行程问题讲解
- 格式:ppt
- 大小:945.50 KB
- 文档页数:25
行程问题(一一)专题简析:行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
例题1两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米”。
这句话的实质就是:“乙48分钟行了24千米”。
可以先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时)48甲行完全程的时间:165÷30— =4.7(小时) 60解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。
挑战自我1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
两车同时从两地开出,相遇时甲车距B地还有多少千米?1千米。
行程问题公式行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题(直线)甲的路程+乙的路程=总路程相遇问题(环形)甲的路程 +乙的路程=环形周长追及问题追及时间=路程差÷速度差速度差=路程差÷追及时间路程差=追及时间×速度差追及问题(直线)距离差=追者路程-被追者路程=速度差X追及时间追及问题(环形)快的路程-慢的路程=曲线的周长流水问题顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速:(顺水速度-逆水速度)÷2 解题关键船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。
由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。
这句话的实质就是:“乙48分钟行了24千米”。
可以先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。
练习1:1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。
完整版)初中行程问题专题讲解初中列方程解应用题(行程问题)专题行程问题是指与路程、速度、时间这三个量有关的问题。
我们常用的基本公式是:路程=速度×时间;速度=路程÷时间;时间=路程÷速度。
行程问题是一个非常庞大的类型,在考试中经常出现。
下面我们将行程问题归类,由易到难,逐步剖析。
1.单人单程:例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从80km/h提高到100km/h,运行时间缩短了3h。
甲,乙两城市间的路程是多少?分析】设甲,乙两城市间的路程为x km,那么列车在两城市间提速前的运行时间为x/80 h,提速后的运行时间为x/100 h。
等量关系式】提速前的运行时间减去提速后的运行时间等于缩短的时间3 h。
列出方程】x/80 - x/100 = 3.例2:某铁路桥长1000 m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1 ___,整列火车完全在桥上的时间共40 s。
求火车的速度和长度。
分析】设火车的速度为x m/s,火车的长度为y m,用线段表示大桥和火车的长度,根据题意可画出如下示意图:100060x1000y40x等量关系式】火车1 ___行驶的路程等于桥长加火车长;火车40 s行驶的路程等于桥长减火车长。
列出方程组】60x = 1000 + y40x = 1000 - y举一反三:1.___家和学校相距15 km。
___从家出发到学校,___先步行到公共汽车站,步行的速度为60 m/min,再乘公共汽车到学校,发现比步行的时间缩短了20 ___。
已知公共汽车的速度为40 km/h,求___从家到学校用了多长时间。
2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高260 km。
求提速后的火车速度。
(精确到1 km/h)3.徐州至上海的铁路里程为650 km,从徐州乘“C”字头列车A,“D”字头列车B都可直达上海,已知A车的速度为B车的2倍,且行驶的时间比B车少2.5 h。
六年级行程问题专讲第一部分:相遇问题知识概述:行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。
数量关系:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度注:(1)在处理相遇问题时,一定要注意公式的使用时二者开始运动那一刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
典型例题:例1.东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。
已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?习题:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时两车相距多少千米?例2.甲港和乙港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“日立”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号的速度比“名士”号快多少千米?习题:甲乙两地的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地。
货车以平均每小时50千米的速度从乙地开往甲地。
要使两车在全程的中点相遇,货车必须在上午几点出发?例3.甲骑摩托车,乙骑自行车,同时从相距126千米的A 、B 两城出发相向而行。
3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。
行程专题50道详解1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60=36分钟,所以路程=36×(60+75=4860米。
3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P 点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B 地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
⾏程问题(⼀) 专题简析: 我们把研究路程、速度、时间这三者之间关系的问题称为⾏程问题。
⾏程问题主要包括相遇问题、相背问题和追及问题。
这⼀周我们来学习⼀些常⽤的、基本的⾏程问题。
解答⾏程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
例1:甲⼄两⼈分别从相距20千⽶的两地同时出发相向⽽⾏,甲每⼩时⾛6千⽶,⼄每⼩时⾛4千⽶。
两⼈⼏⼩时后相遇? 分析与解答:这是⼀道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
根据题意,出发时甲⼄两⼈相距20千⽶,以后两⼈的距离每⼩时缩短6+4=10千⽶,这也是两⼈的速度和。
所以,求两⼈⼏⼩时相遇,就是求20千⽶⾥⾯有⼏个10千⽶。
因此,两⼈20÷(6+4)=2 ⼩时后相遇。
练习⼀ 1,甲⼄两艘轮船分别从A、B两港同时出发相向⽽⾏,甲船每⼩时⾏驶18千⽶,⼄船每⼩时⾏驶15千⽶,经过6⼩时两船在途中相遇。
两地间的⽔路长多少千⽶? 2,⼀辆汽车和⼀辆摩托车同时分别从相距900千⽶的甲、⼄两地出发,汽车每⼩时⾏40千⽶,摩托车每⼩时⾏50千⽶。
8⼩时后两车相距多少千⽶? 3,甲⼄两车分别从相距480千⽶的A、B两城同时出发,相向⽽⾏,已知甲车从A城到B城需6⼩时,⼄车从B城到A城需12⼩时。
两车出发后多少⼩时相遇? 例2:王欣和陆亮两⼈同时从相距2000⽶的两地相向⽽⾏,王欣每分钟⾏110⽶,陆亮每分钟⾏90⽶。
如果⼀只狗与王欣同时同向⽽⾏,每分钟⾏500 ⽶,遇到陆亮后,⽴即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为⽌,狗共⾏了多少⽶? 分析与解答:要求狗共⾏了多少⽶,⼀般要知道狗的速度和狗所⾏的时间。
根据题意可知,狗的速度是每分钟⾏500⽶,关键是要求出狗所⾏的时间,根据题意可知:狗与主⼈是同时⾏⾛的,狗不断来回所⾏的时间就是王欣和陆亮同时出发到两⼈相遇的时间,即2000÷(110+90)=10分钟。
行程问题公式行程问题是研究物体运动(de),它研究(de)是物体速度、时间、行程三者之间(de)关系.路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题确定行程过程中(de)位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题(直线)甲(de)路程+乙(de)路程=总路程相遇问题(环形)甲(de)路程 +乙(de)路程=环形周长追及时间=路程差÷速度差速度差=路程差÷追及时间路程差=追及时间×速度差追及问题(直线)距离差=追者路程-被追者路程=速度差X追及时间追及问题(环形)快(de)路程-慢(de)路程=曲线(de)周长顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速船速/静水速度=(顺水速度+逆水速度)÷2水速:(顺水速度-逆水速度)÷2列车过桥问题公式(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和.两列火车相向而行:相遇到相离所用时间=两火车车车身长度之和÷两车速度之和两火车同向而行:快车追上慢车到超过慢车所用(de)时间=两车车身长度和÷两车速度差例卷详解1.甲、乙两人同时同地同向出发,沿环行跑道匀速跑步,如果出发时乙(de),而乙速度是甲(de)倍,当乙第一次追上甲时,甲(de)速度立即提高14,并且乙第一次追上甲(de)地点与第二次追上甲(de)速度立即减少15(de)地点相距(较短距离)100米,那么这条环行跑道(de)周长是______米;2.两块手表走时一快一慢,快表每9小时比标准表快3分钟,慢表每7小时比标准表慢3分钟.现在把快表指示时间调成是8:15,慢表指示时间调成8:31,那么两表第一次指示(de)相同时刻是___:___;3.一艘船在一条河里5个小时往返2次,第一小时比第二小时多行4千米,水速为2千米/小时,那么第三小时船行了_____千米;4.小明早上从家步行到学校,走完一半路程时,爸爸发现小明(de)数学课本丢在家里,随即骑车去给小明送书,追上时,小明还有310(de)路程未走完,小明随即上了爸爸(de)车,由爸爸送往学校.这样,小明就比独自步行提早了5分钟到学校,小明从家到学校全部步行需要______分钟;行程问题一、环行运动:1.男、女两名运动员同时同向从环形跑道上A点出发跑步,每人每跑完一圈后到达A点会立即调头跑下一圈.跑第一圈时,男运动员平均每秒跑5米,女运动员平均每秒跑3米.此后男运动员平均每秒跑3米,女运动员平均每秒跑2米.已知二人前两次相遇点相距88米(按跑道上最短距离),那么这条跑道长______米;2. 在一圈300米(de)跑道上,甲、乙、丙3人同时从起跑线出发,按同一方向跑步,甲(de)速度是6千米/小时,乙(de)速度是307千米/小时,丙(de)速度是千米/小时,_____分钟后3人跑到一起,_____小时后三人同时回到出发点;3. 某体育馆有两条周长分别为150米和250米(de)圆形跑道〔如图〕,甲、乙俩个运动员分别从两条跑道相距最远(de)两个端点A 、B 两点同时出发,当跑到两圆(de)交汇点C 时,就会转入到另一个圆形跑道,且在小跑道上必须顺时针跑,在大跑道上必须逆时针跑.甲每秒跑4米,乙每秒跑5米,当乙第5次与甲相遇时,所用时间是______秒.4.如图,正方形ABCD是一条环行公路.已知汽车在AB上时速是90千米,在BC上(de)时速是120千米,在CD上(de)时速是60千米,在DA上(de)时速是80千米.从CD上一点P,同时反向各发出一辆汽车,它们将在AB 中点相遇.如果从PC(de)中点M,同时反向各发出一辆汽车,它们将在AB上一点N相遇.那么AN______;NB二、时钟问题:5.早上8点多(de)时候上课铃响了,这时小明看了一下手表.过了大约1小时下课铃响了,这时小明又看了一下手表,发觉此时时针和分针(de)位置正好与上课铃响时对调,那么上课时间是_______时______分.6.一只旧钟(de)分针和时针每65分钟(标准时间(de)65分钟)重合一次,这只钟在标准时间(de)1天(快或慢)______分钟;7.一个特殊(de)圆形钟表只有一根指针,指针每秒转动(de)角度为成差数列递增.现在可以设定指针第一秒转动(de)角度a(a为整数),以及相邻两秒转动(de)角度差1度,如果指针在第一圈内曾经指向过180度(de)位置,那么a最小可以被设成_______,这种情况下指针第一次恰好回到出发点是从开始起第_____秒.三、流水行船问题:8.某人乘坐观光游船沿河流方向从A港到B港前行.发现每隔40分钟就有一艘货船从后面追上游船,每隔20分钟就会有一艘货船迎面开过.已知A、B两港之间货船发出(de)间隔时间相同,且船在静水中(de)速度相同,均是水速(de)7倍.那么货船(de)发出间隔是_____分钟;9.有一地区,从A到B为河流,从B到C为湖.正常情况下,A到B有水流,B到C为静水.有一人游泳,他从A游到B,再从B游到C用3小时;回来时,从C游到B,再从B到A用6小时.特殊情况下,从A到B、从B到C 水速一样,他从A到B,再到C用小时,在在这种情况下,从C到B再到A 用______小时;10.A地位于河流(de)上游,B地位于河流(de)下游,每天早上,甲船从A地、乙船从B地同时出发相向而行.从12月1号开始,两船都装上了新(de)发动机,在静水中(de)速度变为原来(de)倍,这时两船(de)相遇地点与平时相比变化了1千米.由于天气(de)原因,今天(12月6号)(de)水速变为平时(de)2倍,那么今天两船(de)相遇地点与12月2号相比,将变化_______千米;四、综合行程:11.司机每天按规定时间开车从工厂到厂长家接厂长.一天厂长提前了1小时出门,沿路先步行,而司机晚出发了4分钟,途中接到厂长,结果厂长早到厂8分钟,那么开车速度与厂长步行速度(de)比是_____;12.某路公交线共有30站(含始发站和终点站),车站间隔千米,某人骑摩托车以300米/分(de)速度从始发站沿公交线出发,差100米到下一站时,公交总站开始发车,每2分钟一辆,公交速度500米/分,每站停靠3分钟,那么一路上摩托车会被公共汽车从后追上并超过_______次;(摩托车从始至终不停,公交车到终点即停)13.甲、乙两人分别从A、B两地同时出发,4小时后在某处相遇;如果甲每小时多走千米,而乙比甲提前24分钟出发,则相遇时仍在此处.如果甲比乙晚48分钟出发,乙每小时少走千米,也能在此相遇,那么A、B两地之间(de)相距_______千米;14.有轿车、货车、公共汽车各一辆在一条公路上行驶,公共汽车在最前面,轿车在最后面,公共汽车与货车(de)车距是货车与轿车车距(de)2倍.轿车追上货车(de)时间为10分钟,再过20分钟追上公共汽车,又过20分钟,货车也追上公共汽车,其中公共汽车每走5分钟就停靠车站一次,每次停留2分钟,那么轿车、货车、公共汽车行驶速度比为___:___:___;15.A、B、C三地依次分布在由西向东(de)同一条道路上,甲、乙、丙分别从A、B、C同时出发,甲、乙向东,丙向西;乙,丙在距离B地18千米处相遇,甲,丙在B地相遇,而当甲在C地追上乙时,丙已经走过B地32千米,那么,AC间(de)路程是______千米;向绕此圆形路线运动,当乙走了100米后,二人第一次相遇,在甲差60米走完一周时又第二次相遇,如果两个人同向出发,那么甲第一次追上乙时距离他(de)出发点有______米;2.某工厂(de)计时钟走慢了,分针70分钟与时针重合一次,李师傅按照慢钟工作8小时,工厂规定超时工资比原工资多倍,李师傅原工资为每小时3元,这天工厂应付李师傅超时工资______元;3.江上有甲、乙两个码头,相距15千米,甲码头在乙码头(de)上游.一艘货船和一艘游船同时分别从甲码头和乙码头出发向下游行驶.5小时后货船追上游船.又行驶了1小时,货船上有一物品落入江中,6分钟后货船上(de)人发现并掉转船头去找,找到时恰好又和游船相遇.则游船在静水中(de)速度为每小时______千米;4.某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来校作报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他(de)汽车,便立刻上车驶向学校,在下午2时40分到达.那么汽车速度是劳模步行速度(de)_____倍;5.甲、乙两人同时从A 、B 两地出发,甲每分钟行80米,乙每分钟行60米,两人在途中C 点相遇.如果甲晚出发7分钟,两人在途中D 处相遇,且A 、B 中点E 到C 、D 两点(de)距离相等,那么A 、B 两地间距离为_______米;6.某人骑摩托车以300米/分(de)速度从始发站沿公交线出发,在行驶2400米时,恰好有一辆公共汽车总始发站出发,公交速度500米/分,每站停靠3分钟,两站之间要行驶5分钟,那么一路上摩托车会与公共汽车遇见_______次;7.一辆客车和一辆面包车分别从甲、乙两地同时出发相向而行.客车每小时行驶32千米,面包车每小时行驶40千米,两车分别到达乙地和甲地后,立即返回出发地点,返回时(de)速度,客车每小时增加8千米,面包车每小时减少5千米.已知两次相遇处相距70千米,那么面包车比客车早返回出发地______小时;ABE C D8.小明和小亮分别从相距3千米(de)甲、乙两地同时出发,保持均匀(de)速度相向而行.当二人相遇后,小明又用了16分钟到达了乙地,此后又经过9分钟小亮到达了甲地,那么当小明到达乙地时小亮距甲地______米;9.A、B两地相距105千米,甲、乙两人分别骑车从A、B两地同时出发,甲速度为每小时40千米,出发后1小时45分钟相遇,然后甲、乙两人继续沿各自方向往前骑.在他们相遇3分钟后,甲与迎面骑车而来(de)丙相遇,而丙在C地追上乙.若甲以每小时20千米(de)速度,乙以每小时比原速快2千米(de)车速,两人同时分别从A、B出发相向而行,则甲、乙二人在C点相遇.则丙(de)车速是每小时______米;10一架飞机带(de)燃料最多用6小时,顺风去,每小时1500公里,逆风回,每小时1200公里,飞机最多飞出______小时返回;11.已知猫跑5步(de)路程与狗跑3步(de)路程相同.猫跑7步(de)路程与兔跑5步(de)路程相同.而猫跑3步(de)时间与狗跑5步(de)时间相同.猫跑5步(de)时间与兔跑7步(de)时间相同.猫、狗、兔沿着周长为300米(de)圆形跑道,同时同向同地出发.当它们出发后第1次相遇时各跑了______、______、_____米;。
火车过桥 火车过点火车前进方向火车火车行程问题一、学问构造图火车行程二、方法讲解火车在行驶中,常常发生过桥与通过隧道,两车对开错车与快车超越慢车等状况, 通常,在行程问题中所涉及的运动物体(人或者车)是不考虑它本身长度的,可是考虑火车的行程问题时,由于一列火车有百米以上的长度,所以在解答问题时,火车本身的长度是不能无视不计的.因此,火车过桥是指“全车通过”,即从车头上桥直到车尾离桥才算“过桥”.如 以以以以下图:火车过桥的总路程是桥长加车长,这是解决过桥问题的关键.过桥问题也要用到一般行程问题的根本数量关系:过桥的路程=桥长+车长车速=(桥长+车长)÷过桥时间通过桥的时间=(桥长+车长)÷车速桥长=车速×过桥时间-车长车长=车速×过桥时间-桥长后三个都是依据其次个关系式逆推出的.对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候确定得结合着图来进展.下面我们先来看看火车经过静止的人的过程。
火车前进的路程通过线段图我们可以看出,从火车车头与人相遇始终到火车车尾离开人,火车前进的路程就是火车的长度。
我们也可以这样来理解:当车头和人相遇时,车尾和人相距一个火车长火车根本数量关系不同类型错车问题度,所以整个过程就是车尾和人的相遇问题。
以上是人不动状况下的火车行程问题,下面我们来介绍一下行人和火车的相遇和追及问题,如以以以以下图所示:火车前进方向车尾离开行人车头遇到行人 火车行人的路程火车前进的路程火车的长度我们可以将火车看成一个点:开头的时候行人和车尾的距离为一个车长,完毕的时候行人和车尾相遇了。
也就是说,从火车与行人的相遇到错开,这个过程可以看成是行人与车尾相遇了。
也就是说,从火车与行人的相遇到错开,这个过程可以看成是行人与车尾的相遇问题,火车和行人经过的路程和等于火车的长度。
类似的,对于火车追行人的过程,从追上到离开,火车和行人的路程差等于火车的长 度。