一元一次方程总复习(201908)
- 格式:ppt
- 大小:253.50 KB
- 文档页数:20
一元一次方程复习专题一、一元一次方程的定义判断一元一次方程要点:一个未知数,未知数的最高次数是1,整式方程。
1. 判断下列各式哪些是方程?哪些不是方程?①7-8y ;②3t 2+4t-4;③4+6=10;④2y+1=x-2;⑤y=4;⑥2z >3;⑦s4=7 2.下列式子中①3x ﹣4,②2xy ﹣1=0,③2x=1,④一元一次方程的个数是( )A .1个B .2个C .3个D .4个3.若方程2x 2m-3+m=5是一元一次方程,则m= ,此时方程的解是 . 二、一元一次方程的解法等式的性质:1、等式两边同加或同减,等式成立;2、等式两边同乘或同除(非0),等式成立; 解方程的一般步骤:1.去分母(整体思想和防止漏乘);2.去括号(注意符号和防止漏乘);3.移项(方向:未知数向左,常数向右;标志:跨过等号;结果:改变符号);4. 化简(即合并同类项);5.未知数系数化为1(方程两边同除以未知数的系数)。
1.下列变形符合等式性质的是 ( )(A )如果732=-x ,那么372-=x (B )如果123+=-x x ,那么213-=-x x(C )如果52=-x ,那么25+=x (D )如果131=-x ,那么3-=x2.下列说法中,正确的个数是 ( )①若my mx =,则0=-my mx ;②若my mx =,则y x =; ③ 若my mx =,则my my mx 2=+;④若y x =,则my mx = (A ) 1个 (B )2个 (C )3个 (D )4个 3.方程131212=+--x x 去分母,正确的是( ) (A )2x-1-x+1=6 (B )3(2x-1)-2(x+1)=6 (C )2(2x-1)-3(x+1)=6 (D )3x-3-2x-2=1 4.如果a+1与互为相反数,那么a 等于 .5.已知x=3是方程2x-m=1的解,则m= . 6.解方程 (1)4x+3=10x-5 (2)12-4(x-4)=-2(x+2) (3)351612--=-+x x x (4)103.001.002.04.02.01.0=+-+x x x (5) 55.012.01=+--x x7. 已知方程+1=7与关于x 的方程3x ﹣8=﹣a 同解,试求代数式a 2﹣的值.8. 小虎在解方程13312-+=-ax x 去分母时,方程右边的-1没有乘3,因而求的方程的解为x=2,试求a 的值,并正确解这个方程。
一元一次方程复习知识点专题一:等式的概念和等式的性质1.等式:表示的式子,叫做等式2.等式的性质:性质1.等式两边同时加(或减)(),结果仍相等。
数学语言:如果a=b, 那么。
性质2:等式两边乘同一个数,或除以一个的数,结果仍相等数学语言:如果a=b,那么 ; 如果a=b(c≠0),那么。
专题二:方程的概念1.方程:含有的等式叫做方程2.方程的解:使方程左右两边的值相等的叫做方程的解,也叫做根。
只含有未知数,未知数的次数都是,等号两边都是,这样的方程叫做一元一次方程。
步骤:审,,列,解,检验结果是否符合。
一、填空题1.已知方程()121=--a x a 是关于x 的一元一次方程,则a =.2.三个连续偶数的和是66.若设中间一个偶数为x ,则另外两个偶数可表示为 , ,根据题意可列出方程 .3.王亮参加了一场知识竞赛,共得了82分.这次竞赛一共50道题,答对一道记2分,答错一道或不答均扣1分.王亮答对了 道题.4.在有理数集合里定义一种新运算“*”,规定*a b a b =+,则4*(*3)1x =中x 的值为 .二、选择题5.下列各式中,是一元一次方程的是( ) A .32x y -=B .210x -=C .23x = D .32x= 6.根据等式的性质,下列变形正确的是( ) A .如果2x =3,那么23x a a= B .如果x =y ,那么x ﹣5=5﹣y C .如果x =y ,那么﹣2x =﹣2yD .如果12x =6,那么x =3 7.下列方程中,解是x=4的方程是( ) A .3x=-2-10B .x+5=2x+1C .3x-8=5xD .3(x+2)=3x+28. 下列方程变形中,正确的是( )A .方程1125x x --=,去分母得()51210x x --= C .方程2332t =,系数化为1得1t = B .方程()3251x x -=--,去括号得3251x x -=-- D .方程3221x x -=+,移项得3212x x -=-+9.一项工程,甲独做3天完成,乙独做7天完成,两人共同合作,需x 天完成,可列方程( ) A .3x+7x=1 B .37x x +=1 C .(1137-)x=1 D .x=(1137-)-1 三、计算题(1)10673x x +=+ (2)21341510x x +-+= 四、综合题11.随着5G 时代的来临,张老师换了新发布的5G 手机并且需要新办一种5G 套餐.运营商提出了两种包月套餐方案,第一种是每50元月租费,流量资费0.4/GB 元;第二种是没有月租费,但流量资费0.6/GB 元.设张老师每月使用流量xGB .(1)张老师按第一种套餐每月需花费 元,按第二种套餐每月需花费 元;(用含x 的代数式表示)(2)若张老师这个月使用流量200GB ,通过计算说明哪种套餐比较合算: (3)张老师每月使用多少流量时,选择哪种套餐更合算?。
数学学科辅导讲义关于一元一次方程所涉及的各种问题的公式列一元一次方程解应用题的一般步骤(1)审题: 弄清题意. (2)找出等量关系: 找出能够表示本题含义的相等关系. (3)设出未知数, 列出方程: 设出未知数后, 表示出有关的含字母的式子, 然后利用已找出的等量关系列出方程. (4)解方程: 解所列的方程, 求出未知数的值. (5)检验, 写答案: 检验所求出的未知数的值是否是方程的解, 是否符合实际, 检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式, 依据形虽变, 但体积不变.①圆柱体的体积公式V=底面积×高=S•h②长方体的体积V=长×宽×高=abc4. 数字问题一般可设个位数字为a, 十位数字为b, 百位数字为c.十位数可表示为10b+a, 百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5. 市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售, 就是按原标价的百分之几十出售, 如商品打8折出售, 即按原标价的80%出售.6. 行程问题: 路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题: 顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变, 水流速和船速(静不速)不变的特点考虑相等关系.7. 工程问题: 工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18. 储蓄问题利润=本金×利润率利息=本金×利率×期数一、等积变形问题常见几何图形的面积、体积、周长计算公式, 依据形虽变, 但体积不变.①圆柱体的体积公式 V=底面积×高=S·h= r2h②长方体的体积 V=长×宽×高=abc1. 把一段铁丝围成长方形, 发现长比宽多2cm;围成正方形时, 边长刚好为4cm. 求所围成的长方形的长和宽各是多少?2. 用一个底面半径为40mm, 高为120mm的圆柱形玻璃杯向一个底面半径为100mm 的大圆柱形玻璃杯中倒水, 倒了满满10杯水后, 大玻璃杯的液面离杯口还有10mm, 大玻璃杯的高度是多少?3. 一个长方形养鸡场的长边靠墙, 墙长14米, 其他三边用竹篱笆围成. 现有长为35米的竹篱笆, 小王打算用它围成一个鸡场, 其中长比宽多5米;小赵也打算用它围成一个鸡场, 其中长比宽多2米. 你认为谁的设计符合实际?按照他的设计, 鸡场的面积是多少?4. 将一个装满水的内部长、宽、高分别为300毫米, 300毫米和80•毫米的长方体铁盒中的水, 倒入一个内径为200毫米的圆柱形水桶中, 正好倒满, 求圆柱形水桶的高(精确到0.1毫米, ≈3.14).5. 在一个底面直径为5cm, 高为18cm的圆柱形瓶内装满水, 再将瓶内的水倒入一个底面直径是6cm、高是10cm的圆柱形玻璃杯中, 能否完全装下?若装不下, 那么瓶内水还剩多高?若未能装满, 求杯内水面离杯口的距离.二、打折销售问题×100% (1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售, 就是按原标价的百分之几十出售, 如打8折出售, 即按原标价的80%出售.1.随着计算机技术的迅猛发展, 电脑价格大幅度下降, 某品牌电脑今年每台售出价格为4200元, 比去年降低了30%, 问去年该品牌电脑每台售出价为多少元?2.东方商场把进价为1890元的某商品按标价的8折出售, 仍获利10%, 则该商品的标价为多少?3.某种商品的进价是1000元, 售价为1500元, 由于销售情况不好, 商店决定降价出售, 但又要保证利润不低于5%, 那么商店最多降多少元出售此商品。
一元一次方程复习知识梳理一、等式的概念和性质1.等式的概念,用等号“=”来表示相等关系的式子,叫做等式.在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则.楷体五号2.等式的类型楷体五号(1)矛盾等式:无论用什么数值代替等式中的字母,等式总能成立.如:数字算式123+=.(2)条件等式:只能用某些数值代替等式中的字母,等式才能成立.方程56x+=需要1x=才成立.(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立.如125+=,11x x+=-.注意:等式由代数式构成,但不是代数式.代数式没有等号.楷体五号3.等式的性质楷体五号等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若a b=,则a m b m±=±;等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若a b=,则am bm=,a bm m=(0)m≠.注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边.(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果a b=,那么b a=.②等式具有传递性,即:如果a b=,b c=,那么a c=.黑体小四二、方程的相关概念黑体小四1.方程,含有未知数的等式叫作方程.注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母.二者缺一不可.楷体五号2.方程的次和元楷体五号方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元.楷体五号3.方程的已知数和未知数楷体五号已知数:一般是具体的数值,如50x+=中(x的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有a、b、c、m、n等表示.未知数:是指要求的数,未知数通常用x、y、z等字母表示.如:关于x、y的方程2ax by c-=中,a、2b-、c是已知数,x、y是未知数.楷体五号4.方程的解楷体五号使方程左、右两边相等的未知数的值,叫做方程的解. 楷体五号5.解方程 楷体五号求得方程的解的过程.注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程. 6.方程解的检验 楷体五号要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是. 黑体小四三、一元一次方程的定义 黑体小四1.一元一次方程的概念只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数. 楷体五号2.一元一次方程的形式 楷体五号标准形式:0ax b +=(其中0a ≠,a ,b 是已知数)的形式叫一元一次方程的标准形式. 最简形式:方程ax b =(0a ≠,a ,b 为已知数)叫一元一次方程的最简形式. 注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.如果不变形,直接判断就出会现错误.(2)方程ax b =与方程(0)ax b a =≠是不同的,方程ax b =的解需要分类讨论完成. 黑体小四四、一元一次方程的解法1.解一元一次方程的一般步骤 楷体五号(1)去分母:在方程的两边都乘以各分母的最小公倍数.注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号. (2)去括号:一般地,先去小括号,再去中括号,最后去大括号. 注意:不要漏乘括号里的项,不要弄错符号.(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边. 注意:①移项要变号;②不要丢项.(4)合并同类项:把方程化成ax b =的形式. 注意:字母和其指数不变.(5)系数化为1:在方程的两边都除以未知数的系数a (0a ≠),得到方程的解b x a=. 注意:不要把分子、分母搞颠倒. 楷体五号2.解一元一次方程常用的方法技巧解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等. 3.关于x 的方程 ax b 解的情况 ⑴当a 0时,x⑵当a ,b 0时,方程有无数多个解 ⑶当a 0,b 0时,方程无解知识点1、等式的概念和性质【例1】 下列说法不正确的是( )A .等式两边都加上一个数或一个等式,所得结果仍是等式.B .等式两边都乘以一个数,所得结果仍是等式.C .等式两边都除以一个数,所得结果仍是等式.D .一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式. 【例2】 根据等式的性质填空.(1)4a b =-,则 a b =+; (2)359x -=,则39x =+ ;(3)683x y =+,则x = ;(4)122x y =+,则x = .知识点2、方程的相关概念【例3】 列各式中,哪些是等式?哪些是代数式,哪些是方程?①34a +;②28x y +=;③532-=;④1x y ->;⑤61x x --;⑥83x-=; ⑦230y y +=;⑧2223a a -;⑨32a a <-.【例4】 判断题.(1)所有的方程一定是等式. ( ) (2)所有的等式一定是方程. ( ) (3)241x x -+是方程. ( ) (4)51x -不是方程. ( ) (5)78x x =不是等式,因为7x 与8x 不是相等关系. ( ) (6)55=是等式,也是方程. ( ) (7)“某数的3倍与6的差”的含义是36x -,它是一个代数式,而不是方程. ( )知识点3、一元一次方程的定义【例5】 在下列方程中哪些是一元一次方程?哪些不是?说明理由:(1)3x+5=12; (2)31+x +2x=5; (3)2x+y=3; (4)y 2+5y -6=0;(5)x3-x =2.【例6】 已知2(1)(1)30k x k x -+-+=是关于x 的一元一次方程,求k 的值.【例7】 已知方程()7421=+--m x m 是关于x 的一元一次方程,则m=_________【例8】 已知方程1(2)40a a x--+=是一元一次方程,则a = ;x = .知识点4、一元一次方程的解与解法1、 一元一次方程的解题型一、根据方程解的具体数值来确定【例9】 若关于x 的方程a x x -=+332的解是2x =-,则代数式21aa -的值是_________。
第三章一元一次方程复习(第1、2、3课时)1.填空:(以下内容是需要你认真理解并记住的;先用铅笔填,订正时用其它笔填)(1)含有的等式叫做方程.(2)只含有未知数,未知数的次数都是,这样的方程叫做一元一次方程.(3)使方程中等号左右两边的未知数的值,叫做方程的解.(4)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍.(5)把等式一边的某项后移到另一边,叫做移项.(6)解一元一次方程的一般步骤是:去分母、、、、.(7)列方程解应用题的步骤是:审题、、、、.(8)三个基本的相等关系是:总量=各部分量的,表示的两个不同式子相等,一个量=另一个量的几倍或.(9)路程=×时间,工作量=×工作时间,增长的量=×原来的量.2.选择题:不解方程,指出下列方程中解为x=5的是().(A)12x3x1532 -+=-(B)12x3x15 32-+=-(C)12x3x1532 -+=+(D)3x112x523+-=+3.填空:(1)方程x+ax-1=0的解为x=14,则a=.(2)当x=时,2x+3的值与5x+6的值相等. 4.完成下面的解题过程:解方程x22x3146+--=.解:去分母,得.去括号,得.移项,得.合并同类项,得;系数化为1,得.5.根据题意,列出方程:(1)一个数的17与3的差等于最大的一位数,求这个数.设这个数为x,根据题意,列方程得.(2)第一块实验田的面积比第二块实验田的3倍还多100平方米,这两块实验田共2900平方米,第一块实验田是多少平方米?设第一块实验田的面积是x平方米,根据题意,列方程得.(3)用一根长为10米的铁丝围成一个长方形,使得该长方形的长比宽多1.4米,长方形的长为多少米?设长方形的长为x 米,根据题意,列方程得.(4)儿子今年13岁,父亲今年40岁,几年前父亲的年龄是儿子的4倍?设x年前父亲的年龄是儿子的4倍,根据题意,列方程得.(5)教室里的课桌每行8张就多3张,每行9张就差3张,教室里有几行课桌?设教室里有x张课桌,根据题意,列方程得.(6)香巴拉果汁店中的A种果汁比B种果汁贵1元,扎桑和同学要了3杯B种果汁、2杯A种果汁,一共花了16元.B种果汁的单价是多少元?设B种果汁的单价是x元,根据题意,列方程得.(7)某文件需要打印,尼玛独立做需要6小时完成,米玛独立做需要8小时完成.如果他们俩共同做,需几小时完成?设需要x小时完成,根据题意,列方程得.(8)冲吉到鞋店花了188元买了一双皮鞋,这双皮鞋是按标价打8折后售出的,这双鞋的标价是多少元?设这双鞋的标价是x 元,根据题意,列方程得.(9)平措存了一个一年期的储蓄,年利率为3%,(也就是一年增长3%)一年后能取5150元,他开始存了多少元?设他开始存入x 元,根据题意,列方程得.(10)一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?设这种商品的成本价是x元,根据题意,列方程得.6.有一列数,按一定规律排列成1,3,5,7,9,…,其中某三个相邻数的和是177,这三个各是多少?7.探究题:扎西的手机,每月按这样的标准交费:每月月租费30元,每分钟通话费0.3元;卓玛的手机,每月按这样的标准交费:没有月租费,每分钟通话费0.4元.(1)你认为扎西合算还是卓玛合算,说说你的理由.(2)在一个月内,扎西通话200分钟,这个月扎西需交话费元,卓玛也通话200分钟,这个月卓玛需交话费元,请你比较这个月谁的话费交得少.(3)在一个月内,扎西通话350分钟,这个月扎西需交话费元,卓玛也通话350分钟,这个月卓玛需交话费元,请你比较这个月谁的话费交得少.(4)在一个月内通话多少分钟,这个月扎西和卓玛需交的话费一样多?解:设在一个月内通话x分钟,根据这个月扎西和卓玛需交的话费一样多,列方程得.解方程得.答:在一个月内通话分钟,这个月扎西和卓玛需交的话费一样多.(5)通过上面的讨论和探究,关于扎西合算还是卓玛合算,你得出了什么结论?与其他同学交流你的结论.。