高电压技术(雷电及防雷设备 )
- 格式:pptx
- 大小:3.83 MB
- 文档页数:63
高电压技术复习《高电压技术》复习一.气体的绝缘强度了解气体放电的一般现象和概念;理解持续电压作用下均匀电场气体放电理论、不均匀电场中的气体放电特性;理解冲击电压下的气体放电特性;了解大气条件对气隙击穿电压的影响,掌握提高气隙击穿电压的具体措施。
1.基本概念自持放电:不需其它任何外加电离因素而仅由电场的作用就能维持的放电称为自持放电。
非自持放电:必须借助外加电离因素才能维持的放电则称之为非自持放电。
电晕放电:当所加电压达到某一临界值时,在靠近两个球极的表面出现蓝紫色的晕头,并发出“咝咝”的响声,这种局部放电现象称为电晕放电。
极性效应:在极不均匀电场中,高场强电极的不同,空间电荷的极性也不同,对放电发展的影响也不同,这就造成了不同极性的高场强电极的电晕起始电压的不同,以及间隙击穿电压的不同,称为极性效应。
50%冲击击穿电压(U50%):用间隙击穿概率为50%的电压值来反映间隙的耐受冲击电压的特性。
汤逊放电理论和流柱理论的异同以及各自的适用范围:汤逊放电理论:当外施电压足够高时,一个电子从阴极出发向阳极运动,由于碰撞游离形成电子崩,则到达阳极并进入阳极的电子数为ea个(α为一个电子在电场作用下移动单位行程所发生的碰撞游离数;为间隙距离)。
因碰撞游离而产生的新的电子数或正离子数为(ea-1)个。
这些正离子在电场作用下向阴极运动,并撞击阴极.若1个正离子撞击阴极能从阴极表面释放r个(r为正离子的表面游离系数)有效电子,则(ea-1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电。
即汤逊理论的自持放电条件可表达为r(ea-1)=1。
它的适用范围:汤逊理论是在低气压、Pd较小的条件下在放电实验的基础上建立的。
Pd过小或过大,放电机理将出现变化,汤逊理论就不再适用了。
通常认为,Pd>200cm·mmHg时,击穿过程将发生变化,汤逊理论的计算结果不再适用,但其碰撞电离的基本原理仍是普遍有效的。
《高电压技术》课程标准一、课程说明二、课程定位本课程为“发电厂及电力系统”专业的一门职业拓展课程。
主要阐述了典型绝缘材料的电气特性、绝缘的预防性试验、雷电和防雷设备、雷电过电压的防护。
通过本课程的学习,使学生掌握常用电介质的电气性能,会做电气设备绝缘预防性试验,并能根据试验数据做出绝缘性能的初步判断;能理解过电压产生的原因,熟悉发电厂、变电站及线路的过电压保护装置的作用,能配置发电厂、变电站及线路的过电压保护装置。
三、设计思路安全用电课程根据电力企业的实际需求和从业岗位调研,与企业能工巧匠、技术主管一起,根据工作领域和岗位的任职要求,参照相关的职业资格标准,通过对从事安全工作的岗位进行分析,归纳出安全员工种岗位的工作任务,以岗位任务为培养导向,以安全员职业资格标准为培养目标。
四、课程培养目标完成本课程学习后能够获得的理论知识、专业能力、方法能力、社会能力。
1.专业能力(1)掌握高电压下气体、液体及固体绝缘介质的击穿特性;(2)掌握高电压技术试验的方法及测量结果;(3)掌握电力系统过电压产生的原因;(4)了解电力系统绝缘的配合;(5)能正确理解国际、行业及企业标准,并能根据标准要求进行高电压试验;(6)能阅读各种技术手册及规程。
(7)能结合现场实际情况,合理选择过电压防护设别,以保证电气从业人员、电网运行以及电气设备的安全性。
(8)能进行高电压电气设备的基本维护和检修2.方法能力(1)资料收集与整理能力;(2)一定的绘制与识图能力;(3)理论知识的运用能力;(4)一定抽象思维的能力;3.社会能力(1)通过课程学习,培养学生严谨求实的工作态度,爱岗敬业,对待工作和学习一丝不苟、精益求精的精神。
(2)具有较强的事业心和责任感,具有良好的心理素质和身体素质。
具有理论联系实际的良好学风,具有发现问题、分析问题和解决问题的能力,以及团结协作和互相沟通的能力。
(3)通过学习养成积极思考问题、自主学习和解决问题的习惯和能力;具备团队协作能力,吃苦耐劳、诚实守信的优秀品质。
参考答案第一章电介质的极化、电导和损耗一、单项选择题:1. D2. D3. B二、填空题:1. 增大了2.电子式极化、离子式极化、偶极子式极化、空间电荷极化(夹层式极化)3.在电场作用下极化程度的物理量4.电子式极化、离子式极化5.偶极子式极化、空间电荷极化(夹层式极化)6.大些7.离子性、电子性8.电导强弱程度9.电场强度、温度、杂质10.体积电导、表面电导11.电导损耗、极化损耗12.电导13.δωCtgU214.电导三、简答题1.答:电介质的电导为离子性电导,随着温度的升高,分子的热运动加剧,分子之间的联系减弱,介质中离解出的离子数目增多,所以电导率增大。
而导体的电导是电子性电导,温度升高,分子的热运动加剧,电子在电场作用下定向运动时遇到的阻力增大,所以电导率降低。
2.答:不同。
电介质在直流电压作用下只有电导损耗,而在交流电压作用下除了电导损耗外还有周期性极化引起的极化损耗,所以同样条件下,电介质在交流电压下的损耗大于直流电压下的损耗。
3.答:电介质的电导是离子性电导,而金属导体的电导是电子性电导;电介质的电导率小,导体的电导率大;随温度升高,电介质的电导率增大,导体的电导率减小。
第二章气体电介质的击穿特性一、单项选择题:1.B 2. C 3. A 4. C 5. B 6. D 7. A8. C 9. D 10. A11. D 12. B 13. C 14. C二、填空题:1. 辉光放电、火花放电、电弧放电、电晕放电2.最小3.升高4.空间光游离5.棒—棒6.扩散7.改善电场分布、削弱气隙中的游离过程8.固体介质9.20℃、101.310.低11.增大12.250/250013.空间电荷14.增大三、简答题1.答:(1)因棒极附近场强很高,不论棒的极性如何,当外加电压达到一定值后,此强场区内的气体首先发生游离。
当棒具有正极性时,间隙中出现的电子向棒极运动,进入强电场区,引起碰撞游离,形成电子崩。
高电压技术(学分3 ,学时45)一、课程的性质和任务高电压技术是大连理工大学网络教育学院远程高等教育电气工程及相关专业的必修课程之一。
从事强电工作的工程技术人员,需要具备高电压技术的基本素养,并需要经常运用高电压知识解决工程问题。
本课程重点介绍气体电介质的电气特性,电力设备绝缘试验,电力系统过电压与绝缘配合等。
本课程的任务是通过本课程的学习,使学生初步了解并掌握电力设备绝缘性能、试验方法和电力系统过电压及其防护等方面的基本知识,学会正确处理电力系统中过电压与绝缘这一对矛盾,能够利用所学知识参与工程实践,解决实际问题。
二、课程内容、基本要求与学时分配基本内容:电介质在强电场下的特性;沿面放电和高压绝缘子;液体和固体介质的电气性能;电气设备绝缘试验;线路和绕组中的博过程;雷电及防雷保护;电力系统防雷保护;电力系统内部过电压;电力系统绝缘配合。
(一)绪论电介质在强电场下的特性9学时1.气体中带电粒子的产生与消失;2.气体中的放电现象和电子崩的形成;3.自持放电条件;4. 均匀电场中的击穿电压及其影响因素5. 气体放电的流注理论6. 不均匀电场中气隙的放电过程7. 各种电压作用下气隙的特性8. 大气条件对空气间隙击穿电压的影响及提高气体介质强度的方法重点掌握内容:1.重点:气体电介质中带电粒子的产生(因素),去电离过程,非自持放电和自持放电,电子崩的概念,汤逊放电理论,流注理论,电场形式、电流波形与击穿电压的关系,提高气体间隙击穿电压的措施,SF6的特性2.难点:流注理论,不均匀电场放电过程,自持放电(二)沿面放电和高压绝缘子 2.5学时1.绝缘子的性能要求和材料;2.沿面放电(1) 沿面放电的一般概念;(2) 均匀电场中的沿面放电(3) 极不均匀电场且具有强垂直分量时的沿面放电(4) 极不均匀电场且垂直分量很弱时的沿面放电(5) 固体介质表面有水膜时的沿面放电(6) 绝缘电子污秽状态下的沿面放电重点掌握内容:1.重点:绝缘子的分类,绝缘子的基本要求,沿面放电的概念,沿面闪络的概念,闪络电压的分类,界面电场分布的三种典型情况,集中情况下的沿面放电过程2.难点:放电过程的理解,沿面放电等(三)液体和固体介质的电气性能5学时1.液体和固体介质的极化、电导和损耗(1) 电介质的极化(2) 电介质的电导(3) 电介质的损耗2.液体电介质的击穿;3.固体电介质的击穿;4.组合绝缘的电气强度重点掌握内容:1.重点:电介质极化的概念、基本形式,电导特性,介质损耗角正切的影响因素和意义,液体电解质的击穿理论(电击穿理论、气泡击穿理论),固体电介质的几种击穿形式,组合绝缘中的介电常数、介质损耗及电场2.难点:对击穿过程的理解,组合绝缘中的相关计算(四)电气设备绝缘试验8学时1.绝缘预防性试验(1) 绝缘电阻和吸收比测量(2) 介质损耗角正切的测量(3) 局部放电及其测量2.绝缘的高电压试验(1) 工频交流耐压试验(2) 直流高压试验(3) 冲击高电压试验(4) 绝缘状态的综合判断重点掌握内容:1.重点:吸收比及测量设备,介质损耗角正切的测量原理,局部放电测量的基本回路,工频电压的获得,工频耐压试验的基本接线,直流高压的获得,直流耐压试验基本接线,冲击电压发生器,绝缘状态判断2.难点:高压西林电桥法,工频电压的获得,直流高压获得(五)线路和绕组中的波过程6学时1.波沿均匀无损耗单导线的传播;2.行波的折射和反射(1) 折射波和反射波的计算(2) 集中参数等值电路(3) 彼得逊法则的应用3.行波的多次折、反射;4.波在有损线路上的传播5. 变压器绕组中的波过程(1) 单相绕组中的波过程(2) 变压器过电压的内保护重点掌握内容:1.重点:波传播的概念,折射波和反射波的计算,等值集中参数定理(彼得逊法则),网格法,波的衰减,2.难点:波动方程求解,几种特殊条件下的折反射波,单相变压器绕组的波过程(六)雷电及防雷保护4学时1.雷电过程与雷电参数(1) 雷电放电过程(2) 雷电参数2.防雷保护装置(1) 避雷针和避雷线(2) 避雷器3.接地概念及分类。
高电压技术学期学习总结通过一学期对高电压技术的学习,有一下重点难点总结:第一章气体的绝缘强度1、气体放电的基本物理过程⑴带电粒子的产生气体分子或原子产生的三种状态原态(中性)激发态(激励态)从外界获得能量,电子发生轨道跃迁。
电离态(游离态)当获得足够能量时,电子变带电电子,原来变正离子。
电离种类:A:碰撞电离B:光电离C:热电离D:表面电离⑵带电离子的消失A:扩散,会引起浓度差。
B:复和(中和)正负电荷相遇中和,释放能量。
C:附着效应,部分电负性气体分子对负电荷有较强吸附能力,使之变为负离子。
⑶汤逊理论的使用条件和自持放电条件使用条件:均匀电子,低电压自持放电条件:(1)1seαγ-≥⑷巴申定律的物理意义及应用A:巴申定律的物理意义①p s(s一定)p增大,U f增大。
②p s(s一定)p减小,U f减小。
③p s不变:p增大,密度增大,无效碰撞增加,提高了电量的强度,U f增大。
P减小,密度减小,能碰撞的数量减小,能量提高,U f增大。
P s不变,U f不变。
B:巴申定律的应用通过增加或者减少气体的压力来提高气体的绝缘强度。
如:高压直流二极管(增加气体的压力)减小气体的压力用真空断路器。
⑸流柱理论的使用范围及与汤逊理论的关系流柱理论的使用范围:a、放电时间极短b、放电的细分数通道c、与阴极的材料无关d、当ps增大的时候,U f值与实测值差别大。
流柱理论与汤逊理论的关系:a、流柱理论是对汤逊理论的一个补充b、发生碰撞电离c、有光电离,电场⑹极不均匀电场的2个放电特点(电晕放电,极性效应)电晕放电的特点:a、电晕放电是极不均匀电场所持有的一种自持放电形式,是极不均匀电场的特征之一。
b、电晕放电会引起能量消耗。
c、电晕放电的脉冲现象会产生高频电磁波,对无线电通讯造成干扰。
d、电晕放电还使空气发生化学反应,生成臭氧、氮氧化物是强氧化剂和腐蚀剂,会对气体中的固体介质及金属电极造成损伤或腐蚀。
极性效应的特点:a、棒为正,极为负特点:电晕放电起始电压高。
高电压技术课程教学大纲(适用电气工程与其自动化专业电气工程方向)(共 48 学时)一、课程的性质、地位、任务和教学目标(一)课程的性质和地位本课程是电气工程与其自动化专业本科生的专业选修课程。
它是探讨电气设备的绝缘与其问题的学科。
作为从事电力系统的设计、安装、调试与其运行的工程技术人员,都会遇到属于高电压的问题,因此需专修本门课程,也是从事电力系统的专业人员须要驾驭的专业学问。
本课程具有完整的理论体系,又是一门实践性很强的学科,对学生的基础理论、基本学问和实践阅历、技能都有较好的培育和熬炼。
(二)课程的主要任务本课程的主要任务是:使学生驾驭气体、液体与固体绝缘主要电气特性(特殊是击穿过程)的基本概念,了解电气设备绝缘结构的基本特性和试验方法,驾驭电力系统中雷电过电压和主要内部过电压的产朝气理、影响因素与防护措施等基本学问,正确理解电力系统绝缘协作的基本概念、理论依据和处理原则,以与使学生了解高电压试验与绝缘预防性试验中常用的高压试验装置与测试仪器的原理与用法,以与高电压试验的特点、基本程序和平安措施等。
(三)课程的教学目标通过本课程的学习,使学生了解和驾驭电气设备在高电压作用下绝缘电气性能的基本学问和高电压试验的基本技术;了解和驾驭过电压的基本理论和过电压的爱护方法;能针对各种不同的过电压实行不同的防护措施,并能依据系统电路与元器件的性质,设计爱护的类型,为今后从事高电压工程领域的探讨和技术工作打下必要的专业基础。
二、课程教学环节组成本课程的教学环节包括课堂讲授,师生探讨学生自学,习题探讨课,试验,习题,答疑,质疑,期中测验和期末考试。
三、课程教学内容纲要(一)课堂讲授第一章气体的绝缘强度【目的和要求】:重点学习和驾驭汤逊理论和流注理论、空气间隙在各种电压下的击穿特性以与提高气体介质电气强度的方法。
【重点和难点】:气体放电的汤逊理论与流注理论;不匀称电场中气体间隙放电的极性效应。
【教学内容】第一节气体放电的基本物理过程一、气体中带电质点的产生和消逝二、汤逊理论和巴申定理三、流注理论四、不匀称电场中的放电过程五、冲击电压下气体间隙的击穿特性其次节影响气体放电电压的因素一、电场形式对放电电压的影响二、电压波形对放电电压的影响三、气体的性质和状态对放电电压的影响第三节沿面放电一、沿面放电二、影响沿面放电电压的因素三、提高沿面放电电压的措施其次章液体和固体介质的绝缘强度【目的和要求】:重点驾驭电介质的极化、电导和损耗、液体介质的击穿、固体介质的击穿。