力、温度、湿度、流量、加速度、化学等不同功能敏感元件的传感器,能同时检测外界环境的物理特性或化学特性,从而实现多环境的多参数综合监测。
习题一一、选择题1.现代计算机是一种按程序自动进行信息处理的通用工具,目前被广泛使用的计算机是()。
A.模拟计算机 B. 数字与模拟混合的计算机C.数字计算机 D. 通用并专门用于家庭的计算机答:C2.个人计算机(personal Computer,缩写为PC机),它属于()。
A. 大型计算机B. 中型计算机C. 小型计算机D. 微型计算机答:D3.微型计算机的核心部件是微处理器(CPU),它由()组成。
A. 存储器和寄存器B. 存储器和控制器C. 运算器和存储器D. 运算器和控制器答:D4.微型计算机是大规模和超大规模集成电路发展的产物,超大规模集成电路(VLSI)指的是一个IC芯片上容纳的元件超过()。
A. 数百个B. 数千个C. 数万个D. 无数个答:C5.人们习惯用微处理器的型号和字长作为微型计算机的分类标准,奔腾微型计算机的字长为()。
A. 16位B. 32位C. 64位D. 128位答:B6.计算机中的兼容是指计算机部件的通用性,IBM PC兼容机中的兼容是指在兼容机上可以使用()。
A. 与IBM PC原型机上相同的软件和外部设备B. 与IBM PC原型机上不同的软件和外部设备C. 与任何其它厂家生产的计算机相同的外部设备D. 与任何其它厂家生产的计算机不同的外部设备答:A7.世界上生产微处理器(CPU)芯片的厂家很多,()就是其中之一。
A. Intel公司B. 微软公司C. IBM公司D. 联想公司答:A8.CAM是计算机的应用领域之一,其含义是()。
A. 计算机辅助教学B. 计算机辅助制造C. 计算机辅助设计D. 计算机辅助测试答:B9.计算机内的所有信息都是以()形式表示的,是物理器件性能所致。
A. 二进制编码B. 十进制编码C. 八进制编码D. 十六进制编码答:A10.以下4个数中,最大的数是()。
A. (123)10B. (1111010)2C. (76)8D. (9CB)16答:D11.微型计算机中运算器的基本逻辑运算包括逻辑与(逻辑乘)、逻辑或(逻辑加)和逻辑非。
基于LabVIEW与MATLAB的现代光测图像处理系统一、概述随着科技的进步,光学测量技术在各个领域中的应用越来越广泛,特别是在精密工程、生物医学、航空航天等领域。
现代光测技术不仅要求高精度的测量结果,还要求快速、高效的数据处理和分析能力。
开发一个功能强大、操作简便的现代光测图像处理系统显得尤为重要。
本文将介绍一种基于LabVIEW与MATLAB的现代光测图像处理系统。
LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一种由美国国家仪器(National Instruments)公司开发的图形化编程语言和开发环境,广泛应用于数据采集、仪器控制和工业自动化等领域。
MATLAB(Matrix Laboratory)则是由MathWorks 公司开发的一种高性能的数值计算和可视化软件,被广泛用于算法开发、数据分析和可视化、工程与科学绘图以及应用程序的创建。
本系统结合了LabVIEW和MATLAB的优势,利用LabVIEW强大的硬件接口能力和MATLAB卓越的数据处理和分析能力,实现了一套高效、精确的光测图像处理系统。
该系统不仅能够处理和分析光测图像数据,还能够与各种光学测量设备进行无缝连接,实现数据的实时采集和处理。
本概述部分简要介绍了现代光测图像处理系统的背景和意义,并阐述了本系统的研究目的和主要功能。
后续章节将详细介绍系统的设计原理、实现方法和应用案例。
1. 光测图像处理技术的发展背景随着信息技术的飞速发展,光测图像处理技术在众多领域,如航空航天、生物医学、智能交通、安防监控以及工业自动化等,发挥着越来越重要的作用。
光测图像处理技术是一种利用光学原理和图像处理算法对获取的光学信息进行提取、分析和处理的技术,其目标是实现对目标对象的精确测量、识别和跟踪。
传统的光测图像处理方法主要依赖于硬件设备和固定的图像处理算法,这种方法在处理复杂的光学信息时往往显得力不从心。
光电信息科学与工程就业前景光电信息科学与工程专业就业方向有哪些,毕业后光电信息科学与工程专业学生会去哪里工作?毕业后学生都找了什么工作?以下是光电信息科学与工程专业常见的几个就业方向,供参考。
1.光电信息科学与工程专业就业前景主要在光电信息工程、光电子工程、光通信、计算机、等领域从事科学研究、相关产品设计与制造、科技开发与应用、运行管理等工作。
光电信息技术是由光学、光电子、微电子等技术结合而成的多学科综合技术,涉及光信息的辐射、传输、探测以及光电信息的转换、存储、处理与显示等众多的内容。
2.光电信息科学与工程专业就业方向有哪些本专业就业面较窄,毕业生可在与此专业相关的高等院校、科研部门、企事业单位、行政管理部门从事科学研究、教学、应用开发和管理工作。
3.光电信息科学与工程专业需要把握哪些能力1.把握数学、物理等方面的基本理论和基本学问;2.把握光电信息科学与工程的基本学问和基本试验技能;3.了解相近专业的一般原理和学问;4.熟悉国家信息产业政策及国内外有关学问产权的法律法规;5.了解光电信息科学与工程的理论前沿、应用前景和最新发展动态,以及信息产业发展状况;6.把握资料查询、文献检索及运用现代信息技术猎取相关信息的基本方法;具有肯定的试验设计,制造试验条件,归纳、整理、分析试验结果,撰写论文,参与学术交流的能力。
光电信息科学与工程专业就业方向有许多,就业前景也比较宽阔,但大家还是要在专业上努力学习,争取学习地更深化。
点击查看:光电信息科学与工程专业最好的大学排名光电信息科学与工程专业就业形势分析光电信息科学与工程专业就业方向:光电信息科学与工程专业学生毕业后在科研院所、相关公司、企业从事产品研发、质量管理工作的光电子和光信息专业的'工程技术人员;中等专业学校、技校、高等职业学校老师;各相关企事业单位技术及管理人员和政府机关、事业单位公务员及连续攻读硕士学位。
毕业生主要担当相关企、事业单位从事光电仪器、精密仪器的设计、制造,光学零件的加工、镀膜、刻划,以及生产组织、经营等工作;也可在高校、科研单位、部队从事教学、科研工作光学工程等工作。
电气机械电力系统通信与信息处理技术随着现代社会对能源需求的不断增长,电力系统正变得越来越复杂。
为了确保稳定、高效的电力供应,电气机械电力系统正逐渐依赖于高度发达的通信与信息处理技术。
这些技术不仅提高了电力系统的运行效率,还增强了其可靠性和安全性。
本文将深入探讨电气机械电力系统通信与信息处理技术的关键方面,以展示其在现代电力系统中的重要性和应用。
通信技术在电力系统中的应用通信技术在电力系统中的应用至关重要,它确保了系统各部分之间的有效协调和数据传输。
在电力系统中,各种设备和系统需要进行实时数据交换,以实现最优的运行状态和故障处理。
为了满足这一需求,电力系统采用了多种通信技术,包括有线和无线通信。
有线通信技术在电力系统中,有线通信技术主要包括同轴电缆、双绞线和光纤通信。
这些通信技术提供了高速、稳定的数据传输,适用于要求高可靠性的应用场景。
同轴电缆和双绞线广泛应用于变电站和输电线路的通信连接,而光纤通信则因其较大的传输带宽和抗干扰性能,被用于长距离通信和高速数据传输。
无线通信技术无线通信技术在电力系统中的应用越来越广泛,主要包括无线电波、微波和卫星通信。
这些技术提供了灵活的部署方式和较低的维护成本。
无线电波和微波通信广泛应用于变电站和配电系统的通信连接,而卫星通信则适用于偏远地区的电力系统监控和控制。
信息处理技术在电力系统中的应用信息处理技术在电力系统中的应用至关重要,它确保了系统运行数据的实时处理和分析,以实现最优的运行状态和故障处理。
在电力系统中,各种设备和系统需要进行实时数据交换,以实现最优的运行状态和故障处理。
为了满足这一需求,电力系统采用了多种信息处理技术,包括数据采集、存储、处理和分析。
数据采集与监控数据采集是电力系统信息处理的第一步。
通过各种传感器和监测设备,实时采集电力系统的运行数据,包括电压、电流、功率、温度等参数。
这些数据通过通信网络传输到数据处理中心,进行实时监控和分析。
数据存储与处理数据存储与处理是电力系统信息处理的关键环节。