2010年长春中考数学模拟试题
- 格式:doc
- 大小:226.50 KB
- 文档页数:6
2010年长春市初中毕业生学业考试数学试题一、选择题(每小题3分,共24分)1. 15的相反数为( )A . 1 5B .- 15C .5D .-52.下列几何体中,主视图为右图是( )3.不等式2x -1≤5的解集在数轴上表示为( )4.今年6月11日,我省九个地区的最高气温与最低气温如图所示,则这九个地区该天的最高气温的众数为( ) A .27°C B .29°C C .30°C D .31°C5.端午节时,王老师用72元钱买了荷包和五彩绳共20个,其中荷包每个4元,五彩绳每个3元.设王老师买荷包x 个,五彩绳y 个,根据题意,下面列出的方程组正确的是( )A .⎩⎨⎧x +y =203x +4y =72B .⎩⎨⎧x +y =204x +3y =72C .⎩⎨⎧x +y =724x +3y =20D .⎩⎨⎧x +y =723x +4y =206.如图,在△ABC 中,∠C =90º,∠B =40º,AD 是角平分线,则∠ADC =( ) A .25º B .50º C .65º D .70º7.如图,锐角△ABC 的顶点A 、B 、C 均在⊙O 上,∠OAC =20º,则∠B =( ) A .40º B .60º C .70º D .80º 8.如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90º,点A 的坐标为(1,2).将△AOB绕点A 逆时针旋转90º,点O 的对应点C 恰好落在双曲线y = kx(x >0)上,则k =( )A .2B .3C .4D .6BACO第7题图A .B .C .D .0 0 0 3 3 2 2A .B .C .D . BACD第6题图OBAD Cyx第8题图白城31-19°C松原 31-19°C 长春31-19°C吉林31-17°C 延边 29-15°C 白山27-14°C四平 31-19°C通化 29-17°C辽源30-17°C二、填空题(每小题3分,共18分)9.因式分解:a -a 2= .10.写一个比5小的正整数,这个整数是 (写出一个即可).11.为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a 元,则该班学生共捐款 元(用含有a 的代数式表示). 12.如图,双曲线y 1=k 1x (k 1>0)与直线y 2=k 2x +b (k 2>0)的一个交点的横坐标为2,那么当x =3时,y 1 y 2(填“>”、“=”或“<”).13.如图,⊙P 与x 轴切于点O ,点P 的坐标为(0,1),点A 在⊙P 上,并且在第一象限,∠APO =120º.⊙P 沿x 轴正方向滚动,当点A 第一次落在x 轴上时,点A 的横坐标 为 (结果保留 ).14.如图,抛物线y =ax 2+c (a <0)交x 轴于点G 、F ,交y 轴于点D ,在x 轴上方的抛物线上有两点B 、E ,它们关于y 轴对称,点G 、B 在y 轴左侧.BA ⊥OG 于点A ,BC ⊥OD 于点C .四边形OABC 与四边形ODEF 的面积分别为6和10,则△ABG 与△BCD 的面积之和为 .三、解答题(每小题5分,共20分)15.先化简,再求值:(x +1)2-2x +1,其中x =2.16.一个不透明的口袋中装有红、黄、白小球各1个,小球除颜色外其余均相同.从口袋中随机摸出一个小球,记下颜色放回,再随机摸出一个小球.请你用画树形图(或列表)的方法,求出两次摸出的小球颜色相同的概率.17.第16届亚运会将在广州举行.小李预定了两种价格的亚运会门票,其中甲种门票共花费280元,乙种门票共花费300元,甲种门票比乙种门票多2张,乙种门票价格是甲种门票价格的1.5倍,求甲种门票的价格.18.如图,将一个两边带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆交于点D、E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.四、解答题(每小题6分,共12分)19.(1)在图①中,以线段m为一边画菱形,要求菱形的顶点均在格点上(画一个即可).(2)在图②中,平移a、b、c中的两条线段,使它们与线段n构成以n为一边的等腰直角三角形(画一个即可).m nabc图①图②4611569份数 020 120 100 80 60 40 A 、B 、C 三种报纸销售量的条形统计图AB C DE FG H 20.如图,望远镜调节好后,摆放在水平地面上.观测者用望远镜观测物体时,眼睛(在A点)到水平地面的距离AD =91cm ,沿AB 方向观测物体的仰角 =33º,望远镜前端(B 点)与眼睛(A 点)之间的距离AB =153cm ,求点B 到水平地面的距离BC 的长(精确到0.1cm ,参考数据:sin33º=0.54,cos33º=0.84,tan33º=0.65).五、解答题(每小题6分,共12分)21.如图,四边形ABCD 与四边形DEFG 都是矩形,顶点F 在BA 的延长线上,边DG 与AF 交于点H ,AD =4,DH =5,EF =6,求FG 的长.22.小明参加卖报纸的社会实践活动,他调查了一个报亭某一天A 、B 、C 三种报纸的销售量,并把调查结果绘制成如下条形统计图.(1)求该天A 、C 报纸的销售量各占这三种报纸销售量之和的百分比. (2)请绘制该天A 、B 、C 三种报纸销售量的扇形统计图.(3)小明准备按上述比例购进这三种报纸共100份,他应该购进这三种报纸各多少份?A B DE GF AEBFG C D 六、解答题(每小题7分,共14分)23.如图,在△ABC 中,AB =AC ,延长BC 至D ,使CD =BC .点E 在边AC 上,以CD 、CE 为邻边作□CDFE .过点C 作CG ∥AB 交EF 于点G ,连接BG 、DE .(1)∠ACB 与∠DCG 有怎样的数量关系?请说明理由.(2)求证:△BCG ≌△DCE .24.如图,在梯形ABCD 中,AB ∥DC ,∠ABC =90º,∠A =45º,AB =30,BC =x (15<x <30).作DE ⊥AB 于点E ,将△ADE 沿直线DE 折叠,点A 落在F 处,DF 交BC 于点G .(1)用含有x 的代数式表示BF 的长.(2)设四边形DEBG 的面积为S ,求S 与x 的函数关系式.(3)当x 为何值时,S 有最大值,并求出这个最大值.七、解答题(每小题10分,共20分)25.如图①,A 、B 、C 三个容积相同的容器之间有阀门连接.从某一时刻开始,打开A 容器阀门,以4升/分的速度向B 容器内注水5分钟,然后关闭,接着打开B 阀门,以10升/分的速度向C 容器内注水5分钟,然后关闭.设A 、B 、C 三个容器的水量分别为y A 、y B 、y C (单位:升),时间为t (单位:分).开始时,B 容器内有水50升.y A 、y C 与t 的函数图象如图②所示.请在0≤t≤10的范围内解答下列问题:(1)求t=3时,y B的值.(2)求y B与t的函数关系式,并在图②中画出其图象.(3)求y A∶y B∶y C=2∶3∶4时t的值.图①26.如图①,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高.抛物线y=ax2+2x与直线y=12x交于点O、C,点C的横坐标为6.点P在x轴的正半轴上,过点P作PE∥y轴,交射线OA于点E.设点P 的横坐标为m,以A、B、D、E为顶点的四边形的面积为S.(1)求OA所在直线的解析式.(2)求a的值.(3)当m≠3时,求S与m的函数关系式.(4)如图②,设直线PE交射线OC于点R,交抛物线于点Q.以RQ为一边,在RQ的右侧作矩形RQMN,其中RN=32.直接写出矩形RQMN与△AOB重叠部分为轴对称图形时m的取值范围.2010年长春市初中毕业生学业考试 数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.B2.C3.A4.D5.B6.C7.C8.B 二、填空题(每小题3分,共18分)9.()1a a - 10.1(答案不唯一) 11.32005a - 12.< 13.2π314. 4 三、解答题(每小题5分,共20分)15.解:原式=2221212x x x x ++-+=+ ······················································ (3分) 当2x =时,原式=()2224+=. ····························································· (5分)16.解:或············································································································· (3分)P ∴(两次摸出的小球颜色相同)=13. ·························································· (5分) 17.解:设甲种门票的价格为x 元.根据题意,得28030021.5x x-=.····································································· (3分) 解得40x =.经检验,40x =是原方程的解,且符合题意.答:甲种门票的价格为40元. ······································································ (5分) 18.解:过点O 作OM DE ⊥于点M ,连接OD .12DM DE ∴=. 8DE =Q ,4DM ∴=. ···························································· (3分) 在Rt ODM △中,5OD OC -=Q , 2222543OM OD DM ∴=-=-=.∴直尺的宽度为3cm. ·············································· (5分)四、解答题(每小题6分,共12分) 19.解:(1)以下答案供参考:············································································································· (3分)(2)以下答案供参考:············································································································· (6分) 20.解:过点A 作AE BC ⊥于点E . 在Rt ABE △中,sin BEABα=. ···································································· (2分)153AB =α=33︒Q ,.sin331530.5482.62BE AB ∴=︒=⨯=·. ····················································· (4分) BC BE EC BE AD ∴=+=+ =82.62+91=173.62≈173.6(cm ).答:点B到水平地面的距离BC 的长约为173.6cm. ··········································· (6分)五、解答题(每小题6分,共12分)21.解:Q 四边形ABCD 和四边形DEFG 为矩形, 9090DAF DAB G DG EF ∴∠=∠=︒∠=︒=,,. 65EF DH ==Q ,.651GH DG DH EF DH ∴=-=-=-=. 在Rt ADH △中,4AD =,2222543AH DH AD ∴=-=-=. 90G DAH FHG DHA ∠=∠=︒∠=∠Q ,FGH DAH ∴△∽△. ··············································································· (4分) FG GHDA AH∴=. 14433GH DA FG AH ⨯∴===·. ····································································· (6分) 22.解:(1)46100%20%.4611569⨯=++69100%30%4611569⨯=++.∴该天A C 、报纸的销售量各占这三种报纸销售量之和的20%和30% ·················· (2分) (2)A B C 、、三种报纸销售量的扇形统计图如图所示:············································································································· (4分) (3)10020%20⨯=(份), 10050%50⨯=(份), 10030%30⨯=(份).∴小明应购进A 种报纸20份,B 种报纸50份,C 种报纸30分. ······················· (6分) 六、解答题(每小题7分,共14分) 23.(1)解:ACB GCD ∠=∠, 理由如下:.AB AC ABC ACB CG AB ABC GCD =∴∠=∠∴∠=∠Q Q ,∥,..ACB GCD ∴∠=∠ ·················································································· (3分) (2)证明:Q 四边形CDFE 是平行四边形, ...EF CD ACB GEC EGC GCD ACB GCD GEC EGC EC GC ∴∴∠=∠∠=∠∠=∠∴∠=∠∴=Q ∥.,, A B C 、、三种报纸售量的扇形统计图 A 20% C30% B50%GCD ACB GCB ECD BC DC ∠=∠∴∠=∠=Q Q ,.,.BCG DCE ∴△≌△ ················································································ (7分) 24.解:(1)由题意,得30EF AE DE BC x AB =====,,230BF x ∴=-.······················································································ (2分) (2)4590F A CBF ABC ∠=∠=︒∠=∠=︒Q ,,45BGF F ∴∠=∠=︒.230BG BF x ∴==-.221122DEF GBF S S S DE BF ∴=-=-△△ =()221123022x x -- 23604502x x =-+-. ··············································································· (5分) (3)()2233604502015022S x x x =-+-=--+. 301520302a =-<<<Q , , ∴当20x =时,S 有最大值,最大值为150. ·················································· (7分)七、解答题(每小题10分,共20分)25.解:(1)当3t =时,504362B y =+⨯=. ··············································· (2分)(2)根据题意,当05t ≤≤时,504B y t =+.当510t <≤,()7010510120B y t t =--=-+. ································································ (6分) B y 与t 的函数图象如图②所示. ···································································· (8分)(3)根据题意,设234A B C y x y x y x ===,,.234506070x x x ++=++.图②解得20x =.240360480A B C y x y x y x ∴======,,.由图象可知,当40A y =时,510t ≤≤,此时101201020B C y t y t =-+=+,. 1012060t ∴-+=. 解得6t =.102080t +=. 解得6t =.∴当6t =时,234A B C y y y =∶∶∶∶ ·························································· (10分)26.解:(1)设直线OA 的解析式为y kx =.Q 点A 的坐标为(3,3).33k ∴=. 解得1k =.∴直线OA 的解析式为y x =. ······································································ (1分)(2)当6x =时,116322y x ==⨯=. C ∴点的坐标为(6,3),Q 抛物线过点C (6,3)33626a ∴=+⨯. 解得14a =-. ································································ (3分) (3)根据题意,()()3060D B ,,,.Q 点P 的横坐标m ,PE y ∥轴交OA 于点E ,()E m m ∴,.当03m <<时,如图①,OAB OED S S =△△-S =1136339222m m ⨯⨯-⨯=-+. 当3m >时,如图②, 1163322OBC ODAS S m ==⨯⨯-⨯⨯△△-S 93.2m =- ······························································································· (7分) (4)33m =-或94m =或34m <≤. ····················································· (10分) 提示:如图③,RQ RN =时,33m =-,图①图②如图④,AD 所在的直线为矩形RQMN 的对称轴时,94m =, 如图⑤,RQ 与AD 重合时,重叠部分为等腰直角三角形,3m =;如图⑥,当点R 落在AB 上时,4m =. 所以34m <≤.图③图④。
2010年吉林省中考数学试卷参考答案与试题解析一、填空题(共10小题,每小题2分,满分20分)1.(2分)(2010•吉林)如图,数轴上点A所表示的数是.【考点】:实数与数轴的关系M118.【难易度】:容易题【分析】:根据数轴有点A所表示的数是﹣2.【解答】:答案-2【点评】:此题考查了实数与数轴上的点的对应关系,熟知数轴上的点表示的是一个实数是解题的关键.2.(2分)(2010•吉林)在中国上海世博会园区中,中国馆的总占地面积为65200m2,则这一数据用科学记数法表示为m2.【考点】:科学记数法M11C.【难易度】:容易题.【分析】:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂。
【解答】:答案6.52×104m2.【点评】:此题主要考查了科学记数法.科学记数法是将一个数表示为a×10n的形式,其中1≤|a|<10,n为整数,解答的关键是要正确确定a的值以及n的值.3.(2分)(2010•吉林)若单项式3x2y n与﹣2x m y3是同类项,则m+n=5.【考点】:整式的概念M11M.【难易度】:容易题【分析】:由同类项的定义:所含字母相同,相同字母的指数也相同的两个(或多个)单项式叫做同类项,因为单项式3x2y n与﹣2x m y3是同类项,则m=2,n=3,所以m+n=5.【解答】:答案5.【点评】:此题考查了同类项的概念,熟知同类项的概念是解答此题的关键。
4.(2分)(2014•抚州)计算:﹣=.【考点】:二次根式的化简M11E.【难易度】:容易题.【分析】:将二次根式化为最简得,原式=3﹣,合并同类二次根式得3﹣=2.【解答】:答案为:2.【点评】:本题主要考查二次根式的化简,关键在于运算法则的应用,注意最后要把结果化为最简二次根式,即根号下的数不能再次开方.5.(2分)(2010•吉林)不等式2x﹣3>1的解集是.【考点】:一元一次不等式(组)的解及解集M12K.【难易度】:容易题【分析】:移项合并同类项得到2x>4,两边同时除以2得x>2,则不等式的解集是x>2.【解答】:答案x>2.【点评】:本题主要考查对不等式的性质,能熟练应用不等式解题,掌握和理解解一元一次不等式知识点和不等式的性质是解此题的关键.6.(2分)(2010•吉林)方程的解是x=.【考点】:解可化为一元一次方程的分式方程M12B.【难易度】:容易题.【分析】:由题目所给式子有,分式方程的最简公分母是x(x+4),方程两边同时乘以最简公分母,得x+4=5x,则x=1,又x(x+4)=1(1+4)=4≠0,故原分式方程的解为x=2【解答】:答案1.【点评】:此题考查了解分式方程,解分式方程一般是将分式方程转化整式方程进行求解,注意解分式方程一定要验根.7.(2分)(2011•枣庄)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.【考点】:解直角三角形M32E.【难易度】:容易题【分析】:由图知,∠B=30°,∠ACB=90°,因为AB=14cm,所以AC=7cm,∠ACB=∠AED=90°,则BC∥DE,又∠ADE=90°,所以△ACF是等腰直角三角形,因此AC=CF=7cm,故S△ACF=×7×7=(cm2)【解答】:答案为:.【点评】:本题考查了解直角三角形,由已知条件得出△ACF是等腰直角三角形是解答本题的关键.8.(2分)(2010•吉林)如图,AB是⊙O的直径,点C在⊙O上,∠ABC=50°,动点P在弦BC上,则∠PAB可能为度(写出一个符合条件的度数即可).【考点】:圆心角与圆周角M343;三角形内(外)角和M321.【难易度】:容易题.【分析】:连接AC,因为AB是⊙O的直径,由圆周角定理有∠ACB=90°,而∠ABC=50°,则∠CAB=90°﹣∠ABC=40°,又P在BC上运动,0°≤∠PAB≤40°,即只需要取一个满足范围的值即可,如20°【解答】:答案20°.【点评】:此题主要考查了圆周角定理的推论:半圆(或直径)所对的圆周角是直角,三角形的内角和,连接AC得出∠ACB=90°是解答此题的关键.9.(2分)(2010•吉林)如图,为拧紧一个螺母,将扳手顺时针旋转60°,扳手上一点A转至点A′处,若OA长为25cm,则长为cm(结果保留π).【考点】:圆的相关计算M34D.【难易度】:容易题【分析】:由题意,根据弧长公式计算有==.【解答】:答案.【点评】:本题主要考查了弧长公式,熟知弧长公式是解答本题的关键.10.(2分)(2010•吉林)用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为(用含n的代数式表示).【考点】:列代数式M11H.【难易度】:中等题.【分析】:由图可知,第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;由此有后一个图案中正三角形的个数都比前一个图案中正三角形的个数多4个.因此有第n个图案正三角形个数为2+(n ﹣1)×4+4=2+4n=4n+2【解答】:答案为:4n+2.【点评】:本题主要考查图形的变化规律,找出图形之间的变化规律是解答本题的关键.二、选择题(共6小题,每小题3分,满分18分)11.(3分)(2010•吉林)检测足球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,下图中最接近标准的是()A .B.C.D.【考点】:绝对值M113.【难易度】:容易题.【分析】:由题意可知绝对值最小的一个即为最接近标准的足球,而|﹣0.8|<|+0.9|<|+2.5|<|﹣3.6|.【解答】:答案C.【点评】:此题主要考查绝对值,明确题意以及能够正确比较绝对值的大小是解答本题的关键.12.(3分)(2010•吉林)某鞋店销售一款新式女鞋,试销期间对该款不同尺码女鞋的销售量统计如下表:尺码/厘米22 22.5 23 23.5 24 24.5 25销售量/双 1 2 3 11 8 6 4该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是()A .平均数B.众数C.中位数D.方差【考点】:中位数、众数M214.【难易度】:容易题.【分析】:由题意,想要了解哪种女鞋的销售量最大,即要知道哪种女鞋销售的最多,由众数是数据中出现次数最多的数,因此应关注这组数据中的众数【解答】:答案B.【点评】:此题主要考查了众数的概念,熟知统计相关计量的概念是解答此类题型的关键。
2010年中考模拟试卷数 学考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟 .2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号 .3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应 .4.考试结束后,上交试题卷和答题卷试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的 .注意可以用多种不同的方法来选取正确答案 .1. 如果0=+b a ,那么a ,b 两个实数一定是( )A.都等于0B.一正一负C.互为相反数D.互为倒数2. 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各100名学生 3. 直四棱柱,长方体和正方体之间的包含关系是( )4. 有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②除了平面直角坐标系,我们也可以用方向和距离来确定物体的位置;③平面直角坐标系内的所有点都属于四个象限 .其中错误的是( )A.只有①B.只有②C.只有③D.①②③ 5. 已知点P (x ,y )在函数x xy -+=21的图象上,那么点P 应在平面直角坐标系中的( )A.第一象限B. 第二象限C. 第三象限D. 第四象限6. 在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为( )A.161 B.41 C.16π D.4π 7. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个8. 如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC的中点,EP ⊥CD 于点P ,则∠FPC=( ) A.35° B.45° C.50° D.55°9. 两个不相等的正数满足2=+b a ,1-=t ab ,设2)(b a S -=,则S 关于t 的函数图象是( )A.射线(不含端点)B.线段(不含端点)C.直线D.抛物线的一部分10. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点)(k k k y x P ,处,其中11=x ,11=y ,当k≥2时,⎪⎪⎩⎪⎪⎨⎧---+=----+=--]52[]51[])52[]51([5111k k y y k k x x k k k k ,[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0 .按此方案,第2009棵树种植点的坐标为( )A.(5,2009)B.(6,2010)C.(3,401) D (4,402)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 11. 如图,镜子中号码的实际号码是___________ .12. 在实数范围内因式分解44-x = _____________________ . 13. 给出一组数据:23,22,25,23,27,25,23,则这组数据的中位数是___________;方差(精确到0.1)是_______________ .14. 如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是______________ .15. 已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为______________ . 16. 如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上 .①若正方形的顶点F 也在半圆弧上,则半圆的半径与正方形边长的比是______________;②若正方形DEFG 的面积为100,且ΔABC 的内切圆半径r =4,则半圆的直径AB = __________ .三. 全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤 .如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以 . 17. (本小题满分6分)如果a ,b ,c 是三个任意的整数,那么在2b a +,2c b +,2ac +这三个数中至少会有几个整数?请利用整数的奇偶性简单说明理由 .18. (本小题满分6分)如图,,有一个圆O 和两个正六边形1T ,2T .1T 的6个顶点都在圆周上,2T 的6条边都和圆O 相切(我们称1T ,2T 分别为圆O 的内接正六边形和外切正六边形) . (1)设1T ,2T 的边长分别为a ,b ,圆O 的半径为r ,求a r :及b r :的值; (2)求正六边形1T ,2T 的面积比21:S S 的值 .如图是一个几何体的三视图 . (1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程 .20. (本小题满分8分)如图,已知线段a .(1)只用直尺(没有刻度的尺)和圆规,求作一个直角三角形ABC ,以AB 和BC 分别为两条直角边,使AB=a ,BC=a 21(要求保留作图痕迹,不必写出作法); (2)若在(1)作出的RtΔABC 中,AB=4cm ,求AC 边上的高 .学校医务室对九年级的用眼习惯所作的调查结果如表1所示,表中空缺的部分反映在表2的扇形图和表3的条形图中.(1)请把三个表中的空缺部分补充完整;(2)请提出一个保护视力的口号(15个字以内).22. (本小题满分10分)如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P .(1)求证:AF=BE;(2)请你猜测∠BPF的度数,并证明你的结论.在杭州市中学生篮球赛中,小方共打了10场球 .他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y 比前5场比赛的平均得分x 要高 .如果他所参加的10场比赛的平均得分超过18分 (1)用含x 的代数式表示y ;(2)小方在前5场比赛中,总分可达到的最大值是多少? (3)小方在第10场比赛中,得分可达到的最小值是多少?24. (本小题满分12分)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0) . (1)若0>a ,且tan ∠POB=91,求线段AB 的长; (2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB=38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式; (3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离 .2010年中考模拟试卷数学参考答案一、仔细选一选(每小题3分,芬30分)二. 认真填一填(本题有6个小题,每小题4分,共24分) 11、326512.)2)(2)(2(2-++x x x 13、23;2.614、14或16或2615、46-≠->m m 或16、①5∶2 ;②21三. 全面答一答(本题有8个小题,共66分) 17、(本题6分)至少会有一个整数 .因为三个任意的整数a,b,c 中,至少会有2个数的奇偶性相同,不妨设其为a ,b , 那么2ba +就一定是整数 . 18、(本题4分)(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形 . 所以r ∶a=1∶1;连接圆心O 和T 2相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r ∶b=3∶2;(2) T 1∶T 2的连长比是3∶2,所以S 1∶S 2=4:3):(2=b a .19、(本题6分)(1) 圆锥; (2) 表面积S=πππππ164122=+=+=+r rl S S 圆扇形(平方厘米)(3) 如图将圆锥侧面展开,线段BD 为所求的最短路程 . 由条件得,∠BAB ′=120°,C 为弧BB ′中点,所以BD =33 .20、(本题8分)(1)作图如右,ABC ∆即为所求的直角三角形;(2)由勾股定理得,AC =52cm , 设斜边AC 上的高为h, ABC ∆面积等于h ⨯⨯=⨯⨯52212421,所以554=h 21、(本题8分)(1)补全的三张表如下:(表一)(2)例如:“象爱护生命一样地爱护眼睛!”等 . 22、(本题10分)(1)∵BA=AD ,∠BAE=∠ADF ,AE=DF , ∴△BAE ≌△ADF ,∴BE=AF ; (2)猜想∠BPF=120° .∵由(1)知△BAE ≌△ADF ,∴∠ABE=∠DAF .∴∠BPF=∠ABE+∠BAP=∠BAE ,而AD ∥BC ,∠C=∠ABC=60°, ∴∠BPF=120° . 23、(本题10分)(1)9191215225++++=x y ;(2)由题意有x x >++++9191215225,解得x <17,所以小方在前5场比赛中总分的最大值应为17×5-1=84分;(3)又由题意,小方在这10场比赛中得分至少为18×10 + 1=181分, 设他在第10场比赛中的得分为S ,则有81+(22+15+12+19)+ S ≥181 .解得S≥29,所以小方在第10场比赛中得分的最小值应为29分 .24、(本题12分)(1)设第一象限内的点B (m,n ),则tan ∠POB 91==m n ,得m=9n ,又点B 在函数xy 1=的图象上,得m n 1=,所以m =3(-3舍去),点B 为)31,3(,而AB ∥x 轴,所以点A (31,31),所以38313=-=AB ;(2)由条件可知所求抛物线开口向下,设点A (a , a ),B (a 1,a ),则AB =a1- a =38, 所以03832=-+a a ,解得313=-=a a 或 .当a = -3时,点A (―3,―3),B (―31,―3),因为顶点在y = x 上,所以顶点为(-35,-35),所以可设二次函数为35)35(2-+=x k y ,点A 代入,解得k= -43,所以所求函数解析式为35)35(432-+-=x y .同理,当a = 31时,所求函数解析式为35)35(432+--=x y ;(3)设A (a , a ),B (a 1,a ),由条件可知抛物线的对称轴为aa x 212+= .设所求二次函数解析式为:)2)1()(2(59++--=aa x x y .点A (a , a )代入,解得31=a ,1362=a ,所以点P 到直线AB 的距离为3或136.。
2010年长春市初中毕业生学业考试数学试题一、选择题(每小题3分,共24分)1.错误!的相反数为( ) A .15B.-错误! C.5 D.-5 2.下列几何体中,主视图为右图是( )3.不等式2x-1≤5的解集在数轴上表示为( )4.今年6月11日,我省九个地区的最高气温与最低气温如图所示,则这九个地区该天的最高气温的众数为( ) A .27°C B .29°C C .30°C D.31°C5.端午节时,王老师用72元钱买了荷包和五彩绳共20个,其中荷包每个4元,五彩绳每个3元.设王老师买荷包x 个,五彩绳y个,根据题意,下面列出的方程组正确的是( )A.错误!B.错误! C.错误! D.错误! 6.如图,在△AB C中,∠C=90º,∠B =40º,A D是角平分线,则∠AD C=( ) A.25º B .50º C .65º D.70º7.如图,锐角△ABC 的顶点A、B 、C 均在⊙O 上,∠OAC =20º,则∠B =( ) A.40º B.60º C.70º D .80º 8.如图,平面直角坐标系中,OB 在x 轴上,∠AB O=90º,点A 的坐标为(1,2).将△AOB 绕点A 逆时针旋转90º,点O 的对应点C 恰好落在双曲线y =\F( k ,x )(x >0)上,则k =( )A.2 B .3 C.4 D.6二、填空题(每小题3分,共18分)9.因式分解:a-a 2= .OBAD Cyx第8题图BACD第6题图A .B .C .D . A . B . C . D .0 0 0 3 3 2 2 BACO第7题图白城31-19°C松原 31-19°C 长春 31-19°C吉林31-17°C 延边 29-15°C 白山27-14°C四平 31-19°C 通化29-17°C 辽源30-17°C10.写一个比错误!小的正整数,这个整数是 (写出一个即可).11.为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a 元,则该班学生共捐款 元(用含有a的代数式表示).12.如图,双曲线y1=错误!(k1>0)与直线y 2=k 2x +b (k 2>0)的一个交点的横坐标为2,那么当x =3时,y 1 y 2(填“>”、“=”或“<”).13.如图,⊙P 与x轴切于点O,点P 的坐标为(0,1),点A 在⊙P上,并且在第一象限,∠APO =120º.⊙P 沿x 轴正方向滚动,当点A 第一次落在x轴上时,点A 的横坐标 为 (结果保留 ).14.如图,抛物线y =ax 2+c (a <0)交x 轴于点G 、F ,交y 轴于点D ,在x 轴上方的抛物线上有两点B 、E,它们关于y 轴对称,点G 、B在y轴左侧.BA ⊥OG 于点A,BC ⊥O D于点C .四边形O AB C与四边形OD EF 的面积分别为6和10,则△A BG 与△BCD 的面积之和为 .三、解答题(每小题5分,共20分)15.先化简,再求值:(x +1)2-2x +1,其中x =2.16.一个不透明的口袋中装有红、黄、白小球各1个,小球除颜色外其余均相同.从口袋中随机摸出一个小球,记下颜色放回,再随机摸出一个小球.请你用画树形图(或列表)的方法,求出两次摸出的小球颜色相同的概率.17.第16届亚运会将在广州举行.小李预定了两种价格的亚运会门票,其中甲种门票共花费280元,乙种门票共花费300元,甲种门票比乙种门票多2张,乙种门票价格是甲种门票价格的1.5倍,求甲种门票的价格.第14题图。
【6套打包】长春市中考模拟考试数学试卷含答案中学数学二模模拟试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的1.(3分)﹣的相反数是()A.﹣B.﹣C.D.2.(3分)春暖花开,走在郑州中原西路上,不禁感慨“郑州的路越来越漂亮了“感慨背后,是对郑州从2012年起建设生态廊道的由衷认可.目前,郑州累计增绿超3亿平方米,相当于140个碧沙岗公园.我们把3亿用科学记数法表示为()A.3×1010 B.3×109 C.3×108 D.3x1073.(3分)如图,若添上一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有几种不同的添法()A.5B.4C.3D.64.(3分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3 5.(3分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分6.(3分)不等式组的解集为()A..2<x<3B..2<x≤3C..x<2或x≥3D.无解7.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于BC的长为半径作弧,两弧相交于点M,N;②作直线MN,交AB于点D,连接CD若AC=AD,∠A=80°,则∠ACB的度数为()A.65°B.70°C.75°D.80°8.(3分)在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n 的顶点在坐标轴上的概率为()A.B.C.D.9.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个10.(3分)如图1,在矩形ABCD中,动点E从点A出发,沿AB→BC方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于点F,设点E的运动路程为x,FC =y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()A.16B.6C.20D.8二、填空题(每小题3分,共15分)11.(3分)﹣(﹣)0=.12.(3分)一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是.13.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为,则k的值为.14.(3分)如图,在△ABC中,AC=AB,∠CAB=30°,AC=2.以AB的中点O为圆心、AB的长为直径,在AB的上方作半圆,再以点A为圆心、AC的长为半径,作扇形DAC,且∠DAC=30°,则图中阴影部分的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.点D为AB边上的一动点(点D不与点A,点B重合),过点D作DE∥BC,交AC于点E,把△ADE沿直线DE折叠,点A落在点A'处,连接BA′,若△A′DB为直角三角形,则AD的长为三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值(1+)÷,其中x是满足﹣1<x<2的整数.17.(9分)近几年,中学生过生日互送礼物甚至有部分家长为庆贺孩子生日大摆宴席攀比之风已成为社会关注热点.为此某媒体记者就中学生攀比心理的成因对某市城区若干名市民进行了调查,调查结果分为四组:A.社会环境的影响;B.学校正确引导的缺失;C.家长榜样示范的不足;D.其他.并将调查结果绘制成如下条形统计图和扇形统计图(均不完整)请根据图中提供的信息,解答下列问题:(1)扇形统计图中,B组所在扇形的圆心角度数是;(2)将条形统计图补充完整;(3)根据抽样调查结果,请你估计该市城区120000名市民中有多少名市民持C组观点;(4)针对现在部分同学因举行生日宴会而造成极大浪费的现象,请你简单说说中学生大操大办庆祝生日的危害性,并提出合理化的建议.18.(9分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与斜边AB交于点D,点E为边BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)填空①若∠B=30°,AC=,则DE=;②当∠B=°时,以O,D,E,C为顶点的四边形是正方形.19.(9分)郑州大学(ZhengzhouUniversity),简称“郑大”,是中华人民共和国教育部与河南省人民政府共建的全国重点大学,首批“双一流”世界一流大学、“211工程”.某学校兴趣小组3人来到郑州大学门口进行测量,如图,在大楼AC的正前方有一个舞台,舞台前的斜坡DE=4米,坡角∠DEB=41°,小红在斜坡下的点E处测得楼顶A的仰角为60°,在斜坡上的点D处测得楼顶A的仰角为45°,其中点B,C,E在同一直线上求大楼AC的高度.(结果精确到整数.参考数据:≈1.73,sin41°≈0.6,cos41°≈0.75,tan41°≈0.87)20.(9分)如图,在平面直角坐标系中,点A(﹣,1)在反比例函数y=的图象上,AB⊥x轴于点C,过点O作OB⊥OA,交直线AB于点B.(1)求反比例函数y=的表达式;(2)在x轴上有一点P,使得S△AOP=S△AOB,求点P的坐标21.(10分)党的十九大提出实施乡村振兴战略,将生态宜居作为乡村振兴的总目标之一,《乡村振兴战略规划(2018﹣2022年)中更是把建设生态宜居美丽乡村作为重要内容以具体化.某县富强加工厂响应“产业兴旺、生态宜居、生活富裕”的号召,拟计划投资兴建2条全自动生产线和1条半自动生产线共用资金260万元;而投资兴建1条全自动生产线和3条半自动生产线共用资金280万元.(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2019年每条全自动生产线的毛利润为260万元,每条半自动生产线的毛利润为160万元这一年,该加工厂共投资兴建10条生产线,若想获得不少于1200万元的纯利润,则2019年该加工厂至少需投资兴建多少条全自动生产线?22.(10分)已知,点C为线段AB外一动点,且AB=4,AC=2.问题发现(1)图1,当点C位于时,线段BC的长取最大值,且最大值为.扩展探究(2)如图2,若以BC为斜边向上构造等腰直角三角形BCD,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线时,求CD的长度;解决问题(3)在(2)的条件下,以点A为圆心,AC为半径,在旋转过程中,试求AD的最大值和最小值.23.(11分)如图,抛物线y=﹣x2+bx+c经过点A(1,0),点B,交y轴于点C(0,2).连接BC,AC(1)求抛物线的解析式;(2)点D为抛物线第二象限上一点,满足S△BCD=S△ABC,求点D的坐标;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求点E的坐标.参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的1.(3分)﹣的相反数是()A.﹣B.﹣C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是.故选:C.【点评】本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.2.(3分)春暖花开,走在郑州中原西路上,不禁感慨“郑州的路越来越漂亮了“感慨背后,是对郑州从2012年起建设生态廊道的由衷认可.目前,郑州累计增绿超3亿平方米,相当于140个碧沙岗公园.我们把3亿用科学记数法表示为()A.3×1010 B.3×109 C.3×108 D.3x107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3亿=3×108,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,若添上一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有几种不同的添法()A.5B.4C.3D.6【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字之和相等解答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“5”是相对面,“2”与“4”是相对面,所以,要添加的是“3”的相对面,∴要添加一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有4种不同的添法.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.5.(3分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.6.(3分)不等式组的解集为()A..2<x<3B..2<x≤3C..x<2或x≥3D.无解【分析】一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【解答】解:由不等式①,得x>2,由不等式②,得x≤3,所以原不等式组的解集为2<x≤3.故选:B.【点评】本题考查了解不等式组,熟练掌握一元一次不等式组的解法是解题的关键,7.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于BC的长为半径作弧,两弧相交于点M,N;②作直线MN,交AB于点D,连接CD若AC=AD,∠A=80°,则∠ACB的度数为()A.65°B.70°C.75°D.80°【分析】利用等腰三角形的性质和三角形内角和计算出∴∠ACD=∠ADC=50°,再利用基本作图得到MN垂直平分BC,所以DB=DC,利用三角形外角性质和等腰三角形的性质计算出∠DCB=25°,然后计算∠ACD+∠DCB即可.【解答】解:∵AC=AD,∴∠ACD=∠ADC=(180°﹣∠A)=(180°﹣80°)=50°,由作法得MN垂直平分BC,∴DB=DC,∴∠B=∠DCB,而∠ADC=∠B+∠DCB,∴∠DCB=∠ADC=25°,∴∠ACB=∠ACD+∠DCB=50°+25°=75°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).8.(3分)在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n 的顶点在坐标轴上的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵﹣2,﹣1,0,1,2这五个数中任取两数m,n,一共有20种可能,其中取到0的有8种可能,∴顶点在坐标轴上的概率为=.故选:A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比,属于中考常考题型.9.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个【分析】根据二次函数的性质即可求出答案.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.10.(3分)如图1,在矩形ABCD中,动点E从点A出发,沿AB→BC方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于点F,设点E的运动路程为x,FC =y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()A.16B.6C.20D.8【分析】易证△CFE∽△BEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.【解答】解:若点E在BC上时,如图∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,∠CFE=∠AEB,∠C=∠B=90°,∴△CFE∽△BEA,由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BE=CE=x﹣5,即,∴y=,当y=时,代入方程式解得:x1=3(不合题意,舍去),x2=7,∴BE=CE=2,∴BC=4,AB=5,∴矩形ABCD的面积为5×4=20.故选:C.【点评】本题考查了二次函数动点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键.二、填空题(每小题3分,共15分)11.(3分)﹣(﹣)0=3.【分析】直接利用二次根式的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=4﹣1=3.故答案为:3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是k≠0且k≥﹣1.【分析】让△=b2﹣4ac≥0,且二次项的系数不为0以保证此方程为一元二次方程.【解答】解:由题意得:4+4k≥0,k≠0,解得:k≠0且k≥﹣1.【点评】一元二次方程有实数根应注意两种情况:△≥0,二次项的系数不为0.13.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为,则k的值为﹣6.【分析】根据题意可以设出点A的坐标,从而以得到点B和点C的坐标,即可求得k的值.【解答】解:设点A的坐标为(a,0),△AOB的面积为,∴B(0,)∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC∴点C(﹣a,),∵点C在反比例函数y=(x>0)的图象上,∴k=(﹣a)×=﹣6故答案为:﹣6.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.(3分)如图,在△ABC中,AC=AB,∠CAB=30°,AC=2.以AB的中点O为圆心、AB的长为直径,在AB的上方作半圆,再以点A为圆心、AC的长为半径,作扇形DAC,且∠DAC=30°,则图中阴影部分的面积为.【分析】设半圆O交AD于E交AC于F,连接OE,OF,EF,根据圆周角定理得到∠EOF=60°,推出△EOF是等边三角形,得到∠EFO=60°,推出EF∥AB,求得S△AEF =S△EOF,根据扇形的面积公式即可得到结论.【解答】解:设半圆O交AD于E交AC于F,连接OE,OF,EF,∵∠CAD=30°,∴∠EOF=60°,∴△EOF是等边三角形,∴∠EFO=60°,∵∠BAC=30°,∴∠BOF=60°,∴EF∥AB,∴S△AEF=S△EOF,∴图中阴影部分的面积=S扇形CAD﹣S扇形EOF=﹣=π﹣=,故答案为:.【点评】本题考查了扇形的面积的计算,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.15.(3分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.点D为AB边上的一动点(点D不与点A,点B重合),过点D作DE∥BC,交AC于点E,把△ADE沿直线DE折叠,点A落在点A'处,连接BA′,若△A′DB为直角三角形,则AD的长为或【分析】分两种情况进行讨论,当∠DA'B为直角时,设AD=A'D=x,通过证△AED∽△ACB,求出A'C,A'B的长度,然后在Rt△A'DB中,利用勾股定理可求出x的值;当∠DBA'为直角时,证△ABC∽△AA'B,求出A'B的值,然后在Rt△A'BD中,利用勾股定理可求出x的值.【解答】解:如图1,当∠DA'B为直角时,在Rt△ABC中,AB===10,由折叠知,△ADE≌△A'DE,∴AD=A'D,AE=A'E,∠AED=∠A'ED=×180°=90°,∴∠AED=∠ACB=90°,又∵∠A=∠A,∴△AED∽△ACB,∴,设AD=A'D=x,∴,∴AE=,∴A'C=AC﹣AA'=8﹣,在Rt△A'CB中,A'B2=A'C2+BC2=(8﹣)2+36,在Rt△A'DB中,BD=AB﹣AD=10﹣x,A'D=x,A'B2+A'D2=BD2,∴x2+(8﹣)2+36=(10﹣x)2,解得,x1=0(舍去),x2=,∴AD=;如图2,当∠DBA'为直角时,∵∠ABA'=∠ACB=90°,∠A=∠A∴△ABC∽△AA'B,∴,∴,∴AA'=,在Rt△AA'B中A'B==,设AD=A'D=x,在Rt△A'BD中,DB2+A'B2=A'D2,∴(10﹣x)2+()2=x2,解得,x=,∴AD=;故答案为:或.【点评】本题考查了勾股定理,轴对称的性质,相似三角形的判定与性质等,解题关键是能够根据题意画出两种情况的草图.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值(1+)÷,其中x是满足﹣1<x<2的整数.【分析】根据分式的加法和除法可以化简题目中的式子,然后﹣1<x<2中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1+)÷==,当x=0时,原式==0.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.(9分)近几年,中学生过生日互送礼物甚至有部分家长为庆贺孩子生日大摆宴席攀比之风已成为社会关注热点.为此某媒体记者就中学生攀比心理的成因对某市城区若干名市民进行了调查,调查结果分为四组:A.社会环境的影响;B.学校正确引导的缺失;C.家长榜样示范的不足;D.其他.并将调查结果绘制成如下条形统计图和扇形统计图(均不完整)请根据图中提供的信息,解答下列问题:(1)扇形统计图中,B组所在扇形的圆心角度数是90°;(2)将条形统计图补充完整;(3)根据抽样调查结果,请你估计该市城区120000名市民中有多少名市民持C组观点;(4)针对现在部分同学因举行生日宴会而造成极大浪费的现象,请你简单说说中学生大操大办庆祝生日的危害性,并提出合理化的建议.【分析】(1)根据题目中的数据可以求得本次调查的人数,从而可以求得扇形统计图中,B组所在扇形的圆心角度数;(2)根据(1)中的结果和条形统计图中的数据可以求得C组的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得该市城区120000名市民中有多少名市民持C组观点;(4)根据题意写出几条为孩子和合理化建议即可,本题答案不唯一,只要合理即可.【解答】解:(1)本次调查的人数为:40÷20%=200,扇形统计图中,B组所在扇形的圆心角度数是:360°×=90°,故答案为:90°;(2)C组人数为:200﹣40﹣50﹣30=80,补充完整的条形统计图如右图所示;(3)120000×=48000(人),答:计该市城区120000名市民中有48000名市民持C组观点;(4)中学生大操大办庆祝生日的危害性:第一,造成孩子们的互相攀比现象;第二,给很多家庭带来负担;第三,不利于孩子们树立正确的价值观;合理化建议:可以一家人给孩子在家里办一个生日宴,这样可以和孩子拉近感情,又让孩子感受到父母对他们的关注.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.18.(9分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与斜边AB交于点D,点E为边BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)填空①若∠B=30°,AC=,则DE=;②当∠B=45°时,以O,D,E,C为顶点的四边形是正方形.【分析】(1)AC是直径,则∠ADC=∠CDB=90°,点E为边BC的中点,连接OD,则∠OCD=∠ODC,则∠ODC+∠EDC=∠OCD+∠ECD=∠ACB=90°,即可证明;(2)①CB===3,则DE=BC=,即可求解;②只要DE⊥BC,以O,D,E,C为顶点的四边形就是正方形,即可求解.【解答】解:(1)∵AC是直径,则∠ADC=∠CDB=90°,∵点E为边BC的中点,∴∠ECD=∠EDC,∠B=∠BDE,连接OD,则∠OCD=∠ODC,∴∠ODC+∠EDC=∠OCD+∠ECD=∠ACB=90°,∴DE是⊙O的切线;(2)①CB===3,则DE=BC=,故答案是;②只要DE⊥BC,以O,D,E,C为顶点的四边形就是正方形,则∠B=∠BDE=×90°=45°,故答案为45.【点评】本题为圆的综合题,涉及到直角三角形中线定理、正方形的性质,直角三角形中线定理的应用,是本题解题的关键.19.(9分)郑州大学(ZhengzhouUniversity),简称“郑大”,是中华人民共和国教育部与河南省人民政府共建的全国重点大学,首批“双一流”世界一流大学、“211工程”.某学校兴趣小组3人来到郑州大学门口进行测量,如图,在大楼AC的正前方有一个舞台,舞台前的斜坡DE=4米,坡角∠DEB=41°,小红在斜坡下的点E处测得楼顶A的仰角为60°,在斜坡上的点D处测得楼顶A的仰角为45°,其中点B,C,E在同一直线上求大楼AC的高度.(结果精确到整数.参考数据:≈1.73,sin41°≈0.6,cos41°≈0.75,tan41°≈0.87)【分析】设CE=x,根据正弦的定义求出BD,根据余弦的定义求出BE,根据正切的定义用x表示出AC,根据等腰直角三角形的性质列方程,解方程得到答案.【解答】解:设CE=x,在Rt△DEB中,sin∠DEB=,∴DB=DE•sin∠DEB≈4×0.6=2.4,cos∠DEB=,∴BE=DE•cos∠DEB≈4×0.75=3,在Rt△AEC中,tan∠AEC=,∴AC=CE•tan∠AEC=x,∵∠ADF=45°,∴F A=FD,∴x﹣2.4=x+3,解得,x=,∴AC=x≈13,答:大楼AC的高度约为13米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.20.(9分)如图,在平面直角坐标系中,点A(﹣,1)在反比例函数y=的图象上,AB⊥x轴于点C,过点O作OB⊥OA,交直线AB于点B.(1)求反比例函数y=的表达式;(2)在x轴上有一点P,使得S△AOP=S△AOB,求点P的坐标【分析】(1)将点A(﹣,1)代入y=,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(﹣,﹣3),计算求出S△AOB=××4=2.则S△AOP=S△AOB=.设点P的坐标为(m,0),列出方程求解即可.【解答】解:(1)∵点A(﹣,1)在反比例函数y=的图象上,∴k=﹣×1=﹣,∴反比例函数的表达式为y=﹣;(2)∵A(﹣,1),AB⊥x轴于点C,∴OC=,AC=1,由射影定理得OC2=AC•BC,可得BC=3,B(﹣,﹣3),S△AOB=××4=2.∴S△AOP=S△AOB=.设点P的坐标为(m,0),∴×|m|×1=,∴|m|=2,∴m=±2,∴点P的坐标为(﹣2,0)或(2,0).【点评】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,三角形的面积,正确求出解析式是解题的关键.21.(10分)党的十九大提出实施乡村振兴战略,将生态宜居作为乡村振兴的总目标之一,《乡村振兴战略规划(2018﹣2022年)中更是把建设生态宜居美丽乡村作为重要内容以具体化.某县富强加工厂响应“产业兴旺、生态宜居、生活富裕”的号召,拟计划投资兴建2条全自动生产线和1条半自动生产线共用资金260万元;而投资兴建1条全自动生产线和3条半自动生产线共用资金280万元.(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2019年每条全自动生产线的毛利润为260万元,每条半自动生产线的毛利润为160万元这一年,该加工厂共投资兴建10条生产线,若想获得不少于1200万元的纯利润,则2019年该加工厂至少需投资兴建多少条全自动生产线?【分析】(1)可设每条全自动生产线的成本为x万元,每条半自动生产线的成本为y万元,根据等量关系:投资兴建2条全自动生产线和1条半自动生产线共需资金260万元;投资兴建1条全自动生产线3条半自动生产线共需资金280万元;列出方程组求解即可;(2)可设2019年该加工厂需兴建全自动生产线a条,根据不等关系:获得不少于1200万元的纯利润,列出不等式求解即可.【解答】解:(1)设每条全自动生产线的成本为x万元,每条半自动生产线的成本为y 万元,根据题意,得,解得.答:每条全自动生产线的成本为100万元,每条半自动生产线的成本为60万元.(2)设2019年该加工厂需兴建全自动生产线a条,根据题意,得(260﹣100)a+(160﹣60)(10﹣a)≥1200,解得a≥3,由于a是正整数,所以a至少取4.即2019年该加工厂至少需投资兴建4条全自动生产线.【点评】本题考查二元一次方程组的应用,一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出等量关系和不等式关系式是解题的关键.22.(10分)已知,点C为线段AB外一动点,且AB=4,AC=2.问题发现(1)图1,当点C位于线段BA的延长线上时,线段BC的长取最大值,且最大值为6.扩展探究(2)如图2,若以BC为斜边向上构造等腰直角三角形BCD,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线时,求CD的长度;解决问题(3)在(2)的条件下,以点A为圆心,AC为半径,在旋转过程中,试求AD的最大值和最小值.【分析】(1)当点C位于线段BA的延长线上时,线段BC的长度最大,最大值为6;(2)以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线,且点A在线段CD上时或点A在线段DC的延长线上时,设CD=x,在Rt△ADB中,利用勾股定理可分别求出两种情况下CD的长度;(3)当AC⊥AB且点C在AB上方时,AD取最大值,将△DCA以点D为圆心逆时针旋转90°得到△DBE,证明△ADE为等腰直角三角形,通过解直角三角形可求出AD的最大值;当AC⊥AB且点C在AB下方时,AD取最小值,将△DCA以点D为圆心逆时针旋转90°得到△DFB,且A,F,B三点在同一直线上,证明△ADF为等腰直角三角形,可通过解直角三角形可求出AD的最小值.【解答】解:(1)如图1,当点C位于线段BA的延长线上时,线段BC的长度最大,BC=AB+AC=4+2=6,故答案为:线段BA的延长线上,6;(2)①如图2﹣1,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线,且点A在线段CD上时,设CD=x,则DB=x,AD=CD﹣AC=x﹣2,在Rt△ADB中,AD2+DB2=AB2,即(x﹣2)2+x2=42,解得,x1=1﹣(负值舍去),x2=1+,∴CD=1+;②如图2﹣2,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线,且点A 在线段DC的延长线上时,设CD=x,则DB=x,AD=CD+AC=x+2,在Rt△ADB中,AD2+DB2=AB2,即(x+2)2+x2=42,解得,x1=﹣1﹣(负值舍去),x2=﹣1,∴CD=﹣1;∴CD的长度为1+或﹣1;(3)①如图3﹣1,当AC⊥AB且点C在AB上方时,AD取最大值,将△DCA以点D为圆心逆时针旋转90°得到△DBE,则∠ADE=90°,△DCA≌△DBE,∴DA=DE,BE=AC=2,∴△ADE为等腰直角三角形,∴AE=AB+BE=4+2=6,∴在等腰直角△ADE中,AD=AE=3,∴AD的最大值是3;。
2010年吉林省中考数学试卷2010年吉林省中考数学试卷一、填空题(共10小题,每小题2分,满分20分)1.(2分)(2010•吉林)如图,数轴上点A所表示的数是_________.2.(2分)(2010•吉林)在中国上海世博会园区中,中国馆的总占地面积为65200m2,则这一数据用科学记数法表示为_________m2.3.(2分)(2010•吉林)若单项式3x2y n与﹣2x m y3是同类项,则m+n=_________.4.(2分)(2010•吉林)计算=_________.5.(2分)(2010•吉林)不等式2x﹣3>1的解集是_________.6.(2分)(2010•吉林)方程的解是x=_________.7.(2分)(2011•枣庄)将一幅三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是_________cm2.8.(2分)(2010•吉林)如图,AB是⊙O的直径,点C在⊙O上,∠ABC=50°,动点P在弦BC上,则∠PAB可能为_________度(写出一个符合条件的度数即可).9.(2分)(2010•吉林)如图,为拧紧一个螺母,将扳手顺时针旋转60°,扳手上一点A转至点A′处,若OA长为25cm,则长为_________cm(结果保留π).10.(2分)(2010•吉林)用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为_________(用含n的代数式表示).二、选择题(共6小题,每小题3分,满分18分)11.(3分)(2010•吉林)检测足球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,下图中最接近标准的是()A.B.C.D.12.(3分)(2010•吉林)某鞋店销售一款新式女鞋,试销期间对该款不同尺码女鞋的销售量统计如下表:尺码/厘米22 22.5 23 23.5 24 24.5 25销售量/双 1 2 3 11 8 6 4该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是()A.平均数B.众数C.中位数D.方差13.(3分)(2010•吉林)如图,由五个完全相同的小正方体组合成一个立体图形,它的俯视图是()A.B.C.D.14.(3分)(2011•西宁)反比例函数的图象如图所示,则k的值可能是()A.﹣1 B.C.1D.215.(3分)(2010•吉林)如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为()A.3B.4C.5D.616.(3分)(2010•吉林)如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD 沿EF折叠,使点A、D分别落在矩形ABCD外部的点A′、D′处,则整个阴影部分图形的周长为()A.18cm B.36cm C.40cm D.72cm三、解答题(共12小题,满分82分)17.(5分)(2010•吉林)先简化.18.(5分)(2010•吉林)观察右面两个图形,解答下列问题:(1)其中是轴对称图形的为_________,是中心对称图形的为_________(填序号);(2)用尺规作图的方法画出其中轴对称图形的对称轴(要求:只保留作图痕迹,不写作法)19.(5分)(2010•吉林)在课间活动中,小英、小丽和小华在操场上画出A、B两个区域,一起玩投沙包游戏,沙包落在A区域所得分值与落在B区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图所示,请求出小华的四次总分.20.(5分)(2010•吉林)下图分别是甲、乙两名同学手中的扑克牌、两人在看不到对方牌面的前提下,分别从对方手中随即抽取一张牌,若牌上数字与自己手中某一张牌上数字相同,则组成一对.(1)若甲先从乙手中抽取一张,恰好组成一对的概率是_________;(2)若乙先从甲手中抽取一张,恰好组成一对的概率是_________.21.(6分)(2010•吉林)如图,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE,CE与AB相交于点F,AD⊥CF 于点D,且AD平分∠FAC,请写出图中两对全等三角形,并选择其中一对加以证明.22.(6分)(2010•吉林)如图,在平面直角坐标系中,以A(5,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B、C,解答下列问题:(1)将⊙A向左平移_________个单位长度与y轴首次相切,得到⊙A′,此时点A′的坐标为_________,阴影部分的面积S=_________;(2)求BC的长.23.(7分)(2010•吉林)某校七年级共有500名学生,团委准备调查他们对“低碳”知识的了解程度,(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查七年级部分女生;方案二:调查七年级部分男生;方案三:到七年级每个班去随机调查一定数量的学生请问其中最具有代表性的一个方案是_________;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将其补充完整;(3)请你估计该校七年级约有多少名学生比较了解“低碳”知识.24.(7分)(2010•吉林)如图,在一滑梯侧面示意图中,BD∥AF,BC⊥AF与点C,DE⊥AF于点E,BC=1.8m,BD=0.5m,∠A=45°,∠F=29°(1)求滑到DF的长(精确到0.1m);(2)求踏梯AB底端A与滑到DF底端F的距离AF(精确到0.1m)(参考数据:sin29°≈0.48,cos29°≈0.87,tan29°≈0.55)25.(8分)(2010•吉林)正方形ABCD与正方形CEFG的位置如图所示,点G在线段CD或CD的延长线上,分别连接BD、BF、FD,得到△BFD.(1)在图1﹣图3中,若正方形CEFG的边长分别为1、3、4,且正方形ABCD的边长均为3,请通过计算填写下表:正方形CEFG的边长1 3 4△BFD的面积(2)若正方形CEFG的边长为a,正方形ABCD的边长为b,猜想S△BFD的大小,并结合图3证明你的猜想.26.(8分)(2010•吉林)一列长为120米的火车匀速行驶,经过一条长为160米的隧道,从车头驶入隧道入口到车尾离开隧道出口公用14秒,设车头驶入隧道入口x秒时,火车在隧道内的长度为y米.(1)求火车行驶的速度;(2)当0≤x≤14时,求y与x的函数关系式;(3)在给出的平面直角坐标系中画出y与x的函数图象.27.(10分)(2010•吉林)矩形OBCD在如图所示的平面直角坐标系中,其中三个顶点分别是O(0,0),B(0,3),D(﹣2,0),直线AB交x轴于点A(1,0).(1)求直线AB的解析式;(2)求过A、B、C三点的抛物线的解析式,并写出其顶点E的坐标;(3)过点E作x轴的平行线EF交AB于点F,将直线AB沿x轴向右平移2个单位,与x轴交于点G,与EF交于点H,请问过A、B、C三点的抛物线上是否存在点P,使得S△PAG=S△PEH?若存在,求点P的坐标;若不存在,请说明理由.28.(10分)(2010•吉林)如图,在等腰梯形ABCD中,AD∥BC,AE⊥BC于点E.DF⊥BC于点F.AD=2cm,BC=6cm,AE=4cm.点P、Q分别在线段AE、DF上,顺次连接B、P、Q、C,线段BP、PQ、QC、CB所围成的封闭图形记为M,若点P在线段AE上运动时,点Q也随之在线段DF上运动,使图形M的形状发生改变,但面积始终为10cm2,设EP=xcm,FQ=ycm.解答下列问题:(1)直接写出当x=3时y的值;(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(3)当x取何值时,图形M成为等腰梯形?图形M成为三角形?(4)直接写出线段PQ在运动过程中所能扫过的区域的面积.2010年吉林省中考数学试卷参考答案与试题解析一、填空题(共10小题,每小题2分,满分20分)1.(2分)(2010•吉林)如图,数轴上点A所表示的数是﹣2.考点:数轴.分析:根据数轴直接回答即可.解答:解:数轴上点A所表示的数是﹣2.点评:此题考查了数轴上的点和实数之间的对应关系.2.(2分)(2010•吉林)在中国上海世博会园区中,中国馆的总占地面积为65200m2,则这一数据用科学记数法表示为 6.52×104m2.考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:65 200=6.52×104m2.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)(2010•吉林)若单项式3x2y n与﹣2x m y3是同类项,则m+n=5.考点:同类项.分析:根据同类项(所含字母相同,相同字母的指数相同的单项式叫同类项)的概念可得:m=2,n=3,再代入m+n即可.解答:解:根据同类项的概念,得m=2,n=3.所以m+n=5.点评:此题考查了同类项的概念:所含字母相同,相同字母的指数相同的单项式叫同类项.4.(2分)(2010•吉林)计算=2.考点:二次根式的加减法.分析:本题考查了二次根式的加减运算,应先化为最简二次根式,再将被开方数相同的二次根式进行合并.解答:解:﹣=3﹣=2.点评:二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.5.(2分)(2010•吉林)不等式2x﹣3>1的解集是x>2.考点:解一元一次不等式.分析:利用不等式的基本性质,将两边不等式同时加上3再除以2,不等号的方向不变.解答:解:∵2x﹣3>1,∴2x>4,∴x>2,∴原不等式的解集为:x>2.点评:本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.6.(2分)(2010•吉林)方程的解是x=1.考点:解分式方程.专题:计算题.分析:观察方程可得最简公分母是:x(x+4),两边同时乘最简公分母可把分式方程化为整式方程来解答.解答:解:方程两边同乘以x(x+4),得x+4=5x,解得x=1.经检验:x=1是原方程的解.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.7.(2分)(2011•枣庄)将一幅三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.考点:解直角三角形.分析:由于BC∥DE,那么△ACF也是等腰直角三角形,欲求其面积,必须先求出直角边AC的长;Rt△ABC中,已知斜边AB及∠B的度数,易求得AC的长,进而可根据三角形面积的计算方法求出阴影部分的面积.解答:解:∵∠B=30°,∠ACB=90°,AB=14cm,∴AC=7cm.由题意可知BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=7cm.故S△ACF=×7×7=(cm2).点评:发现△ACF是等腰直角三角形,并能根据直角三角形的性质求出直角边AC的长,是解答此题的关键.8.(2分)(2010•吉林)如图,AB是⊙O的直径,点C在⊙O上,∠ABC=50°,动点P在弦BC上,则∠PAB可能为大于或等于0并且且小于或等于40的任意一个数皆可度(写出一个符合条件的度数即可).考点:圆周角定理;三角形的外角性质.专题:开放型.分析:连接AC,由圆周角定理易知∠ACB=90°,由此可求得∠CAB=40°,若P在BC上运动,根据∠CAB的度数即可得到∠PAB的取值范围,只要在这个范围内的度数均符合∠PAB的条件.解答:解:连接AC;∵AB是⊙O的直径,∴∠ACB=90°;∴∠CAB=90°﹣∠ABC=40°;∵P在弦BC上运动,∴0°≤∠PAB≤40°;故∠PAB的度数可能是20°或30°…(答案不唯一,符合∠PAB的取值范围即可).点评:此题主要考查的是圆周角定理的推论:半圆(或直径)所对的圆周角是直角.9.(2分)(2010•吉林)如图,为拧紧一个螺母,将扳手顺时针旋转60°,扳手上一点A转至点A′处,若OA长为25cm,则长为cm(结果保留π).考点:弧长的计算.专题:压轴题.分析:根据弧长公式计算即可.解答:解:L==.点评:本题主要考查了弧长公式.10.(2分)(2010•吉林)用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为4n+2(用含n的代数式表示).考点:规律型:图形的变化类.专题:压轴题;规律型.分析:分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.解答:解:第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;…;第n个图案正三角形个数为2+(n﹣1)×4+4=2+4n=4n+2.点评:此题考查了平面图形,主要培养学生的观察能力和空间想象能力.二、选择题(共6小题,每小题3分,满分18分)11.(3分)(2010•吉林)检测足球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,下图中最接近标准的是()A.B.C.D.考点:绝对值;正数和负数.专题:应用题.分析:根据题意,知绝对值最小的即为最接近标准的足球.解答:解:|﹣0.8|<|+0.9|<|+2.5|<|﹣3.6|,故选C.点评:此题要正确理解题意,能够正确比较绝对值的大小.12.(3分)(2010•吉林)某鞋店销售一款新式女鞋,试销期间对该款不同尺码女鞋的销售量统计如下表:尺码/厘米22 22.5 23 23.5 24 24.5 25销售量/双 1 2 3 11 8 6 4该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是()A.平均数B.众数C.中位数D.方差考点:统计量的选择.专题:图表型.分析:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是对该品牌鞋子的码数销售情况作调查,那么应该关注那种尺码销的最多,故值得关注的是众数.解答:解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选B.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.13.(3分)(2010•吉林)如图,由五个完全相同的小正方体组合成一个立体图形,它的俯视图是()考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面看可得一行正方形的个数为3,故选D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.14.(3分)(2011•西宁)反比例函数的图象如图所示,则k的值可能是()A.﹣1 B.C.1D.2考点:反比例函数系数k的几何意义.专题:压轴题.分析:根据函数所在象限和反比例函数上的点的横纵坐标的积小于1判断.解答:解:∵反比例函数在第一象限,∴k>0,∵当图象上的点的横坐标为1时,纵坐标小于1,∴k<1,故选B.点评:用到的知识点为:反比例函数图象在第一象限,比例系数大于0;比例系数等于在它上面的点的横纵坐标的积.15.(3分)(2010•吉林)如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为()A.3B.4C.5D.6考点:勾股定理;相似三角形的判定与性质.专题:压轴题.分析:Rt△ABC中,运用勾股定理求得AB,又△ADE∽△ABC,由求得AD的长.解答:解:在△ABC中,∠C=90°,AC=8,BC=6∴AB===10又△ADE∽△ABC,则,∴AD==5故选C.点评:本题考查了直角三角形中勾股定理的运用以及三角形相似的性质.16.(3分)(2010•吉林)如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD 沿EF折叠,使点A、D分别落在矩形ABCD外部的点A′、D′处,则整个阴影部分图形的周长为()A.18cm B.36cm C.40cm D.72cm考点:翻折变换(折叠问题).专题:压轴题.分析:延长A1E交CD于点G,由题意知GE=EH,FH=GF,则阴影部分的周长与原矩形的周长相等.解答:解:延长A1E交CD于点G,由题意知,GE=EH,FH=GF,四边形EHD1A1≌四边形EGDA,∴AD=A1D1,AE=A1E,DG=D1H,FH=FG,∴阴影部分的周长=矩形的周长=(12+6)×2=36cm.故选B.点评:本题利用了翻折的性质:对应图形全等,对应边相等.三、解答题(共12小题,满分82分)17.(5分)(2010•吉林)先简化.考点:分式的化简求值.专题:开放型.分析:先把分式化简,再把数代入,x只要不取0和1以外的任何数.解答:解:原式=(3分)当x=2时,原式=,(2分)评分说明:x只要不取0和1,计算正确皆可得分.点评:注意化简后,代入的数不能使分母的值为0.18.(5分)(2010•吉林)观察右面两个图形,解答下列问题:(1)其中是轴对称图形的为②,是中心对称图形的为①(填序号);(2)用尺规作图的方法画出其中轴对称图形的对称轴(要求:只保留作图痕迹,不写作法)考点:作图-轴对称变换.分析:(1)根据轴对称图形和中心对称图形的定义分析.(2)连接关键的对应点,作连线的垂直平分线即可.解答:解:(1)②,①;(2分)(2)(3分)评分标准:(1)每填对一个得(1分),填“V“、“N“不扣分(2)作法1、作法2中不作虚线不扣分.点评:本题主要考查了轴对称图形和中心对称图形的定义及对称轴的画法,掌握轴对称图形的画法即可19.(5分)(2010•吉林)在课间活动中,小英、小丽和小华在操场上画出A、B两个区域,一起玩投沙包游戏,沙包落在A区域所得分值与落在B区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图所示,请求出小华的四次总分.考点:二元一次方程组的应用.专题:应用题.分析:设沙包落在A区域得x分,落在B区域得y分,根据“小英的总分34分”“小丽的总分是32分”作为相等关系列方程组先求得A区,B区的得分,再计算小华的总分.解答:解:设沙包落在A区域得x分,落在B区域得y分,根据题意,得解得∴x+3y=9+3×7=30分答:小华的四次总分为30分.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.20.(5分)(2010•吉林)下图分别是甲、乙两名同学手中的扑克牌、两人在看不到对方牌面的前提下,分别从对方手中随即抽取一张牌,若牌上数字与自己手中某一张牌上数字相同,则组成一对.(1)若甲先从乙手中抽取一张,恰好组成一对的概率是;(2)若乙先从甲手中抽取一张,恰好组成一对的概率是1.考点:概率公式.分析:(1)共4种情况,能配成对的有3种,让3除以4即可;(2)共3种情况,能配成对的有3种,让3除以3即可.解答:解:(1)3÷4=;(2)3÷3=1.点评:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P (A)=,注意本题应读懂题意,情况数应看对方手里的牌的数量.21.(6分)(2010•吉林)如图,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE,CE与AB相交于点F,AD⊥CF 于点D,且AD平分∠FAC,请写出图中两对全等三角形,并选择其中一对加以证明.考点:全等三角形的判定.专题:证明题;压轴题;开放型.分析:根据全等三角形的判定定理:(1)三组对应边分别相等的两个三角形全等(简称SSS或者“边边边”)(2)有两边及其夹角对应相等的两个三角形全等(简称SAS或者“边角边”)(3)有两角及其夹边对应相等的两个三角形全等(简称ASA或者“角边角”)(4)有两角及其一角的对边对应相等的两个三角形全等(简称AAS或者“角角边”)(5)直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(简称HL或者“斜边,直角边”)解答:解:△ADC≌△ADF、△ADC≌△CEB,若选择△ADC≌△ADF,证明如下:∵AD平分∠FAC,∴∠CAD=∠FAD,∵AD⊥CF,∴∠ADC=∠ADF=90°,在△ADC和△ADF中,∴△ADC≌△ADF(ASA).点评:考查了全等三角形的判定定理;做题时要结合已知条件图形在图形上的位置与判定方法在图形上做题,多个直角在一题中出现时常常能提供角相等,注意应用.22.(6分)(2010•吉林)如图,在平面直角坐标系中,以A(5,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B、C,解答下列问题:(1)将⊙A向左平移3个单位长度与y轴首次相切,得到⊙A′,此时点A′的坐标为(2,1),阴影部分的面积S=6;(2)求BC的长.考点:直线与圆的位置关系;勾股定理.分析:(1)根据直线和圆相切,则圆心到直线的距离等于圆的半径,知点A′的坐标是(2,1),从而求得移动的距离;阴影部分的面积即为底3、高2的平行四边形的面积;(2)连接AC,过点A作AD⊥BC于点D.根据垂径定理和勾股定理进行计算.解答:解:(1)根据直线和圆相切的位置关系与数量之间的联系,得点A′的坐标是(2,1);则移动的距离是5﹣2=3;根据平移变换的性质,则阴影部分的面积即为图中平行四边形的面积=2×3=6;(2)如图,连接AC,过点A作AD⊥BC于点D,则BC=2DC.由A(5,1)可得AD=1.又∵半径AC=2,∴在Rt△ADC中,DC=∴BC=2.点评:综合考查了平移变换、垂径定理和勾股定理.23.(7分)(2010•吉林)某校七年级共有500名学生,团委准备调查他们对“低碳”知识的了解程度,(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查七年级部分女生;方案二:调查七年级部分男生;方案三:到七年级每个班去随机调查一定数量的学生请问其中最具有代表性的一个方案是方案三;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将其补充完整;(3)请你估计该校七年级约有多少名学生比较了解“低碳”知识.考点:条形统计图;全面调查与抽样调查;用样本估计总体;扇形统计图.专题:阅读型;图表型.分析:(1)由于学生总数比较多,采用抽样调查方式,方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;(2)因为不了解为6人,所占百分比为10%,所以调查人数为60人,比较了解为18人,则所占百分比为30%,那么了解一点的所占百分比是60%,人数为36人;(3)用总人数乘以“比较了解”所占百分比即可求解.解答:解:(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;(2)如上图;(3)500×30%=150(名),∴七年级约有150名学生比较了解“低碳”知识.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.24.(7分)(2010•吉林)如图,在一滑梯侧面示意图中,BD∥AF,BC⊥AF与点C,DE⊥AF于点E,BC=1.8m,BD=0.5m,∠A=45°,∠F=29°(1)求滑到DF的长(精确到0.1m);(2)求踏梯AB底端A与滑到DF底端F的距离AF(精确到0.1m)(参考数据:sin29°≈0.48,cos29°≈0.87,tan29°≈0.55)考点:解直角三角形的应用-坡度坡角问题.分析:(1)在Rt△DEF中,用正弦函数求解即可;(2)分别在Rt△ABC、Rt△DEF中,通过解直角三角形求出AC、EF的长,进而由AF=AC+BD+EF求得AF的长.解答:解:(1)在Rt△DEF中,∠DEF=90°,DE=BC=1.8,∠F=29°.∵sinF=,∴DF=.(3分)(2)解法1:∵tanF=,∴EF=.(2分)在Rt△ABC中,∠ACB=90°,∵∠A=45°,∴AC=BC=1.8.又∵CE=BD=0.5,∴AF=AC+CE+EF≈1.8+0.5+3.27≈5.6.(2分)解法2:∵cosF=,∴EF=DF•cos29°≈3.75×0.87≈3.26.(2分)在Rt△ABC中,∠ACB=90°,∵∠A=45°,∴AC=BC=1.8.又∵CE=BD=0.5,∴AF=AC+CE+EF≈1.8+0.5+3.26≈5.6.(2分)答:DF长约为3.8m,AF约为5.6m.点评:此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.25.(8分)(2010•吉林)正方形ABCD与正方形CEFG的位置如图所示,点G在线段CD或CD的延长线上,分别连接BD、BF、FD,得到△BFD.(1)在图1﹣图3中,若正方形CEFG的边长分别为1、3、4,且正方形ABCD的边长均为3,请通过计算填写下表:正方形CEFG的边长1 3 4△BFD的面积(2)若正方形CEFG的边长为a,正方形ABCD的边长为b,猜想S△BFD的大小,并结合图3证明你的猜想.考点:正方形的性质;三角形的面积;梯形.专题:探究型.分析:(1)①图中,利用S△BDF=S△BCD+S梯形EFDC﹣S△BFE,即可求出△BDF的面积;②直接利用S△BDF=DF×AB,可求出△BDF的面积;③利用S△BDF=S△BCD+S梯形EFDC﹣S△BFE,可求出△BDF的面积;(2)S△BDF=b2,可利用S△BDF=S△BCD+S梯形EFDC﹣S△BFE,把a、b代入,化简即可求出△BDF的面积.解答:解:(1)如表格.(3分)正方形CEFG的边长1 3 4△BFD的面积(2)猜想:,证明:证法1:如图,S△BFD=S△BCD+S梯形CEFD﹣S△BEF=b2+(a+b)×b﹣(a+b)×b=b2;证法2:如图③,连接CF,由正方形性质可知∠DBC=∠FCE=45°,∴BD∥CF,∴△BFD与△BCD的BD边上的高相等,∴S△BFD=S△BCD+S梯形CEFD﹣S△BEF=b2.点评:本题利用了面积分割法、正方形的性质、以及同底等高的三角形的面积相等等知识.26.(8分)(2010•吉林)一列长为120米的火车匀速行驶,经过一条长为160米的隧道,从车头驶入隧道入口到车尾离开隧道出口公用14秒,设车头驶入隧道入口x秒时,火车在隧道内的长度为y米.(1)求火车行驶的速度;(2)当0≤x≤14时,求y与x的函数关系式;(3)在给出的平面直角坐标系中画出y与x的函数图象.考点:一次函数的应用.分析:(1)按照等量关系“隧道长度+火车长度=火车行驶的速度×时间”求得火车速度;(2)若求火车在隧道内的长度需分三部分,火车行驶进隧道到完全进入,火车完全进入,火车出来到车尾完全出来;(3)根据(2)中求出的分段函数画函数图象,注意自变量的变化范围.解答:解:(1)设火车行驶的速度为v米/秒,根据题意,得14v=120+160,解得v=20答:火车行驶速度为20米/秒.(2)①当0≤x≤6时,∵火车行驶速度为20米/秒,∴y=20x;②当6<x≤8时,y=120;③当8<x≤14时,∵长为160米的隧道,∴y=120﹣20(x﹣8)=﹣20x+280.(3)函数图象如图所示:点评:本题考查的是一次函数与实际结合的问题,同学们应掌握函数关系式的求法以及函数图象的画法.27.(10分)(2010•吉林)矩形OBCD在如图所示的平面直角坐标系中,其中三个顶点分别是O(0,0),B(0,3),D(﹣2,0),直线AB交x轴于点A(1,0).(1)求直线AB的解析式;(2)求过A、B、C三点的抛物线的解析式,并写出其顶点E的坐标;(3)过点E作x轴的平行线EF交AB于点F,将直线AB沿x轴向右平移2个单位,与x轴交于点G,与EF交于点H,请问过A、B、C三点的抛物线上是否存在点P,使得S△PAG=S△PEH?若存在,求点P的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题;压轴题.分析:(1)用待定系数法即可求出直线AB的解析式;(2)由于四边形OBCD是矩形,根据B、C的坐标即可确定C点的坐标,然后可用待定系数法求出抛物线的解析式,进而可求出其顶点坐标;(3)根据平移的性质易求得EH、AG的长,根据两个三角形的面积关系可求出EH、AG边上高的比例关系,进而可确定P点的纵坐标,进而可根据抛物线的解析式求出P点坐标.解答:解:(1)设经过A(1,0),B(0,3)的直线AB的解析式为y=kx+3;设k+3=0,解得k=﹣3.∴直线AB的解析式为y=﹣3x+3.(2)经过A、B、C三点的抛物线的解析式为y=ax2+bx+3∵D(﹣2,0),B(0,3)是矩形OBCD的顶点,∴C(﹣2,3);则解得∴抛物线的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点E(﹣1,4).(3)存在.解法1:∵EH∥x轴,直线AB交EH于点F.∴将y=4代入y=﹣3x+3得F(﹣,4)∴EF=有平移性质可知FH=AG=2∴EH=EF+FH=+2=设点P的纵坐标为y p①当点P在x轴上方时,有S△PAG=S△PEH得×2×y p=×××(4﹣y p)。
2010年黑龙江省齐齐哈尔市中考数学试卷-(word 整理版)一、单项选择题(每题3分,满分30分)1. 下列各式:①(-13 )—2=9;②(-2)0=1;③(a +b )2=a 2+b 2;④(-3ab 3)2=9a 2b 6;⑤3x 2-4x =-x ,其中计算正确的是( )A .①②③B .①②④C .③④⑤D .②④⑤ 2. 下列图形中不是轴对称图形的是( )3. 六月P 市连降大雨,某部队前往救援,乘车行进一段路程之后,由于道路受阻,汽车无法通行,部队短暂休整后决定步行前往,则能反映部队离开驻地的距离S (千米)与时间t (小时)之间的函数关系的大致图象是( )4. 方程(x -5)( x -6)=x -5的解是( )A .x =5B .x =5或x =6C .x =7D .x =5或x =75. “一方有难,八方支援”,当青海玉树发生地震后,全国人民积极开展捐款款物献爱心活动.下根据表中所提供的信息,这50名同学捐款金额的众数是( ) A .15 B .30 C .50 D .206. 已知函数y =1x 的图象如图所示,当x ≥-1时,y 的取值范围是( )A .y <-1B .y ≤-1C .y ≤-1或y >0D .y <-1或y ≥07. 直角梯形ABCD 中,AD ∥BC ,∠ABC =90º,∠C =60º,AD =DC =22,则BC 的长为( )A . 3B .4 2C .3 2D .2 38. 如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为6,sin B =13 ,则线段AC 的长是( )A .3B .4C .5D .69. 现有球迷150人欲同时租用A 、B 、C 三种型号客车去观看世界杯足球赛,其中A 、B 、C 三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A 型客车最多租两辆,则球迷们一次性到达赛场的租车方案有( ) A .3种 B .4种 C .5种 D .6种10.如图所示,已知△ABC 和△DCE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连接OC 、FG ,则下列结论要:①AE =BD ;②AG =BF ;③FG ∥BE ;④∠BOC =∠EOC ,其中正确结论的个数( ) A .1个 B .2个 C .3个 D .4个 二、填空题(每题3分,满分30分)11.上海世博会永久地标建筑世博轴获“全球生态建筑奖”,该建筑占地面积约为104500平方米,这个数用科学记数法表示为_______________平方米. 12.函数y =x -1x +2中,自变量x 的取值范围是_______________.13.如图所示,E 、F 是矩形ABCD 对角线AC 上的两点,试添加一个条件:_______________,使得△ADF ≌△CBE .14.一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别,丙从中任意摸出一个球,要使摸到黑的概率为14,需要往这个口袋再放入同种黑球_____________个.15.抛物线y =x 2-4x +m2 与x 轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是_______________.16.代数式3x 2-4x -5的值为7,则x 2- 43 x -5的值为_______________. 17.由一些完全相同的小正方体的搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是_______________.18.Rt △ABC 中,∠BAC =90º,AB =AC =2,以AC 为一边,在△ABC 外部作等腰直角三角形ACD ,则线段B D 的长为_______________. 19.已知关于x 的分式方程 a +2x +1=1的解是非正数,则a 的取值范围是_______________.20.如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2M1,对角线A1M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3 M2,对角线A1 M2和A3B3交于点M3;……,依次类推,这样作的第n个正方形对角线交点的坐标为M n_______________.三、解答题(满分60分)21.5分)先化简:(a -2a—1a)÷1-a2a2+a,然后给a选择一个你喜欢的数代入求值.22.6分) 每个小方格都是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图所示.(1)将菱形OABC先向右平移4个单位,再向上平移2个单位,得到菱形OA1B1C1,请画出菱形OA1B1C1,并直接写出点B1的坐标;(2)将菱形OABC绕原点O顺时针旋转90º,得到菱形OA2B2C2,请画出菱形OA2B2C2,并求出点B 旋转到B2的路径长.23.6分) .已知二次函数的图象经过点(0,3),(-3,0),(2, -5),且与x轴交于A、B两点.(1)试确定此二次函数的解析式;(2)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由.24.7分) .某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)在频数分布表中,a的值为__________,b的值为__________,并将频数分布直方图补充完整;(2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是__________,25.8分)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y(万米3)与时间x(天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:(1)甲水库每天的放水量是多少万立方米?(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?(3)求直线AD的解析式.26.8分) .已知在Rt△ABC中,∠ABC=90º,∠A=30º,点P在AC上,且∠MPN=90º.当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F,可证t△PME∽t△PNF,得出PN=3PM.(不需证明)当PC=2PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请写出线段PN、PM之间的数量关系,并任选取一给予证明.27.10分) .为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?28.10分) .如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴、y轴于A、B两点.过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.△ABP△AOB(1)求直线AM的解析式;(2)试在直线AM上找一点P,使得S△ABP=S△AOB,请直接写出点P的坐标;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、B、M、H为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由.2010年黑龙江省齐齐哈尔市中考数学试卷答案1. B2. C3. A4. D5. B6. C7. C8. B9. B10. D11. 1.01×10512. x ≥113. AF =CE 或AE =CF 或DF ∥BE 或∠ABE =∠CDF 等14. 215.(3,0) 16.-117. 4或5(答对一值得1分,多答不得分)18. 4或25或10 19. a ≤-1且a ≠-2 20. (1-12n ,12n )或另一书写形式(2n -12n ,12n )21.解:原式=a 2-2a +1a ÷ 1-a2a 2+a…………………………1分 =(a -1)2a ×a (a +1)(1-a ) (a +1)……………………2分=(1-a ) …………………………………………1分(a 取—1,1,0以外的任何数,计算正确均可得分)……1分 22.(1)正确画出平移后图形…………………………1分B 1(8,6)………………………………………1分(2)正确画出旋转图形……………………………1分 OB =42+42=32=42……………………1分BB 2的弧长=90π×42180 =22π…………………………2分23.解:(1)设二次函数的解析式为y =ax 2+bx +c ∵二次函数的图象经过点(0,3),(-3,0),(2, -5) c =3∴ 9a —3b +c =0…………………………………………………2分4a +2b +c =-5a =-1,b =-2,c =3,y =-x 2-2x +3 …………………………1分 (2)∵-(-2)2-2×(-2)+3=-4+4+3∴点P (-2,3)在这个二次函数的图象上…………………………1分 ∵-x 2-2x +3=0∴x 1=-3,x 2=1 ∴与轴的交点为:(-3,0),(1,0)…………1分S △PAB =12 ×4×3=6 …………………………………………………1分 24.(1)a =60,b =0.05 …………………………………………………………………1分 补全直方图 ………………………………………………………………………1分(2)甲同学的视力情况范围:4.6≤x <4.9…………………………………………1分(3)视力正常的人数占被统计人数的百分比是:60+10200 ×100%=35% ………1分 全区初中毕业生中视力正常的学生约有:5000×35%=1750(人) …………1分 25.解:(1)甲水库每天的放水量为(3000-1000)÷5=400(万米3/天)……………………1分(2)甲水库输出的水第10天时开始注入乙水库………………………………………1分y =kx +b ∵B (0,800),C (5,550)∴k =-50 b =800 ………………………………1分y AB =-50x +800 ……………………………………1分 当x =10时,y =300 ∴此时乙水库的蓄水量为300(万米3) ………………1分 (3)∵甲水库单位时间的放水量与乙水库单位时间的进水量相同且损耗不计∴乙水库的进水时间为5天∵乙水库15天后的蓄水量为:300+(3000-1000) -50×5=2050(万米3) …1分 设直线AB 的解析式为: y =k 1x +b 1∴k 1=350 b 1=-3200 ………………………………1分 y AD =350x -3200 ……………………………………1分26.解:如图2,如图3中都有结论:PN =6PM ……………………………2分 选如图2: 在Rt △ABC 中,过点P 作PE ⊥AB 于E ,PF ⊥BC 于点F ∴四边形BFPE 是矩形 ∴∠EPF =90º, ∵∠EPM +∠MPF =∠FPN +∠MPF =90º可知∠EPM =∠FPN ∴△PFN ∽△PEM ……………………2分 ∴PF PE =PNPM …………………………………………………………1分 又∵Rt △AEP 和Rt △PFC 中:∠A =30º,∠C =60º∴PF =32 PC ,PE =12 PA ……………………………………………1分 ∴PN PM =PF PE =3PCPA ……………………………………………1分∵PC =2PA ∴PNPM = 6 即:PN =6PM ………………1分若选如图3,其证明过程同上(其他方法如果正确,可参照给分) 27.解:(1a 元,购进一件B 种纪念品需要b 元 (1)分………1分50元,购进一件B 种纪念品需要100元 (1)分(2x 个,购进B 种纪念品y 个……………………………………………………………2分解得20≤y ≤25 ……………………………………………………………………………1分∵y 为正整数 ∴共有6种进货方案 (1)分(3)设总利润为W 元W =20x +30y =20(200-2 y )+30y=-10 y +4000 (20≤y ≤25) …………………………………………………2分∵-10<0∴W 随y 的增大而减小∴当y =20时,W 有最大值 (1)分W 最大=-10×20+4000=3800(元)∴当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元 (1)分28.解:(1)函数的解析式为y =2x +12 ∴A (-6,0),B (0,12) ………………1分∵点M 为线段OB 的中点 ∴M (0,6) ……………………………1分 设直线AM 的解析式为:y =kx +b………………………………………………2分∴k =1 b =6 ………………………………………………………1分 ∴直线AM 的解析式为:y =x +6 ………………………………………1分 (2)P 1(-18,-12),P 2(6,12) ………………………………………………2分(3)H 1(-6,18),H 2(-12,0),H 3(-65 ,185 )………………………………3分。
xx学校xx学年xx 学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:在2、0、-2、-1这四个数中,最大的数是(A) 2. (B) 0. (C) -2. (D) -1.试题2:神舟九号飞船发射成功,一条相关的微薄被转发了3570000次,3570000这个数用科学计数法表示为(A). (B) (C) (D)试题3:不等式3x-60的解集为(A) x>2 (B)x≥2. (C)x<2 (D)x≤2.试题4:在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是试题5:右图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是评卷人得分(A) 27 (B)29 (C) 30 (D)31试题6:有一道题目:已知一次函数y=2x+b,其中b<0,…,与这段描述相符的函数图像可能是试题7:如图,在Rt△ABC中,∠C=90°.D为边CA延长线上的一点,DE‖AB,∠ADE=42°,则∠B的大小为(A) 42°(B) 45° (C) 48° (D)58°试题8:如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A, B为圆心,以大于AB 长为半径作弧,两弧交于点C.若点C的坐标为(m-1,2n),则m与n的关系为(A)m+2n=1 (B)m-2n=1 (C)2n-m=1 (D)n-2m=1试题9:计算:试题10:学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为______册(用含a、b的代数式表示).试题11:如图,⊙O与正六边形OABCDE的边OA、OE分别交于点F、G,则弧FG所对的圆周角∠FPG的大小为______度.试题12:如图,在△ABC中,AB=5,AC=4,点D在边AB上,∠ACD=∠B,则AD的长为______.试题13:.如图,的顶点B在矩形AEFC的边EF上,点B与点E、F不重合.若△ACD的面积为3,则图中的阴影部分两个三角形的面积和为______.试题14:如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且AB‖x 轴,则以AB为边的等边三角形ABC的周长为_______.试题15:先化简,再求值:试题16:有甲、乙两个不透明的口袋,甲袋中有3个球,分别标有数字0,2,5;乙袋中有3个球,分别标有数字0,1,4.这6个球除所标数字以外没有任何其他区别.从甲、乙两袋中各随机摸出1个球,用画树状图(或列表)的方法,求摸出的两个球上数字只和是6的概率.试题17:某班有45名同学参加紧急疏散演练.对比发现:经专家指导后,平均每秒撤离的人数是指导前的3倍,这45名同学全部撤离的时间比指导前快3秒.求指导前平均每秒撤离的人数.试题18:如图,在同一平面内,有一组平行线,相邻两条平行线之间的距离均为4.点O在直线上,⊙O与直线的交点为A, B.AB=12.求⊙O的半径.试题19:长春市某校准备组织七年级学生游园,供学生选择的游园地点有:东北虎园、净月潭、长影世纪城,每名学生只能选择其中一个地点.该校学生会从七年级学生中随机抽取了a名学生,对他们选择各游园点的情况进行了调查,并根据调查结果绘制成如下条形统计图.(1)求a的值.(2)求这a名学生选择去净月潭游园的人数的百分比.(3)按上述调查结果,估计该校七年级650名学生中选择去净月潭游园的人数.试题20:如图,有一个晾衣架放置在水平地面上,在其示意图中,支架OA、OB的长均为108cm,支架OA与水平晾衣杆OC的夹角∠AOC为59°,求支架两个着地点之间的距离AB.(结果精确到0.1cm)(参考数据:sin59°=0.86,cos59°=0.52,tan59°=1.66).试题21:图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个四边形ABCD.要求:四边形ABCD的顶点D在格点上,且有两个角相等(一组或两组角相等均可);所画的两个四边形不全等.试题22:如图,在平面直角坐标系中,的顶点A, C的坐标分别为A(2,0),C(-1,2),反比例函数的图像经过点B.(1)求k的值.(2)将沿着x轴翻折,点C落在点处.判断点是否在反比例函数的图像上,请通过计算说明理由.试题23:某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人的积性.工人每天加工零件获得的加工费y(元)与加工个数x(个)之间的函数图像为折线OA-AB-BC,如图所示.(1)求工人一天加工费不超过20个零件的加工费.(2)求40≤x≤60时y与x的函数关系式.(3)小王两天一共加工了60个零件,共得到加工费220元,在这两天中,小王第一天加工的零件不足20个,求小王第一天加工零件的个数.试题24:感知:如图①,点E在正方形ABCD的BC边上,BF⊥AE于点F,DG⊥AE于点G.可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B、C在∠MAN的边AM、AN上,点E, F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边B上.CD=2BD.点E, F在线段AD上.∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为_________.试题25:如图,在平面直角坐标系中,直线y=-2x+42交x轴与点A,交直线y=x于点B,抛物线分别交线段AB、OB 于点C、D,点C和点D的横坐标分别为16和4,点P在这条抛物线上.(1)求点C、D的纵坐标.(2)求a、c的值.(3)若Q为线段OB上一点,且P、Q两点的纵坐标都为5,求线段PQ的长.(4)若Q为线段OB或线段AB上的一点,PQ⊥x轴,设P、Q两点之间的距离为d(d>0),点Q的横坐标为m,直接写出d随m的增大而减小时m的取值范围.(参考公式:二次函数图像的顶点坐标为试题26:如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A 不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值.(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm²),求S与t的函数关系式.(4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P 的整个运动过程中,点H落在线段CD上时t的取值范围.试题1答案:解析:A 根据正数大于0,0大于负数。
2010年中考数学全真模拟试题(一)本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分.第1卷l 至4页,第Ⅱ卷5至12页.满分120分.考试时间120分钟.第1卷(选择题 共42分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。
再选涂其它答案,不能答在试卷上。
3.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共14小题.每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的. 1.一3的绝对值是(A)3 (C)±3 (B) 3 (D)±132.2004年聊城市的国民生产总值为1012亿元,用科学记数法表示正确的是 (A)1012³108元 (B)1.012³1110元 (C)1.0³1110元. (D)1.012³1210元. 3.下列各式计算正确的是 (A)527()a a =.(B)22122x x-=(C)236326a a a = (D)826a a a ÷=。
4.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是(A)18(B)13(C)38(D)355.如图,将两根钢条'A A 、'B B 的中点O 连在一起,使'A A 、'B B 可以绕着点0自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△AOB ≅△''A O B 的理由是(A)边角边 (B)角边角 (C)边边边 (D)角角边6.已知两圆相交,其圆心距为6,大圆半径为8,则小圆半径r 的取值范围是 (A)r>2 (13)2<r<14 (C)l<r<8 (13)2<r<8 7.化简24()22aaaa a a---+ 的结果是 (A)一4 (B)4 (C)2a (13) 2a +4第5题图8.如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若BD =10,DF =4,则菱形ABCD 的边长为(A)4(B)5 (C)6.(D)9.9.小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm 幻灯片到屏幕的距离是1.5m ,幻灯片上小树的高度是10cm ,则屏幕上小树的高度是(A)50cm . (B)500cm . (C)60 cm . (D)600cm .10.多边形的内角中,锐角的个数最多有 (A)1个. (B)2个. (C)3个. (D)4个.11.如图,已知点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为(A)(0,0). (B)11(,)22-.(c) ,)22-(D) 11(,)22-.12.等腰三角形一腰上的高与另一腰的夹角为30。
A H
B
O
C
2010年长春2012年中考模拟试题
一、选择题:(每题3分,计30分)
1.下列计算正确的是()
A B.632
x x x
÷=C.33
-=±D.224
()
a a a
-=
2,则a的取值范围是()
A.0
a≤B.0
a<C.01
a
<≤D.0
a>
3.数据0161x
-
,
,
,
,
A.2 B.34
5
4. 已知关于x的方程4).
A.2 B.
5. 函数y
A.5
x>B.5
x<C.5
x≥D.5
x≤.
6. 如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小是().
A.150°B.300°C.210°D.330°.
7.在反比例函数4
y
x
=的图象中,阴影部分的面积不等于4的是()
A.B.C.
8小明从右图所示的二次函数2
y a x b x c
=++
①0
c<;②0
a b c>;③0
abc
-+>;④230
a b
-=;⑤40
c b
->,
你认为其中正确信息的个数有()
A.2个B.3个C.4个D.5个
9.如图,R t A B C
△中,90
A C
B
∠= ,30
C
A B
∠= ,2
B C=,O,
A B A C
,的中点,将A B C
△绕点顺时针旋转120 到
11
AB C
△的位置,则整个
旋转过程中线段O H所扫过部分的面积(即阴影部分面积)为()
A.7π
3
B.4π
3
C.πD.4π
3
+
10. 一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(01),,然后
接着按图中箭头所示方向运动[即(
)(
1
)(
1
1
)(
1
)
→
→
→
→
,
,
,
,
…
],且每秒
移动一个单位,那么第35秒时质点所在位置的坐标是()
A.(40)
,B.(50)
,C.(05),D.(55),
F
E
D
C
B
A
y
1
2
3
…
二、填空题:(每题3分,计18分)
11.在“2
2
2a a b b □□”方框中,任意填上“+”或“-”
的概率是 .
12.下列给出的一串数:2,5,10,17,26,?,50.仔细观察后回答: 缺少的数?是 .
13.如图,直线y k x b =+经过A (-2,-1)和B (-3,0)两点, 则不等式组102
x k x b <+<的解集为 .
14.如果012
=-+x x ,那么代数式722
3
-+x x 的值为 。
15.如图,半径为5的⊙P 与轴交于点M (0,-4),N (0,-10), 函数(0)k
y x x
=
<的图像过点P ,则k = 。
16.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小 正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为1, 大正方形面积为25,直角三角形中较小的锐角为θ,那么s i n θ= . 三、 解答题(总计72分)
17.(本题6分)解不等式组255432x x x x -<⎧⎨-+⎩
≥,.并在数轴上解集表示出来
18.(本题7分)化简求值:2
22161
816416x x x x x x ⎛⎫-+÷ ⎪++--
⎝⎭,其中1x +
19.(本题7分)已知:如图,点是正方形A B C D 的边A B 上任意一点,过点D 作D F D E ⊥交B C 的延长线于点F .求证:D ED F
=. 交B C 的延长线于点F .求证:D ED F =.
(第16题
第15题
第13题
20.(本题7分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:
请根据以上不完整的统计图提供的信息,解答下列问题:
⑴典典同学共调查了 名居民的年龄,扇形统计图中a = ,b = ; ⑵补全条形统计图;
⑶若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.
21(本题8分)有一个附有进出水管的容器,每单位时间内进出的水量都是一定的,设从某时刻开始的4分钟内只进水,不出水,在随后的8分钟内既进水又出水,得到时间x (分)与水量y (升)之间的关系如图所示. (1)4≤x ≤12时,x 与y 有何关系?
(2)若12分钟后只放水,不进水,求y 与x 的函数关系式. 并在下图中画出函数图象
22.(本题9分)正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC 上一动点,过点P 作PF ⊥CD 于点F 。
如图1,当点P 与点O 重合时,显然有DF =CF . ⑴如图2,若点P 在线段AO 上(不与点A 、O 重合),PE ⊥PB 且PE 交CD 于点E 。
① 证:DF =EF ; ②写出线段PC 、PA 、CE 之间的一个等量关系,并证明你的结论; ⑵若点P 在线段OC 上(不与点O 、C 重合),PE ⊥PB 且PE 交直线CD 于点E 。
请完成图3,并判断⑴中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均不必证明)
50 0~14 15~40 41~59 60岁以上 年龄
人数
图1
图2
图3
23.(本题9分)为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A
两种型号的设备,其中每台的价格,月处理污水量如下表:
设备少6万元. (1)求a b ,的值.
(2)经预算:市治污公司购买污水处理设备资金不超过105万元,你认为该公司有哪几种购买方案.
(3)在(2)问的条件下,若每月要求处理洋澜湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.
24. (本题9分)如图,是以B C 为直径的O 上一点,A D B C ⊥于点D ,过点作O 的切线,与C A 的延长线相交于点E G ,是AD 的中点,连结C G 并延长与B E 相交于点F ,延长AF 与C B 的延长线相交于点
.
的切线,与C A 的延长线相交于点E G ,是AD 的中点,连结C G 并延长与B E 相交于点
F ,
延长AF 与C B 的延长线相交于点.
(1)求证:B F E F
=; (2)求证:P A 是O 的切线;
(3)若F G B F =,且O 的半径长为3B D 和F G 的长度.
C
25.(本题10分)如图1,抛物线2
3y a x a x b =-+经过A (-1,0),C (3,2)两点,与y
轴交于点D ,与x 轴交于另一点B 。
⑴求此抛物线的解析式;
⑵若直线1(0)y k x k =-≠将四边形ABCD 面积二等分,求k
⑶如图2,过点E (1,-1)作EF ⊥x 轴于点F ,将△AEF 绕 平面内某点旋转180°后得△MNQ (点M ,N ,Q 分别与点A ,E ,F 对应),使点M ,N 在抛物线上,求点M ,N 的坐标.。