福建省平和县2015-2016学年八年级数学下学期期中试题(扫描版) 新人教版
- 格式:doc
- 大小:706.00 KB
- 文档页数:9
2015-2016学年八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x25.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣17.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.148.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2D.4二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠时,分式有意义.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.11.当x=时,分式的值为0.12.若,则=.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是.16.已知:a2﹣3a+1=0,则a+﹣2的值为.17.已知关于x的方程的解是正数,则m的取值范围是.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)20.解下列方程:(1)=(2)﹣=1.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是;②MB,BN的位置关系是.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?2015-2016学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【点评】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180°后与原图重合是解题的关键.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目【考点】全面调查与抽样调查.【分析】要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.【解答】解:A、调查过程带有破坏性,只能采取抽样调查,选项错误;B、数量多,不适合全面调查,适合抽查;C、数量多,不适合全面调查,适合抽查;D、人数不多,容易调查,因而适合全面调查,选项正确.故选D.【点评】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x2【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式、、的分母分别是2x2、4(m﹣n)、x,故最简公分母是4(m﹣n)x2.故选:D.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.5.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍【考点】分式的基本性质.【分析】根据分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变,可得答案.【解答】解:分式中的x,y都扩大到原来的3倍,那么分式的值缩小到原来的,故选:D.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变.6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣1【考点】分式方程的增根.【专题】计算题.【分析】由分式方程有增根,得到最简公分母为0,求出x的值即为增根.【解答】解:由分式方程有增根,得到x﹣4=0,即x=4,则增根为4.故选C.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质;直角三角形斜边上的中线;三角形中位线定理.【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选:A.【点评】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.8.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2D.4【考点】菱形的判定;翻折变换(折叠问题).【专题】动点型.【分析】首先设Q点运动的时间t秒,则CQ=tcm,BP=xcm,根据菱形的性质可得QP=BP=tcm,∠P′BQ=∠QBP,再根据勾股定理可得(t)2+(t)2=(6﹣t)2,再解方程即可.【解答】解:设Q点运动的时间t秒,则CQ=tcm,BP=xcm,∵四边形QPBP′为菱形,∴QP=BP=tcm,∠P′BQ=∠QBP,∵∠C=90°,AC=BC,∴∠CBP=45°,∴∠P′BP=90°,∴∠QPB=90°,∴(t)2+(t)2=(6﹣t)2,解得:t1=2,t2=﹣6(不合题意舍去),故选:B.【点评】此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形对角线平分每一组对角.二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠2时,分式有意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式有意义的条件为x﹣2≠0.即可求得x的值.【解答】解:根据条件得:x﹣2≠0.解得:x≠2.故答案为2.【点评】此题主要考查了分式的意义,要求掌握.意义:对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得x的取值范围即可.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.【考点】概率公式.【分析】让二等品数除以总产品数即为所求的概率.【解答】解:∵现有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取1只,可能出现12种结果,是二等品的有3种可能,∴概率==.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.当x=1时,分式的值为0.【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【解答】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故答案为:1.【点评】此题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.若,则=.【考点】比例的性质.【分析】先用b表示出a,然后代入比例式进行计算即可得解.【解答】解:∵=,∴a=,∴=.故答案为:.【点评】本题考查了比例的性质,用b表示出a是解题的关键,也是本题的难点.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于3.【考点】矩形的性质.【分析】先由矩形的性质得出OA=OB=3,再由∠AOB=60°,证出△AOB是等边三角形,即可得出AB=OA=3.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD=6,∴OA=OB=3,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3;故答案为:3.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为5cm.【考点】平行四边形的性质;线段垂直平分线的性质.【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为10cm,即可得出答案.【解答】解:∵点O是BD中点,EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,故可得△ABE的周长=AB+AD,又∵平行四边形的周长为10cm,∴AB+AD=50cm.故答案为:5cm.【点评】此题考查了平行四边形的性质及线段的中垂线的性质,属于基础题,解答本题的关键是判断出EO 是线段BD的中垂线,难度一般.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是5.【考点】平行线的性质;正方形的性质.【分析】过D点作直线EF与平行线垂直,与l1交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=1,DF=2.根据勾股定理可求CD2得正方形的面积.【解答】解:作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠AED=∠DFC=90°.∵ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.∵AD=CD,∴△ADE≌△DCF,∴CF=DE=1.∵DF=2,∴CD2=12+22=5,即正方形ABCD的面积为5.故答案为:5.【点评】题考查正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.16.已知:a2﹣3a+1=0,则a+﹣2的值为1.【考点】分式的混合运算.【专题】计算题.【分析】已知等式两边除以a,求出a+的值,代入原式计算即可得到结果.【解答】解:∵a2﹣3a+1=0,∴a+=3,则原式=3﹣2=1,故答案为:1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.已知关于x的方程的解是正数,则m的取值范围是m.>﹣6且m≠﹣4【考点】分式方程的解.【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x 的不等式是本题的一个难点.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.【考点】轴对称-最短路线问题;正方形的性质.【专题】计算题.【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE 的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)【考点】分式的混合运算.【分析】(1)先把被除式与分子因式分解,把除法改为乘法,进一步约分得出答案即可;(2)先通分算减法,再进一步把除法改为乘法,进一步约分得出答案即可.【解答】解:(1)原式=a(a+3)×=a;(2)原式=÷=•=.【点评】此题考查分式的混合运算,掌握运算顺序,正确通分约分,因式分解是解决问题的关键.20.解下列方程:(1)=(2)﹣=1.【考点】解分式方程.【专题】计算题.【分析】(1)分式方程两边乘以x(x﹣2)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程两边乘以(x+1)(x﹣1)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4x=x﹣2,解得:x=﹣,经检验x=﹣是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,原分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【解答】证明:如图,连接BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再根据x是小于3的非负整数选取合适的x的值,代入进行计算即可.【解答】解:原式=•=•=•=x+4.∵x是小于3的非负整数,∴x=0,1,2,∵x=0,2,∴x=1,∴原式=1+4=5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.【考点】菱形的性质;矩形的判定与性质.【专题】证明题.【分析】先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED 是矩形,利用勾股定理即可求出BC=OE.【解答】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形,∴DE=OC,∵OB=OD,∠BOC=∠ODE=90°,∴BC===OE【点评】本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?【考点】分式方程的应用.【分析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【解答】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.【考点】翻折变换(折叠问题);菱形的判定与性质.【分析】(1)证得DE=DF,得四边形BFDE是平行四边形,根据折叠的性质知:BF=DF,得四边形BFDE 是菱形;=EF•BD,(2)在Rt△DCF中,利用勾股定理可求得DF的长;连接BD,得BD=8cm,利用S菱形BFDE易得EF的长.【解答】解:(1)由折叠的性质可得∠BFE=∠DFE,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF,∴四边形BFDE是平行四边形,由折叠知,BF=DF.∴四边形BFDE是菱形;(3)在Rt△DCF中,设DF=x,则BF=x,CF=16﹣x,由勾股定理得:x2=(16﹣x)2+82,解得x=10,DF=10cm,连接BD.在Rt△BCD中,BD==8,=EF•BD=BF•DC,∵S菱形BFDE∴EF×8=10×8解得EF=4cm.【点评】本题主要考查了勾股定理、平行四边形的判定、菱形的判定和性质,解题的关键是作好辅助线找到相关的三角形.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.【考点】分式的混合运算.【专题】阅读型.【分析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用非负数的性质求出最小值即可.【解答】解:(1)设﹣x4﹣8x2+10=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=9,b=1.∴=x2+9+;(2)由=x2+9+知,当x=0时,x2+9和分别有最小值,因此当x=0时,的最小值为10.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?【考点】几何变换综合题.【分析】(1)延长AF交EC于G,交BC于H,利用正方形ABCD的性质和等腰△BEF的性质,证明△ABF≌△CBE,得到AF=CE,∠BAF=∠BCE,根据∠BAF+AHB=90°,∠AHB=∠CHG,所以∠BCE+∠CHG=90°,即可解答.(2)①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直;(3)MA=MN,MA⊥MN,理由:如图4,连接DE,利用正方形ABCD的性质和等腰△BEF的性质,证明△ADF≌△CDE,得到DF=DE,∠1=∠2,利用在Rt△ADF中,点M是DF的中点,得到MA=DF=MD=MF,再利用中位线的性质,得到得到MN=DE,MN∥DE,通过角之间的等量代换和三角形内角和,得到∠6=90°,从而得到∠7=∠6=90°,即可解答.【解答】解:(1)如图2,延长AF交EC于G,交BC于H,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABF+∠FBC=90°,∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∴∠CBE+∠FBC=90°,∴∠ABF=∠CBE,在△ABF和△CBE中,,∴△ABF≌△CBE,∴AF=CE,∠BAF=∠BCE,∵∠BAF+AHB=90°,∠AHB=∠CHG,∴∠BCE+∠CHG=90°,∴AF⊥CE.(2)①相等;②垂直.故答案为:相等,垂直.(3)MA=MN,MA⊥MN,理由:如图4,连接DE,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,∵∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∵点E、F分别在正方形CB、AB的延长线上,∴AB+BF=CB+BE,即AF=CE,∵,∴△ADF≌△CDE,∴DF=DE,∠1=∠2,在Rt△ADF中,∵点M是DF的中点,∴MA=DF=MD=MF,∴∠1=∠3,∵点N是EF的中点,∴MN是△DEF的中位线,∴MN=DE,MN∥DE,∴MA=MN,∠2=∠3,∵∠2+∠4=∠ABC=90°,∠4=∠5,∴∠3+∠5=90°,∴∠6=180°﹣(∠3+∠5)=90°,∴∠7=∠6=90°,MA⊥MN.【点评】本题考查了图形的旋转的性质、全等三角形的性质与判定、等腰三角形的性质,解决本题的关键是证明三角形全等,得到相等的边与角,作辅助线也是解决本题的关键.。
2014-2015学年福建省漳州市平和县八年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A. ED=CD B. AD=BD C. AB=AC D. BD=AC2.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是()A. 7cm B. 9cm C. 12cm或者9cm D. 12cm3.若x>y,则下列式子中错误的是()A. x﹣3>y﹣3 B.>C. x+3>y+3 D.﹣3x>﹣3y4.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A. x<4 B. x<2 C. 2<x<4 D. x>25.如图,△ABC与△ACD都是等边三角形,△ACD是由△ABC()A.绕点A顺时针旋转60°得到的B.绕点A顺时针旋转120°得到的C.绕点C顺时针旋转60°得到的D.绕点C顺时针旋转120°得到的6.下列基本图形经过平移,旋转成轴对称变换后不能得到下图的是()A. + B. +++ C.D.7.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A. x>0 B. x<0 C. x<2 D. x>28.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A.至多6人B.至少6人C.至多5人D.至少5人9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()A. 2cm B. 3cm C. 4cm D. 5cm10.已知关于x的不等式组的解集为3≤x<5,则a,b的值为()A. a=﹣3,b=6 B. a=6,b=﹣3 C. a=1,b=2 D. a=3,b=6二、填空题(每题3分,共24分)11.如果等腰三角形的一个底角是50°,那么它的顶角是度.12.“x与3的和不小于x的2倍”,用不等式表示为.13.点A(﹣5,y1)、B(﹣2,y2)都在直线y=﹣2x上,则y1与y2的关系是.14.如图,在等边三角形ABC中,D、E、F分别是边BC、AC、AB的中点,图中的四个小等边三角形可以看成是由△FBD平移得到的三角形是.15.如图,已知△ABC中,∠ABC=45°,AC=3,F是高AD和BE的交点,则线段BF的长度为.16.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.17.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.18.若关于x,y的方程组的解满足x+y<2,则a的取值范围为.三、解答题(共46分)19.解不等式并把解集表示在数轴上.<x+5.20.解不等式组并把解集表示在数轴上..21.如图在网格中按要求画出图形,先将△ABC向下平移5格得到△A1B1C1,再以点O为旋转中心将ABC沿顺时针旋转90°得到△A2B2C2.22.如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.23.某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表:A种产品 B种产品成本(万元∕件) 2 5利润(万元∕件) 1 2(1)若工厂投入资金不多于44万元,且获利多于14万元,问工厂会有哪几种生产方案?请说明理由.(2)在(1)的条件下,哪种生产方案获利最大?并求出最大利润.24.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.2014-2015学年福建省漳州市平和县八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A. ED=CD B. AD=BD C. AB=AC D. BD=AC考点:线段垂直平分线的性质.分析:根据线段的垂直平分线的性质进行判断即可.解答:解:∵DE是线段AB的垂直平分线,∴DB=DA,∴B正确,故选:B.点评:本题考查的是线段的垂直平分线的性质等几何知识.掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是()A. 7cm B. 9cm C. 12cm或者9cm D. 12cm考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为4cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.∴其周长是12cm.故选D.点评:此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.若x>y,则下列式子中错误的是()A. x﹣3>y﹣3 B.>C. x+3>y+3 D.﹣3x>﹣3y考点:不等式的性质.分析:根据不等式的基本性质,进行判断即可.解答:解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.点评:本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A. x<4 B. x<2 C. 2<x<4 D. x>2考点:在数轴上表示不等式的解集.分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.如图,△ABC与△ACD都是等边三角形,△ACD是由△ABC()A.绕点A顺时针旋转60°得到的B.绕点A顺时针旋转120°得到的C.绕点C顺时针旋转60°得到的D.绕点C顺时针旋转120°得到的考点:旋转的性质;等边三角形的性质.分析:根据旋转的定义和等边三角形的性质即可解答.解答:解:图中△ACD可以看作由△ABC绕A点顺时针旋转60°得到.故选A.点评:本题考查了旋转的性质和等边三角形的性质,对于旋转关键要确定旋转角,确定旋转角时一定要首先找到对应点.6.下列基本图形经过平移,旋转成轴对称变换后不能得到下图的是()A. + B. +++ C.D.考点:几何变换的类型.分析:根据平移、旋转和轴对称的性质即可得出正确结果.解答:解:A、经过平移可得到上图,故此选项错误;B、经过平移可得到上图,故此选项错误;C、经过平移、旋转或轴对称变换后,都不能得到上图,故此选项正确;D、经过旋转可得到上图,故此选项错误.故选:C.点评:本题考查平移、旋转和轴对称的性质.平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.旋转的性质:①旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;②两组对应点连线的交点是旋转中心.轴对称的性质:①翻折变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;②对称轴是任何一对对应点所连线段的垂直平分线.7.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A. x>0 B. x<0 C. x<2 D. x>2考点:一次函数与一元一次不等式.分析:从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.解答:解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值小于0,即关于x的不等式kx+b>0的解集是x<2.故选C.点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,注意几个关键点(交点、原点等),做到数形结合.8.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A.至多6人B.至少6人C.至多5人D.至少5人考点:一元一次不等式的应用.专题:应用题.分析:本题可设参加合影的人数为x,根据平均每人分摊的钱不足0.5元,列出不等式,解出x即可.解答:解:设参加合影的人数为x,则有:0.35x+0.8<0.5x﹣0.15x<﹣0.8x>5所以至少6人.故应选B.点评:本题考查的是不等式的运用,解此类题目时常常是先设出未知数,再根据题意列出不等式、求解.9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()A. 2cm B. 3cm C. 4cm D. 5cm考点:角平分线的性质.专题:压轴题.分析:要求AE+DE,现知道AC=3cm,即AE+CE=3cm,只要CE=DE则问题可以解决,而应用其它条件利用角平分线的性质正好可求出CE=DE.解答:解:∵∠ACB=90°,∴EC⊥CB,又BE平分∠ABC,DE⊥AB,∴CE=DE,∴AE+DE=AE+CE=AC=3cm故选B.点评:此题主要考查角平分线性质:角平分线上的任意一点到角的两边距离相等;做题时要认真观察各已知条件在图形上的位置,根据位置结合相应的知识进行思考是一种很好的方法.10.已知关于x的不等式组的解集为3≤x<5,则a,b的值为()A. a=﹣3,b=6 B. a=6,b=﹣3 C. a=1,b=2 D. a=3,b=6考点:解一元一次不等式组.分析:先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.解答:解:不等式组,由①得,x≥a+b,由②得,x<,∴,解得,故选A.点评:本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.二、填空题(每题3分,共24分)11.如果等腰三角形的一个底角是50°,那么它的顶角是80 度.考点:等腰三角形的性质.分析:由已知等腰三角形的一个底角是,50°,利用等腰三角形的性质得另一个底角也是50°,结合三角形内角和定理可求顶角的度数.解答:解:∵三角形是等腰三角形,∴两个底角相等,∵等腰三角形的一个底角是50°,∴另一个底角也是50°,∴顶角的度数为180°﹣50°﹣50°=80°.故答案为:80.点评:本题考查了等腰三角形的性质及三角形内角和定理;借助三角形的内角定理求解有关角的度数问题是一种很重要的方法,要熟练掌握.12.“x与3的和不小于x的2倍”,用不等式表示为x+3≥2x.考点:由实际问题抽象出一元一次不等式.分析:首先表示出“x与3的和”为x+3,再表示“不小于x的2倍”为x+3≥2x即可.解答:解:由题意得:x+3≥2x,故答案为:x+3≥2x.点评:此题主要考查了由实际问题抽象出一元一次不等式,关键是要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.13.点A(﹣5,y1)、B(﹣2,y2)都在直线y=﹣2x上,则y1与y2的关系是y1>y2.考点:一次函数图象上点的坐标特征.分析:根据一次函数的比例系数的符号以及相应自变量的大小可得所求结果.解答:解:∵比例系数为﹣2<0,﹣5<﹣2,∴y1>y2.故答案为y1>y2.点评:考查一次函数图象上点的坐标的特点;用到的知识点为:一次函数的比例系数小于0,y随x的增大而减小.14.如图,在等边三角形ABC中,D、E、F分别是边BC、AC、AB的中点,图中的四个小等边三角形可以看成是由△FBD平移得到的三角形是△AFE和△EDC .考点:平移的性质;等边三角形的性质.分析:根据三角形的中位线平行于第三边并且等于第三边的一半判断出△ABC被分成的四个小三角形是全等三角形,然后根据平移的性质解答.解答:解:∵D、E、F分别是边BC、AC、AB的中点,∴图中四个小等边三角形是全等三角形,∴可以看成是由△FBD平移得到的三角形是△AFE和△EDC.故答案为:△AFE和△EDC.点评:本题考查了平移的性质,等边三角形的性质,熟记性质并准确识图是解题的关键,难点在于先确定出四个等边三角形是全等三角形.15.如图,已知△ABC中,∠ABC=45°,AC=3,F是高AD和BE的交点,则线段BF的长度为 3 .考点:全等三角形的判定与性质.分析:求出∠BDF=∠ADC,∠DBF=∠DAC,∠DAB=∠DBA,推出BD=AD,根据ASA证△BFD≌△ACD,即可得出答案.解答:解:∵AD⊥BC,BE⊥AC,∴∠BEA=∠ADC=∠ADB=90°,∴∠DAB=90°﹣45°=45°=∠ABD,∠C+∠CBE=90°,∠C+∠CAD=90°,∴BD=AD,∠DBF=∠CAD,∵在△BFD和△ACD中,∴△BFD≌△ACD(ASA),∴BF=AC=3,故答案为:3.点评:本题考查了全等三角形的性质和判定,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等.16.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13 道.考点:一元一次不等式的应用.专题:应用题.分析:根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.解答:解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13点评:解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.17.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= 70 °.考点:旋转的性质.专题:探究型.分析:直接根据图形旋转的性质进行解答即可.解答:解:∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∠AOB=30°,∴△OAB≌△OA1B1,∴∠A1OB1=∠AOB=30°.∴∠A1OB=∠A1OA﹣∠AOB=70°.故答案为:70.点评:本题考查的是旋转的性质,熟知图形旋转前后对应边、对应角均相等的性质是解答此题的关键.18.若关于x,y的方程组的解满足x+y<2,则a的取值范围为a>﹣4 .考点:解一元一次不等式;二元一次方程组的解.分析:把方程组的两个方程相加,即可求得x+y,则可以得到一个关于a的不等式,解不等式即可求得a 的范围.解答:解:,①+②得:4(x+y)=4﹣a,则x+y=(4﹣a),则(4﹣a)<2,解得:a>﹣4.故答案是:a>﹣4.点评:本题是一个方程组与不等式的综合题目.转化为关于a的不等式是本题的一个难点.三、解答题(共46分)19.解不等式并把解集表示在数轴上.<x+5.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去分母,移项,合并同类项,系数化成1即可.解答:解:<x+5,2+6x<2x+10,6x﹣2x<10﹣2,4x<8,x<2,在数轴上表示不等式的解集为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能根据不等式的基本性质求出不等式的解集是解此题的关键,难度适中.20.解不等式组并把解集表示在数轴上..考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.解答:解:,解①得:x>1,解②得:x≥2.,则不等式组的解集是:x≥2.点评:本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.如图在网格中按要求画出图形,先将△ABC向下平移5格得到△A1B1C1,再以点O为旋转中心将ABC沿顺时针旋转90°得到△A2B2C2.考点:作图-旋转变换;作图-平移变换.分析:根据平移的性质:对应点所连的线段平行且相等,可得平移的图形;根据对应点与旋转中心的距离相等且旋转角相等,可得旋转的图形.解答:解:如图:.点评:本题考查了作图,利用了平移的性质作图,旋转的性质作图.22.如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.考点:全等三角形的判定;平行线的性质.专题:证明题.分析:根据平行线的性质可知由∠B=∠DEF.BE=CF,∠ACB=∠F,根据ASA定理可知△ABC≌△DEF.解答:证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴,∴△ABC≌△DEF(ASA).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表:A种产品 B种产品成本(万元∕件) 2 5利润(万元∕件) 1 2(1)若工厂投入资金不多于44万元,且获利多于14万元,问工厂会有哪几种生产方案?请说明理由.(2)在(1)的条件下,哪种生产方案获利最大?并求出最大利润.考点:一元一次不等式组的应用.分析:(1)根据计划投入资金不多于44万元,且获利多于14万元,这两个不等关系即可列出不等式组,求得x的范围,再根据x是非负整数,确定x的值,x的值的个数就是方案的个数;(2)得出利润y与A产品数量x的函数关系式,根据增减性可得,B产品生产越多,获利越大,因而B取最大值时,获利最大,据此即可求解.解答:解:(1)设应生产A种产品x件,则生产B种产品有(10﹣x)件,由题意有:解得:2≤x<6;所以可以采用的方案有:①A种产品2件,B种产品8件;②A种产品3件,B种产品7件;③A种产品4件,B种产品6件;④A种产品5件,B种产品5件;共4种方案;(2)设总利润为y万元,生产A种产品x件,则生产B种产品(10﹣x)件,则利润y=x+2(10﹣x)=﹣x+20,则y随x的增大而减小,即可得,A产品生产越少,获利越大,所以当A种产品2件,B种产品8件;时可获得最大利润,其最大利润为2×1+8×2=18万.点评:本题考查一元一次不等式组的实际运用,关键从表格种获得成本价和利润,然后根据利润和成本做为不等量关系列不等式组分别求出解,然后求出哪种方案获利最大从而求出来.24.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:(1)根据等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE和△ACE 全等,再根据全等三角形对应边相等证明即可;(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.解答:证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BA C=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).点评:本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记三角形全等的判定方法与各性质是解题的关键.。
八年级数学2015~2016学年度第二学期期中试卷(试卷总分100分 考试时间100分钟)命题、校对:隆政初中八年级数学备课组一、单项选择题(每小题2分,共20分)1.下列根式中是最简二次根式的是( )A B C D . 1.02.下列运算正确的是( )A . =B . a b =-C . (a b =-D . 2== 3.已知a =3,b =4,若a ,b ,c 能组成直角三角形,则c= ( )A .5B .7C .5或7D .5或64.如图,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则AP 长不可能是( ).A .3.5B .4.2C .5.8D .75.有下列四个命题,其中正确的个数为( )①两条对角线互相平分的四边形是平行四边形;②一条对角线平分一个内角的平行四边形是菱形;③两条对角线互相垂直的平行四边形是矩形;④两条对角线相等且互相垂直的四边形是正方形.A .4B .3C .2D .16. 如图所示,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .197.若顺次连接四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必定是( )A .菱形B .对角线相互垂直的四边形C .正方形D .对角线相等的四边形8.已知点(x 1,y 1),(x 2,y 2)都在直线y = - 12x -6上,如x 1﹥x 2则y 1和 y 2大小关系是( )A .y 1 >y 2B .y 1 =y 2C .y 1 <y 2D .不能比较9.若点A (2,4)在函数2y kx =-的图象上,则下列各点在此函数图象上的是( ).A .(0,-2)B .(32,0) C .(8,20) D .(12,12) 10.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标为( )A .(1-,4)B .(1-,2)C .(2,1-)D .(2,1)二、填空(每小题3分,共24分)11.要使代数式xx 212-有意义,则x 的取值范围是 . 12.如图,Rt △ABC 的面积为20cm 2,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 .13.直角三角形两直角边长分别为5和12,则它斜边上的高为 .14.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB =_______.15. 当直线y=kx+b 与直线y=-2x+1平行,且y=kx+b 与y=x+4和x 轴交于一点,则y=kx+b的解析式为_____________.16.如图,正方形ABCD 的对角线长为E 为AB 上一点,若EF ⊥AC 于F ,EG ⊥BD于G ,则EF +EG = .17.如图,已知函数y 1=k 1x +b 1和y 2=k 2x +b 2交于点(-3,1),k 1﹥0,k 2﹤0,如k 1x +b 1﹤k 2x +b ,则x 的范围为_____ ___.18.如图,边长为1的菱形ABCD 中,∠DAB =60°.连接对角线AC ,以AC 为边作第二个菱形ACEF ,使∠F AC =60°,连接AE ,再以AE 为边作第三个菱形AEGH 使∠HAE =60°…按此规律所作的第n 个菱形的边长是 .三、解答(第19题9分,第20题,24题每题6分,第21题 5分,第22题和第23题,25题每题7分,第26题9分,共计56分)19.计算(每小题3分,共9分)(1)( (2 (3)已知x =312+,y =312-,求x 2+y 2 20. (本题满分6分)如图所示,矩形ABCD 中,AB =8,AD =6,沿EF 折叠,点B 恰好与点D重合,点C 落在点G 处,求折痕EF 的长度.21. (本题满分5分)已知:如图,E 、F 是平行四边形ABCD 的对角线AC 上的两点,AE =CF .求证:四边形DEBF 是平行四边形.22.(本题满分7分)如图,在矩形ABCD 中,AC 与BD 交于点O ,DE ∥AC ,CE ∥BD .(1)求证:四边形OCDE 为菱形;(2)如AB =2,AC 与BD 所夹锐角为60°,求四边形OCED 的面积.23.(本题满分7分)如图,△ABC 中,CE 和CF 分别平分∠ACB 和△ABC 的外角∠ACD ,一动点O 在AC 上运动,过点O 作BD 的平行线与∠ACB 和∠ACD 的角平分线分别交于点E 和点F(1)求证:当点O 运动到什么位置时,四边形AECF 为矩形,说明理由;(2)在第(1)题的基础上,当△ABC 满足什么条件时,四边形AECF 为正方形,说明理由.24.(本题满分6分)已知y 与x -1成一次函数关系,且当-2﹤x ﹤3时,2﹤y ﹤4,求y 与x 的函数解析式.25.(本题满分7分)如图,将直线221+-=x y 先向右平移一个单位长度,再向上平移一个单位长度,所得新的直线l 与x 轴、y 轴分别交于A 、B 两点,另有一条直线y=x+1.(1)求l 的解析式;(2)求点A 和点B 的坐标;(3)求直线y=x+1 与直线l 以及y 轴所围成的三角形的面积.26. (本题满分9分)甲乙两工程队同时修路,两队所修路的长度相等,甲队施工速度一直没变,乙队在修了3小时后加快了修路速度,在修了5小时后,乙又因故施工速度减少到每小时5米,如图所示是两队所修公路长度y (米)与所修时间x (小时)的图象,请回答下列问题.(1)直接写出甲队在0≤x ≤5时间段内,y 与x 的函数关系式为________;直接写出乙队在3≤x ≤5时间段内,y 与x 的函数关系式为_________;(2)求开修多长时间后,乙队修的长度超过甲队10米;(3)如最后两队同时完成任务,求乙队从开修到完工所修长度为多少米.初二年级数学2015~2016学年度第二学期期中试卷答案一、选择ACCDC BBCAD二.填空11、x ≥21且x ≠0 12、 20 13、 1360 14、 15° 15、y=-2x-8 16、42 17、x <-3 18、()3n-1三.解答 19(1)解:原式=29382- (1分) =22924-(1分) =221- (1分) (2)解:原式=334+×32334332--×43 (1分) =3383343234--+ (1分) =32 (1分)(3)解:13-=x 31--=y (1分)原式=(x+y )2-2xy=(-2)2-2×(-2) (1分)=8 (1分)20.解:作EM ⊥CD ,垂足为点M ,设DE=x ,则根据题意可得BE= x ,AE=8- x,(1分)∵矩形ABCD ,∴∠A=90°,∴(8-x )2+62=x 2 (1分)解得x=425 (1分) ∴AE=DM=47,又∵DF=DE 425,(1分) ∴MF=29,又∵ME=AD=6, ∴EF=215 (2分)21.证:连接BD 与AC 交于点O ,(1分)∵四边形ABCD 是平行四边形,∴OA=OC,OB=OD,(2分)∵AE=CF, ∴OE=OF,(1分)∴四边形DEBF 为平行四边形(1分)22. (1)证:∵四边形ABCD 为矩形,∴AC=BD,OC=21AC,OD=21BD, ∴OC=OD,(2分),∵ DE ∥AC ,CE ∥BD ,∴四边形OCED 为菱形(2分)(2)作D M ⊥OC,垂足为点M ,∵OC=OD,∠COD=60°,∴△COD 为等边三角形(1分),∵AB=2,矩形ABCD,∴CD=AB=2, ∴OC=CD=OD=2,∵D M ⊥OC ,∴CM=1, ∴DM=3(1分), ∴菱形OCED 面积=23(1分)23.(1)答:当点O 在AC 中点时(1分),理由如下:∵EF ∥BD, ∴∠CEO=∠ECB, ∵CE 平分∠ACB, ∴∠BCE=∠ACE, ∴∠CEO=∠ECO, ∴OE=OC,(1分),同理可证,OC=OF, ∴OE=OF,,∵点O 在AC 中点∴,四边形AECF 为平行四边形(1分),∵CE 平分∠ACB, ∴∠ACE=21∠ACB,同理,∠ACF=21∠ACD, ∴∠ECF=90°, ∴四边形AECF 为矩形(1分)(2)答,当∠ACB=90°时(1分)理由如下:∵EF ∥BD ,∠ACB=90°,∴∠AOE=90°(1分),∵四边形AECF 为矩形,∴四边形AECF 为正方形(1分)24.解:设b x k y +-=)1( (k ≠0)依题意得当k >0时,2=-3k+b ,4=2k+b ,(1分)解得51652+=x y (2分) 当k <0时,4=-3k+b ,2=2k+b ,(1分),解得51452+-=x y (2分) 25.(1)解:12)1(21++--=x y (1分),得2721+-=x y (1分)(2)解:A(7,0) B(0,27)(每个点1分,共2分) (3)将2721+-=x y 和y=x+1联成方程组解得两直线交点为(35,38)(1分),再求出两直线与y 轴交点分别为(0,27)和(0,1)(1分),所以三角形面积为1225(1分) 26.(1)x y 14=(1分)8535-=x y (1分)(2)当3≤x ≤5时,10148535=--x x (1分)得2195=x (1分) 当x >5时1014)5(590=--+x x (1分)得955=x (1分) (3)解:设已乙队共修了m 个小时,依题意得)5(59014-+=m m (1分)解得965=m (1分) 乙队共修长度14×9910965=(米)(1分)。
2014-2015学年福建省漳州市平和县八年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A. ED=CD B. AD=BD C. AB=AC D. BD=AC2.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是()A. 7cm B. 9cm C. 12cm或者9cm D. 12cm3.若x>y,则下列式子中错误的是()A. x﹣3>y﹣3 B.>C. x+3>y+3 D.﹣3x>﹣3y4.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A. x<4 B. x<2 C. 2<x<4 D. x>25.如图,△ABC与△ACD都是等边三角形,△ACD是由△ABC()A.绕点A顺时针旋转60°得到的B.绕点A顺时针旋转120°得到的C.绕点C顺时针旋转60°得到的D.绕点C顺时针旋转120°得到的6.下列基本图形经过平移,旋转成轴对称变换后不能得到下图的是()A. + B. +++ C.D.7.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A. x>0 B. x<0 C. x<2 D. x>28.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A.至多6人B.至少6人C.至多5人D.至少5人9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()A. 2cm B. 3cm C. 4cm D. 5cm10.已知关于x的不等式组的解集为3≤x<5,则a,b的值为()A. a=﹣3,b=6 B. a=6,b=﹣3 C. a=1,b=2 D. a=3,b=6二、填空题(每题3分,共24分)11.如果等腰三角形的一个底角是50°,那么它的顶角是度.12.“x与3的和不小于x的2倍”,用不等式表示为.13.点A(﹣5,y1)、B(﹣2,y2)都在直线y=﹣2x上,则y1与y2的关系是.14.如图,在等边三角形ABC中,D、E、F分别是边BC、AC、AB的中点,图中的四个小等边三角形可以看成是由△FBD平移得到的三角形是.15.如图,已知△ABC中,∠ABC=45°,AC=3,F是高AD和BE的交点,则线段BF的长度为.16.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.17.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.18.若关于x,y的方程组的解满足x+y<2,则a的取值范围为.三、解答题(共46分)19.解不等式并把解集表示在数轴上.<x+5.20.解不等式组并把解集表示在数轴上..21.如图在网格中按要求画出图形,先将△ABC向下平移5格得到△A1B1C1,再以点O为旋转中心将ABC 沿顺时针旋转90°得到△A2B2C2.22.如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.23.某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表:A种产品 B种产品成本(万元∕件) 2 5利润(万元∕件) 1 2(1)若工厂投入资金不多于44万元,且获利多于14万元,问工厂会有哪几种生产方案?请说明理由.(2)在(1)的条件下,哪种生产方案获利最大?并求出最大利润.24.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.2014-2015学年福建省漳州市平和县八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A. ED=CD B. AD=BD C. AB=AC D. BD=AC考点:线段垂直平分线的性质.分析:根据线段的垂直平分线的性质进行判断即可.解答:解:∵DE是线段AB的垂直平分线,∴DB=DA,∴B正确,故选:B.点评:本题考查的是线段的垂直平分线的性质等几何知识.掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是()A. 7cm B. 9cm C. 12cm或者9cm D. 12cm考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为4cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.∴其周长是12cm.故选D.点评:此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.若x>y,则下列式子中错误的是()A. x﹣3>y﹣3 B.>C. x+3>y+3 D.﹣3x>﹣3y考点:不等式的性质.分析:根据不等式的基本性质,进行判断即可.解答:解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.点评:本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A. x<4 B. x<2 C. 2<x<4 D. x>2考点:在数轴上表示不等式的解集.分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.如图,△ABC与△ACD都是等边三角形,△ACD是由△ABC()A.绕点A顺时针旋转60°得到的B.绕点A顺时针旋转120°得到的C.绕点C顺时针旋转60°得到的D.绕点C顺时针旋转120°得到的考点:旋转的性质;等边三角形的性质.分析:根据旋转的定义和等边三角形的性质即可解答.解答:解:图中△ACD可以看作由△ABC绕A点顺时针旋转60°得到.故选A.点评:本题考查了旋转的性质和等边三角形的性质,对于旋转关键要确定旋转角,确定旋转角时一定要首先找到对应点.6.下列基本图形经过平移,旋转成轴对称变换后不能得到下图的是()A. + B. +++ C.D.考点:几何变换的类型.分析:根据平移、旋转和轴对称的性质即可得出正确结果.解答:解:A、经过平移可得到上图,故此选项错误;B、经过平移可得到上图,故此选项错误;C、经过平移、旋转或轴对称变换后,都不能得到上图,故此选项正确;D、经过旋转可得到上图,故此选项错误.故选:C.点评:本题考查平移、旋转和轴对称的性质.平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.旋转的性质:①旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;②两组对应点连线的交点是旋转中心.轴对称的性质:①翻折变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;②对称轴是任何一对对应点所连线段的垂直平分线.7.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A. x>0 B. x<0 C. x<2 D. x>2考点:一次函数与一元一次不等式.分析:从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.解答:解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值小于0,即关于x的不等式kx+b>0的解集是x<2.故选C.点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,注意几个关键点(交点、原点等),做到数形结合.8.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A.至多6人B.至少6人C.至多5人D.至少5人考点:一元一次不等式的应用.专题:应用题.分析:本题可设参加合影的人数为x,根据平均每人分摊的钱不足0.5元,列出不等式,解出x即可.解答:解:设参加合影的人数为x,则有:0.35x+0.8<0.5x﹣0.15x<﹣0.8x>5所以至少6人.故应选B.点评:本题考查的是不等式的运用,解此类题目时常常是先设出未知数,再根据题意列出不等式、求解.9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()A. 2cm B. 3cm C. 4cm D. 5cm考点:角平分线的性质.专题:压轴题.分析:要求AE+DE,现知道AC=3cm,即AE+CE=3cm,只要CE=DE则问题可以解决,而应用其它条件利用角平分线的性质正好可求出CE=DE.解答:解:∵∠ACB=90°,∴EC⊥CB,又BE平分∠ABC,DE⊥AB,∴CE=DE,∴AE+DE=AE+CE=AC=3cm故选B.点评:此题主要考查角平分线性质:角平分线上的任意一点到角的两边距离相等;做题时要认真观察各已知条件在图形上的位置,根据位置结合相应的知识进行思考是一种很好的方法.10.已知关于x的不等式组的解集为3≤x<5,则a,b的值为()A. a=﹣3,b=6 B. a=6,b=﹣3 C. a=1,b=2 D. a=3,b=6考点:解一元一次不等式组.分析:先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.解答:解:不等式组,由①得,x≥a+b,由②得,x<,∴,解得,故选A.点评:本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.二、填空题(每题3分,共24分)11.如果等腰三角形的一个底角是50°,那么它的顶角是80 度.考点:等腰三角形的性质.分析:由已知等腰三角形的一个底角是,50°,利用等腰三角形的性质得另一个底角也是50°,结合三角形内角和定理可求顶角的度数.解答:解:∵三角形是等腰三角形,∴两个底角相等,∵等腰三角形的一个底角是50°,∴另一个底角也是50°,∴顶角的度数为180°﹣50°﹣50°=80°.故答案为:80.点评:本题考查了等腰三角形的性质及三角形内角和定理;借助三角形的内角定理求解有关角的度数问题是一种很重要的方法,要熟练掌握.12.“x与3的和不小于x的2倍”,用不等式表示为x+3≥2x.考点:由实际问题抽象出一元一次不等式.分析:首先表示出“x与3的和”为x+3,再表示“不小于x的2倍”为x+3≥2x即可.解答:解:由题意得:x+3≥2x,故答案为:x+3≥2x.点评:此题主要考查了由实际问题抽象出一元一次不等式,关键是要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.13.点A(﹣5,y1)、B(﹣2,y2)都在直线y=﹣2x上,则y1与y2的关系是y1>y2.考点:一次函数图象上点的坐标特征.分析:根据一次函数的比例系数的符号以及相应自变量的大小可得所求结果.解答:解:∵比例系数为﹣2<0,﹣5<﹣2,∴y1>y2.故答案为y1>y2.点评:考查一次函数图象上点的坐标的特点;用到的知识点为:一次函数的比例系数小于0,y随x的增大而减小.14.如图,在等边三角形ABC中,D、E、F分别是边BC、AC、AB的中点,图中的四个小等边三角形可以看成是由△FBD平移得到的三角形是△AFE和△EDC .考点:平移的性质;等边三角形的性质.分析:根据三角形的中位线平行于第三边并且等于第三边的一半判断出△ABC被分成的四个小三角形是全等三角形,然后根据平移的性质解答.解答:解:∵D、E、F分别是边BC、AC、AB的中点,∴图中四个小等边三角形是全等三角形,∴可以看成是由△FBD平移得到的三角形是△AFE和△EDC.故答案为:△AFE和△EDC.点评:本题考查了平移的性质,等边三角形的性质,熟记性质并准确识图是解题的关键,难点在于先确定出四个等边三角形是全等三角形.15.如图,已知△ABC中,∠ABC=45°,AC=3,F是高AD和BE的交点,则线段BF的长度为 3 .考点:全等三角形的判定与性质.分析:求出∠BDF=∠ADC,∠DBF=∠DAC,∠DAB=∠DBA,推出BD=AD,根据ASA证△BFD≌△ACD,即可得出答案.解答:解:∵AD⊥BC,BE⊥AC,∴∠BEA=∠ADC=∠ADB=90°,∴∠DAB=90°﹣45°=45°=∠ABD,∠C+∠CBE=90°,∠C+∠CAD=90°,∴BD=AD,∠DBF=∠CAD,∵在△BFD和△ACD中,∴△BFD≌△ACD(ASA),∴BF=AC=3,故答案为:3.点评:本题考查了全等三角形的性质和判定,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等.16.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13 道.考点:一元一次不等式的应用.专题:应用题.分析:根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.解答:解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13点评:解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.17.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= 70 °.考点:旋转的性质.专题:探究型.分析:直接根据图形旋转的性质进行解答即可.解答:解:∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∠AOB=30°,∴△OAB≌△OA1B1,∴∠A1OB1=∠AOB=30°.∴∠A1OB=∠A1OA﹣∠AOB=70°.故答案为:70.点评:本题考查的是旋转的性质,熟知图形旋转前后对应边、对应角均相等的性质是解答此题的关键.18.若关于x,y的方程组的解满足x+y<2,则a的取值范围为a>﹣4 .考点:解一元一次不等式;二元一次方程组的解.分析:把方程组的两个方程相加,即可求得x+y,则可以得到一个关于a的不等式,解不等式即可求得a的范围.解答:解:,①+②得:4(x+y)=4﹣a,则x+y=(4﹣a),则(4﹣a)<2,解得:a>﹣4.故答案是:a>﹣4.点评:本题是一个方程组与不等式的综合题目.转化为关于a的不等式是本题的一个难点.三、解答题(共46分)19.解不等式并把解集表示在数轴上.<x+5.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去分母,移项,合并同类项,系数化成1即可.解答:解:<x+5,2+6x<2x+10,6x﹣2x<10﹣2,4x<8,x<2,在数轴上表示不等式的解集为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能根据不等式的基本性质求出不等式的解集是解此题的关键,难度适中.20.解不等式组并把解集表示在数轴上..考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.解答:解:,解①得:x>1,解②得:x≥2.,则不等式组的解集是:x≥2.点评:本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.如图在网格中按要求画出图形,先将△ABC向下平移5格得到△A1B1C1,再以点O为旋转中心将ABC 沿顺时针旋转90°得到△A2B2C2.考点:作图-旋转变换;作图-平移变换.分析:根据平移的性质:对应点所连的线段平行且相等,可得平移的图形;根据对应点与旋转中心的距离相等且旋转角相等,可得旋转的图形.解答:解:如图:.点评:本题考查了作图,利用了平移的性质作图,旋转的性质作图.22.如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.考点:全等三角形的判定;平行线的性质.专题:证明题.分析:根据平行线的性质可知由∠B=∠DEF.BE=CF,∠ACB=∠F,根据ASA定理可知△ABC≌△DEF.解答:证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴,∴△ABC≌△DEF(ASA).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表:A种产品 B种产品成本(万元∕件) 2 5利润(万元∕件) 1 2(1)若工厂投入资金不多于44万元,且获利多于14万元,问工厂会有哪几种生产方案?请说明理由.(2)在(1)的条件下,哪种生产方案获利最大?并求出最大利润.考点:一元一次不等式组的应用.分析:(1)根据计划投入资金不多于44万元,且获利多于14万元,这两个不等关系即可列出不等式组,求得x的范围,再根据x是非负整数,确定x的值,x的值的个数就是方案的个数;(2)得出利润y与A产品数量x的函数关系式,根据增减性可得,B产品生产越多,获利越大,因而B 取最大值时,获利最大,据此即可求解.解答:解:(1)设应生产A种产品x件,则生产B种产品有(10﹣x)件,由题意有:解得:2≤x<6;所以可以采用的方案有:①A种产品2件,B种产品8件;②A种产品3件,B种产品7件;③A种产品4件,B种产品6件;④A种产品5件,B种产品5件;共4种方案;(2)设总利润为y万元,生产A种产品x件,则生产B种产品(10﹣x)件,则利润y=x+2(10﹣x)=﹣x+20,则y随x的增大而减小,即可得,A产品生产越少,获利越大,所以当A种产品2件,B种产品8件;时可获得最大利润,其最大利润为2×1+8×2=18万.点评:本题考查一元一次不等式组的实际运用,关键从表格种获得成本价和利润,然后根据利润和成本做为不等量关系列不等式组分别求出解,然后求出哪种方案获利最大从而求出来.24.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:(1)根据等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE和△ACE 全等,再根据全等三角形对应边相等证明即可;(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.解答:证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).点评:本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记三角形全等的判定方法与各性质是解题的关键.。
2015~2016学年下期八年级半期数学试题(含答案)(90分钟 100分)一、选择题(每小题3分,共24分)1.在代数式-,,x+y,,中,分式有( )A.2个B.3个C.4个D.5个2.(2013·兰州中考)当x>0时,函数y=-的图象在( )A.第四象限B.第三象限C.第二象限D.第一象限3.若分式的值为零,则a的值为( )A.4B.2C.〒2D.-24.函数y=的自变量x的取值范围是( )A.x>3B.x≥3C.x≠3D.x<-35.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数关系式为( )A.I=B.I=C.I=D.I=-6.在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度.下图能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是( )7.方程+=1的解是( )A.x=-3B.x=-2C.x=-1D.x=08.(2013·南充中考)如图,函数y1=与y2=k2x的图象相交于点A(1,2)和点B.当y1<y2时,自变量x 的取值范围是( )A.x>1B.-1<x<0C.-1<x<0或x>1D.x<-1或0<x<1二、填空题(每小题4分,共24分)9.当x= 时,分式没有意义.10.反比例函数y=的图象与一次函数y=2x+1的图象的一个交点是(1,k),则反比例函数的关系式是.11.已知点P(3,-1),则点P关于x轴对称的点Q是.12.分式方程=的解是.13.点P1(x1,y1),点P2(x2,y2)是直线y=-4x+3上的两个点,且x1<x2,则y1与y2的大小关系是.14.李老师开车从甲地到相距240km的乙地,如果油箱剩余油量y(L)与行驶里程x(km)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是L.三、解答题(共52分)15.(10分)先化简〔,然后选择一个你最喜欢的合适的x的值,代入求值.16.(10分)李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行(匀速)回家,在家拿道具用了1分钟,然后立即骑自行车(匀速)返回学校,已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:米/分)是多少?(2)李明能否在联欢会开始前赶到学校?17.(10分)已知一次函数y=kx+b(k≠0)的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的关系式.18.(10分)如图,直线y=k1x+b与双曲线y=相交于A(1,2),B(m,-1)两点.(1)求直线和双曲线的关系式.(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式.(3)观察图象,请直接写出不等式k1x+b>的解集.19.(12分)荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式.(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%,95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?答案解析1.【解析】选A.根据分式的概念含有分母且分母中含有字母,故,是分式.2.【解析】选A.函数y=-的图象在第二、四象限,当x>0时,图象在第四象限.3.【解析】选D.根据题意得,解得a=-2.4.【解析】选A.由题意得x-3>0,所以x>3.5.【解析】选C.设用电阻R表示电流I的函数关系式为I=,观察图象知,图象过(3,2),所以k=6,其关系式为I=.21教育名师原创作品6.【解析】选C.铁块完全在水里时,弹簧秤的读数不变,慢慢露出水面时,弹簧秤的读数逐渐增加,完全露出水面时,弹簧秤的读数又是定值.7.【解析】选D.解分式方程+=1,去分母,得x-5=2x-5,解得x=0,检验得x=0是原分式方程的解.21教育网8.【解析】选C.根据反比例函数和正比例函数的对称性,另一个交点的坐标为(-1,-2),当y1<y2时,反比例函数的图象位于正比例函数的图象的下方,此时,-1<x<0或x>1.9.【解析】∵分式没有意义,∴x-4=0,解得x=4.答案:410.【解析】把(1,k)代入y=2x+1,解得k=3,所以反比例函数的关系式是y=.答案:y=11.【解析】∵点P与点Q关于x轴对称,∴点P与点Q的坐标关系是横坐标不变,纵坐标互为相反数,即点Q的坐标(3,1).答案:(3,1)12.【解析】去分母,方程的两边同乘2(x+4),得2(x-2)=x+4,去括号,得2x-4=x+4,移项,得2x-x=4+4,合并同类项,得x=8,检验:把x=8代入2(x+4)=24≠0,∴原方程的解为x=8.答案:x=813.【解析】∵直线y=-4x+3中,k=-4<0,∴函数值y随x的增大而减小,又∵x1<x2,y1到y2逐渐减小,∴y1>y2.答案:y1>y214.【解析】设y与x之间的函数关系式为y=kx+b,由函数图象,得解得则y=-x+3.5.当x=240时,y=-〓240+3.5=2(L).答案:215.【解析】原式=〔=·=x+1.当x=2时,原式=2+1=3(为保证分式有意义,所选择的数不能为〒1和0).16.【解析】(1)设步行速度为x米/分,则自行车的速度为3x米/分.根据题意得=+20,得x=70.经检验x=70是原方程的解,答:李明步行的速度是70米/分.(2)根据题意得++1=41<42,∴李明能在联欢会开始前赶到.17.【解析】设一次函数y=kx+b(k≠0)的图象与x轴的交点为(a,0),所以〓2〓|a|=2,解得a=〒2,所以一次函数y=kx+b(k≠0)图象与x轴的交点为(2,0)或(-2,0),把点的坐标代入函数关系式,得或解得k=〒1,所以一次函数的关系式为y=x+2或y=-x+2.18.【解析】(1)∵双曲线y=经过点A(1,2),∴k2=2.∴双曲线的关系式为y=.∵点B(m,-1)在双曲线y=上,∴m=-2,则B(-2,-1).由点A(1,2),B(-2,-1)在直线y=k1x+b上,得解得∴直线的关系式为y=x+1.(2)y2<y1<y3.(3)x>1或-2<x<0.19.【解析】(1)y=(2)设该经销商购进乌鱼x千克,则购进草鱼(75-x)千克,所需进货费用为W元.由题意得解得x≥50.由题意得W=8(75-x)+24x=16x+600.∵16>0,∴W的值随x的增大而增大,∴当x=50时,75-x=25,W最小=1400元.答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.。
222b a =+c b b a -=÷ab 新人教版2015-2016学年八年级第二学期期中数学试题2016.4.14一.选择题(每小题3分,共30分)1.下列各式是最简二次根式的是( )A : 1m 2+B : 5a bC : 12D :31 2.已知:最简二次根式1a 5-与16a 10-能合并,则a 的值是( )A : 2B :-2C :3 D:4.53.三角形ABC 中满足下列条件,不是直角三角形的是( )A :∠A=∠B-∠CB :∠A :∠B :∠C=1:3:4C :a:b:C=1:2:3D : 4. ΔABC 中AB=13,AC=15,高AD=12,则BC 的长为( )A : 14B :4C : 14或4D :无法确定5.如果ab>0, a+b<0 那么给出下列各式①ba b =a ②1.a =a b b ③ 其中正确的是( )A : ①②B : ②③C : ①③D :①②③6.菱形与矩形都具有的性质是( )A :对角线相等B :对角线互相垂直C :对角线互相平分D :对角线互相平分且相等7.平行四边形两条对角线及一边长可依次为( )A :6. 6. 6B :6. 4. 3C :6. 4. 6D :3. 4. 58.连接菱形四边中点所得的四边形是( )A :平行四边形B :矩形C :菱形D :正方形9.在数学活动课上,老师让同学判定一个四边形门框是否为矩形,下面是某合作小组的四位同学的拟定方案,其中正确的是( )A :测量对角线是否互相平分B :测量两组对边是否分别相等C :测量一组对角是否为直角D :测量两组对边是否相等,再测量对角线是否相等10.如图在正方形ABCD 外侧作等边三角形ADE,AC,BE 相交于点F 则∠BFC=( )A :45°B :55°C :60°D :75°二.填空题(每空3分,共21分)x 时式子x -5无意义。
期中考试】___2015-2016年八年级下期中数学试卷含答案解析2015-2016学年___八年级(下)期中数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.要使分式的值为 $-\frac{1}{2}$,则 $x$ 的值为()A。
$x=1$。
B。
$x=2$。
C。
$x=-1$。
D。
$x=-2$2.下列说法正确的是()A。
对角线互相垂直的四边形是菱形B。
对角线相等的四边形是矩形C。
三条边相等的四边形是菱形D。
三个角是直角的四边形是矩形3.运用分式的性质,下列计算正确的是()A。
$\frac{3}{4} \div \frac{6}{5} = \frac{5}{8}$。
B。
$\frac{2}{3} \div \frac{1}{4} = \frac{1}{6}$。
C。
$\frac{5}{6} \times \frac{1}{4} = \frac{5}{24}$。
D。
$\frac{2}{3} + \frac{3}{4} = \frac{17}{12}$。
4.一个凸五边形的内角和为()A。
$360^\circ$。
B。
$540^\circ$。
C。
$720^\circ$。
D。
$900^\circ$5.根据下列表格对应值,判断关于 $x$ 的方程$ax^2+bx+c=0$($a\neq 0$)的一个解 $x$ 的取值范围为()begin{array}{|c|c|}hlinex & ax^2+bx+c \\hline1.1 & -0.59 \\hline1.2 & 0.84 \\hline1.3 &2.29 \\hline1.4 & 3.76 \\hlineend{array}A。
$-0.59<x<0.84$。
B。
$1.1<x<1.2$。
2016-2017学年福建省漳州市平和县八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)x与3的和的一半是负数,用不等式表示为()A.x+3>0B.x+3<0C.(x+3)>0D.(x+3)<0 2.(3分)如图,将一等边三角形剪去一个角后,∠1+∠2等于()A.120°B.240°C.300°D.360°3.(3分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2B.x>0C.x>1D.x<14.(3分)如图,一个长方形是另一个长方形按顺时针方向旋转90°后形成的是()A.①②B.②④C.②③D.③④5.(3分)下面给出的几种三角形:①三个内角都相等②有两个外角为120°③一边上的高也是这边所对的角的平分线④三条边上的高相等,其中是等边三角形的有()A.4个B.3个C.2个D.1个6.(3分)亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x个月后他至少有300元,则可以用于计算所需要的月数x的不等式是()A.30x﹣45≥300B.30x+45≥300C.30x﹣45≤300D.30x+45≤300 7.(3分)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,﹣1)B.(1.5,2)C.(1.6,1)D.(2.4,1)8.(3分)如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是()A.AD=AE B.DB=EC C.∠ADE=∠C D.DE=BC 9.(3分)已知关于x的不等式组的解集为3≤x<5,则a、b的值分别为()A.﹣3,6B.6,﹣3C.1,2D.0,3 10.(3分)下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)不等式2x+2>6的解集是.12.(3分)若点P(a,a﹣2)在第四象限,则a的取值范围是.13.(3分)商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.如果用27元钱,最多可以购买该商品的件数是.14.(3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.15.(3分)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为.16.(3分)Rt△ABC通过平移得到Rt△DEF,其中∠C=∠F=90°,已知AC=5,BC=12,则DE=.17.(3分)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD 的长为.18.(3分)如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x>kx+b>﹣2的解集为.三、解答题(本大题共46分)19.(8分)(1)解不等式≥并把它的解集表示在数轴上.(2).20.(6分)已知:如图,AE=CF,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF.求证:AB∥CD.21.(6分)如图所示,△ECD是△ABC经过平移得到的,∠A=70°,∠B=40°,求∠ACE和∠D的度数.22.(6分)小明准备用26元买火腿肠和方便面,已知一根火腿肠2元,一盒方便面3元,他买了5和方便面,他最多还能买多少根火腿肠?23.(6分)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?24.(6分)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.25.(8分)为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1)若某用户六月份用水量为18t,求其应缴纳的水费;(2)记该用户六月份用水量为xt,缴纳水费y元,试列出y关于x的函数关系式;(3)若该用户六月份用水量为40t,缴纳水费y元的取值范围为70≤y≤90,试求m的取值范围.2016-2017学年福建省漳州市平和县八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)x与3的和的一半是负数,用不等式表示为()A.x+3>0B.x+3<0C.(x+3)>0D.(x+3)<0【考点】C8:由实际问题抽象出一元一次不等式.【解答】解:根据题意,得(x+3)<0.故选D.2.(3分)如图,将一等边三角形剪去一个角后,∠1+∠2等于()A.120°B.240°C.300°D.360°【考点】K7:三角形内角和定理;K8:三角形的外角性质.【解答】解:等边三角形的各个内角都是60°,根据三角形的外角的性质得∠1=60°+180°﹣∠2,则∠1+∠2=240°.故选:B.3.(3分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2B.x>0C.x>1D.x<1【考点】FD:一次函数与一元一次不等式.【解答】解:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选:C.4.(3分)如图,一个长方形是另一个长方形按顺时针方向旋转90°后形成的是()A.①②B.②④C.②③D.③④【考点】LB:矩形的性质;R2:旋转的性质.【解答】解:图①和③不论以那个点为旋转中心,按顺时针方向旋转90°都不能从一个矩形得到另一个矩形,而图②和图④以A点为旋转中心,按顺时针方向旋转90°能从一个矩形得到另一个矩形,故选:B.5.(3分)下面给出的几种三角形:①三个内角都相等②有两个外角为120°③一边上的高也是这边所对的角的平分线④三条边上的高相等,其中是等边三角形的有()A.4个B.3个C.2个D.1个【考点】KL:等边三角形的判定.【解答】解:三个内角都相等的三角形是等边三角形;有两个外角为120°,则两个内角都是60°,∴这个三角形是等边三角形;一边上的高也是这边所对的角的平分线的三角形是等腰三角形;根据三角形的面积公式可知,三条边上的高相等的三角形是等边三角形,故选:B.6.(3分)亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x个月后他至少有300元,则可以用于计算所需要的月数x的不等式是()A.30x﹣45≥300B.30x+45≥300C.30x﹣45≤300D.30x+45≤300【考点】C8:由实际问题抽象出一元一次不等式.【解答】解:x个月可以节省30x元,根据题意,得30x+45≥300.故选:B.7.(3分)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,﹣1)B.(1.5,2)C.(1.6,1)D.(2.4,1)【考点】Q3:坐标与图形变化﹣平移;R7:坐标与图形变化﹣旋转.【解答】解:∵A点坐标为:(2,4),A1(﹣2,1),∴点P(2.4,2)平移后的对应点P1为:(﹣1.6,﹣1),∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为:(1.6,1).故选:C.8.(3分)如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是()A.AD=AE B.DB=EC C.∠ADE=∠C D.DE=BC【考点】JA:平行线的性质;KJ:等腰三角形的判定与性质.【解答】解:∵DE∥BC,∴=,∠ADE=∠B,∵AB=AC,∴AD=AE,DB=EC,∠B=∠C,∴∠ADE=∠C,而DE不一定等于BC,故选:D.9.(3分)已知关于x的不等式组的解集为3≤x<5,则a、b的值分别为()A.﹣3,6B.6,﹣3C.1,2D.0,3【考点】CB:解一元一次不等式组.【解答】解:不等式组由①得,x≥a+b,由②得,x<,∵关于x的不等式组的解集为3≤x<5,∴,解得.故选:A.10.(3分)下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)不等式2x+2>6的解集是x>2.【考点】C6:解一元一次不等式.【解答】解:移项,得:2x>6﹣2,合并同类项,得:2x>4,系数化为1,得:x>2,故答案为:x>2.12.(3分)若点P(a,a﹣2)在第四象限,则a的取值范围是0<a<2.【考点】D1:点的坐标.【解答】解:∵点P(a,a﹣2)在第四象限,∴,解得0<a<2.故答案为:0<a<2.13.(3分)商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.如果用27元钱,最多可以购买该商品的件数是10.【考点】C9:一元一次不等式的应用.【解答】解:设可以购买x件这样的商品.3×5+(x﹣5)×3×0.8≤27解得x≤10,∴最多可以购买该商品的件数是10.14.(3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【考点】K8:三角形的外角性质;KH:等腰三角形的性质;KK:等边三角形的性质.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.15.(3分)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为4.【考点】J4:垂线段最短;KF:角平分线的性质.【解答】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小,∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP,又AD=4,∴DP=4.故答案为:4.16.(3分)Rt△ABC通过平移得到Rt△DEF,其中∠C=∠F=90°,已知AC=5,BC=12,则DE=13.【考点】KQ:勾股定理;Q2:平移的性质.【解答】解:如图,在Rt△ABC中,AC=5,BC=12.则由勾股定理知,AB===13.根据平移的性质知Rt△ABC≌Rt△DEF,所以,DE=AB=13.故答案是:13.17.(3分)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD 的长为 1.6.【考点】R2:旋转的性质.【解答】解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC﹣BD=3.6﹣2=1.6.故答案为:1.6.18.(3分)如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x>kx+b>﹣2的解集为﹣1<x<2.【考点】FD:一次函数与一元一次不等式.【解答】解:由题意可得方程组,解得.一次函数的解析式为:y=x﹣1;不等式x>kx+b>﹣2即x>x﹣1>﹣2,可化为,解得:﹣1<x<2.三、解答题(本大题共46分)19.(8分)(1)解不等式≥并把它的解集表示在数轴上.(2).【考点】C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【解答】解:(1)去分母,得:3(x﹣2)≥2(7﹣x),去括号,得:3x﹣6≥14﹣2x,移项、合并,得:5x≥20,系数化为1,得:x≥4,将解集表示在数轴上如下:(2)解不等式①,得:x<,解不等式②,得:x<,则不等式组的解集为x<.20.(6分)已知:如图,AE=CF,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF.求证:AB∥CD.【考点】J9:平行线的判定;KD:全等三角形的判定与性质.【解答】解:如图,∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.又∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△AFB与△CED中,,∴△AFB≌△CED(SAS).∴∠A=∠C.∴AB∥CD.21.(6分)如图所示,△ECD是△ABC经过平移得到的,∠A=70°,∠B=40°,求∠ACE和∠D的度数.【考点】K7:三角形内角和定理;Q2:平移的性质.【解答】解:∵△ECD是△ABC经过平移得到的,∴∠A=∠E=70°,∠B=∠ECD=40°,AC∥DE,∴∠ACE=∠E=70°,在△ECD中,∠D=180°﹣∠ECD﹣∠E=180°﹣40°﹣70°=70°.22.(6分)小明准备用26元买火腿肠和方便面,已知一根火腿肠2元,一盒方便面3元,他买了5和方便面,他最多还能买多少根火腿肠?【考点】C9:一元一次不等式的应用.【解答】解:设他还能买x根火腿肠,根据题意,得2x+3×5≤26,解得x≤5.答:他最多还能买5根火腿肠.23.(6分)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是y1=0.1x+6(x≥0).乙种收费的函数关系式是y2=0.12x(x≥0).(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?【考点】FA:待定系数法求一次函数解析式;FH:一次函数的应用.【解答】解:(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,由题意,得,12=100k1,解得:,k1=0.12,∴y1=0.1x+6(x≥0),y2=0.12x(x≥0);(2)由题意,得当y1>y2时,0.1x+6>0.12x,得x<300;当y1=y2时,0.1x+6=0.12x,得x=300;当y1<y2时,0.1x+6<0.12x,得x>300;∴当100≤x<300时,选择乙种方式合算;当x=300时,甲、乙两种方式一样合算;当300<x≤450时,选择甲种方式合算.答:印制100~300(含100)份学案,选择乙种印刷方式较合算,印制300份学案,甲、乙两种印刷方式都一样合算,印制300~450(含450)份学案,选择甲种印刷方式较合算.24.(6分)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.【考点】KF:角平分线的性质;KQ:勾股定理.【解答】解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.25.(8分)为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1)若某用户六月份用水量为18t,求其应缴纳的水费;(2)记该用户六月份用水量为xt,缴纳水费y元,试列出y关于x的函数关系式;(3)若该用户六月份用水量为40t,缴纳水费y元的取值范围为70≤y≤90,试求m的取值范围.【考点】FH:一次函数的应用.【解答】解:(1)六月份应缴纳的水费为:1.5×10+2×8=31(元);(2)当0≤x≤10时,y=1.5x,当10<x≤m时,y=10×1.5+2(x﹣10)=2x﹣5,当x>m时,y=15+2(m﹣10)+3(x﹣m)=3x﹣m﹣5;(3)①若所付费用在第2个阶段,40≤m且20≤m≤50,即40≤m≤50时,y=2×40﹣5=75元,满足条件,②若所付费用到了第3个阶段,y=3×40﹣m﹣5=115﹣m,则70≤115﹣m≤90,解得:25≤m≤45,结合①可得25≤m≤45,综上得,25≤m≤50.。