2014年春季新版新人教版七年级数学下学期5.2、平行线及其判定同步练习4
- 格式:doc
- 大小:96.50 KB
- 文档页数:3
人教版七年级数学下册第五章相交线与平行线 5.2 平行线及其判定同步练习一、单选题(共9题;共27分)1.如右图,下列能判定AB∥CD的条件有( )个.(1) ∠B+∠BCD=180°;(2)∠1=∠2(3) ∠3=∠4;(4) .∠B=∠5A. 1B. 2C. 3D. 42.如图,下列说法错误的是()A. 若a∥b,b∥c,则a∥cB. 若∠1=∠2,则a∥cC. 若∠3=∠2,则b∥cD. 若∠3+∠5=180°,则a∥c3.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③EF∥CD,且∠D=∠4;④∠3+∠5=180°.其中,能推出AD∥BC的条件为()A. ①②③B. ①②④C. ①③④D. ②③④4.如图,点E在AC的延长线上,下列条件不能判断AC∥BD的是()A. ∠3=∠4B. ∠D=∠DCEC. ∠1=∠2D. ∠D+∠ACD=180°5.a,b,c为平面内不同的三条直线,若要a∥b,条件不符合的是()A. a∥c,b∥cB. a⊥c,b⊥cC. a⊥c,b∥cD. c截a,b所得的内错角的邻补角相等6.下列叙述中,正确的是()A. 在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B. 不相交的两条直线叫平行线C. 两条直线的铁轨是平行的D. 我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角7.对于同一平面内的三条直线a,b,c,下列命题中不正确的是()A. 若a∥b,b∥c,则a∥cB. 若a⊥b,a⊥c,则b⊥cC. 若a∥b,a⊥c,则b⊥cD. 若a⊥b,a⊥c,则b∥c8.下列说法:①有理数的绝对值一定是正数;②两点之间的所有连线中,线段最短;③相等的角是对顶角;④过一点有且仅有一条直线与已知直线垂直;⑤不相交的两条直线叫做平行线,其中正确的有()A. 1个B. 2个C. 3个D. 4个9.过一点画已知直线的平行线,则( )A. 有且只有一条B. 有两条C. 不存在D. 不存在或只有一条二、填空题(共9题;共27分)10.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有________ (填写所有正确的序号).11.如图,请写出能判定CE∥AB的一个条件________12.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是________.13.在同一平面内,直线AB与CD没有交点,那么AB与CD的位置关系是________ .14.如图,直线a、b被直线c所截,若要使a∥b,则需满足的一个条件是________.(填上你认为适合的一个条件即可)15.如图,是利用七巧板拼成的图案,其中二组互相平行的线段是________.16.如果∠A与∠B的两边分别平行,∠A比∠B的3倍少36°,则∠A的度数是________.17.如图,AB∥CD,则∠1+∠3—∠2的度数等于________.18.如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是:________ .三、解答题(共7题;共56分)19.如图,∠1=∠3,∠1=∠2,那么DE与BC有怎样的位置关系?为什么?并说明理由.21.已知如图,CD⊥AB于点D,EF⊥AB于点F,∠1=∠2.(1)求证:CD∥EF;(2)判断∠ADG与∠B的数量关系?如果相等,请说明理由;如果不相等,也请说明理由.22.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.并说明理由.24.如图所示,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,问CE与DF的位置关系?试说明理由。
人教版七年级数学下学期5.2 平行线及其判定同步配套练习含答案解析一.选择题(共10小题)1.在如图的几何体中,上下底面都是平行四边形,各个侧面都是梯形,那么图形中与AB 平行的线段有()A.1条B.2条C.3条D.4条2.如图,直线AB,CD与EF相交于G,H,下列条件:①∠1=∠2;②∠3=∠6;③∠2=∠8;④∠5+∠8=180°,其中能判定AB∥CD的是()A.①③B.①②④C.①③④D.②③④3.如图,下列条件能判定AB∥CD的是()A.∠1=∠3B.∠2=∠3C.∠1=∠2D.∠1=∠2=∠3 4.如图,能判定EB∥AC的条件是()A.∠A=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠C=∠ABE5.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°6.如图,下列条件中,可以判定AD∥BC的是()A.∠1=∠2B.∠3=∠4C.∠B=∠D D.∠B+∠BCD=180°7.如图,下列说法中,正确的是()A.因为∠A+∠D=180°,所以AD∥BCB.因为∠C+∠D=180°,所以AB∥CDC.因为∠A+∠D=180°,所以AB∥CDD.因为∠A+∠C=180°,所以AB∥CD8.如图,可得出DE∥BC的条件是()A.∠ACB=∠BAD B.∠ABC=∠ADEC.∠ABC=180°﹣∠BED D.∠ACB=180°﹣∠BAD 9.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.两直线平行,同位角相等B.同旁内角互补,两直线平行C.内错角相等,两直线平行D.同位角相等,两直线平行10.三条直线a、b、c,若a∥c,b∥c,则a与b的位置关系是()A.a⊥b B.a∥b C.a⊥b或a∥b D.无法确定二.填空题(共5小题)11.如图,直线a,b都与c相交,给出条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°④∠5+∠8=180°,其中能判断a∥b的条件是(只填序号).12.如图所示,请你添加一个条件,使得AD∥BC,.13.如图所示,请写出能判定CE∥AB的一个条件.14.如图,如果∠=∠,那么ED∥BC,根据.(只需写出一种情况)15.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有.三.解答题(共5小题)16.完成下面的证明如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.完成推理过程BE平分∠ABD(已知),∴∠ABD=2∠α().∵DE平分∠BDC(已知),∴∠BDC=2∠β()∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°().∴AB∥CD().17.如图,已知∠D=∠A,∠B=∠FCB,试问ED与CF平行吗?为什么?18.如图,已知∠1=∠2=90°,∠A=∠D=50°,AB与CD平行吗?并说明理由.19.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.20.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.参考答案与试题解析一.选择题(共10小题)1.在如图的几何体中,上下底面都是平行四边形,各个侧面都是梯形,那么图形中与AB 平行的线段有()A.1条B.2条C.3条D.4条【分析】根据几何体的性质,与AB同方向的棱都与线段AB平行,找出即可.【解答】解:如图,与AB平行的线段有:CD、A′B′、C′D′共3条.故选:C.2.如图,直线AB,CD与EF相交于G,H,下列条件:①∠1=∠2;②∠3=∠6;③∠2=∠8;④∠5+∠8=180°,其中能判定AB∥CD的是()A.①③B.①②④C.①③④D.②③④【分析】根据同位角相等,两直线平行可判断①正确;根据内错角相等,两直线平行可判断②正确;根据同旁内角互补,两直线平行可对④进行判断.【解答】解:∵∠1=∠2,∴AB∥CD(根据同位角相等,两直线平行),所以①正确;∵∠3=∠6,∴AB∥CD(根据内错角相等,两直线平行),所以②正确;∠2=∠8,只是对顶角相等,不能判断AB∥CD,所以③不正确;∵∠5=∠3,∠8=∠2,而④∠5+∠8=180°,∴∠3+∠2=180°,∴AB∥CD(根据同旁内角互补,两直线平行),所以④正确.故选:B.3.如图,下列条件能判定AB∥CD的是()A.∠1=∠3B.∠2=∠3C.∠1=∠2D.∠1=∠2=∠3【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∠1与∠3不是直线AB、CD构成的内错角,不能判定AB∥CD;B、∠2=∠3不符合三线八角,不能判定AB∥CD;C、∠1=∠2,根据同位角相等,两直线平行,可以判定AB∥CD;D、∠1=∠2=∠3,不能判定AB∥CD.故选:C.4.如图,能判定EB∥AC的条件是()A.∠A=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠C=∠ABE 【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确.B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误;D、∠C=∠ABE不能判断出EB∥AC,故本选项错误;故选:A.5.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、∠3=∠A,无法得到,AB∥CD,故此选项错误;B、∠1=∠2,根据内错角相等,两直线平行可得:AB∥CD,故此选项正确;C、∠D=∠DCE,根据内错角相等,两直线平行可得:BD∥AC,故此选项错误;D、∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得:BD∥AC,故此选项错误;故选:B.6.如图,下列条件中,可以判定AD∥BC的是()A.∠1=∠2B.∠3=∠4C.∠B=∠D D.∠B+∠BCD=180°【分析】根据平行线的判定定理:内错角相等,两直线平行和同旁内角互补,两直线平行,即可判定选项.【解答】解:A、由∠1=∠2,得到AB∥CD,故本选项错误;B、由∠3=∠4,推出AD∥BC,故本选项正确;C、由∠B=∠D,得不到AD∥BC,故本选项错误;D、由∠B+∠BCD=180°,推出AB∥CD,故本选项错误.故选:B.7.如图,下列说法中,正确的是()A.因为∠A+∠D=180°,所以AD∥BCB.因为∠C+∠D=180°,所以AB∥CDC.因为∠A+∠D=180°,所以AB∥CDD.因为∠A+∠C=180°,所以AB∥CD【分析】A、B、C、根据同旁内角互补,判定两直线平行;D、∠A与∠C不能构成三线八角,因而无法判定两直线平行.【解答】解:A、C、因为∠A+∠D=180°,由同旁内角互补,两直线平行,所以AB∥CD,故A错误,C正确;B、因为∠C+∠D=180°,由同旁内角互补,两直线平行,所以AD∥BC,故B错误;D、∠A与∠C不能构成三线八角,无法判定两直线平行,故D错误.故选:C.8.如图,可得出DE∥BC的条件是()A.∠ACB=∠BAD B.∠ABC=∠ADEC.∠ABC=180°﹣∠BED D.∠ACB=180°﹣∠BAD【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:A、∵∠ACB与∠BAD不是DE与BC被AC所截形成的角,故推不出DE ∥BC,故错误;B、∠ABC与∠ADE不是同位角,所以不能判断DE∥BC,故错误;C.∵∠ABC+∠BED=180°,∴DE∥BC(同旁内角互补,两直线平行),故正确;D、∵∠ACB+∠BAD=180°,∴AB∥BC(同旁内角互补,两直线平行),故错误.故选:C.9.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.两直线平行,同位角相等B.同旁内角互补,两直线平行C.内错角相等,两直线平行D.同位角相等,两直线平行【分析】判定两条直线是平行线,可以由内错角相等,同位角相等,同旁内角互补等,应结合题意,具体情况,具体分析.【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选:D.10.三条直线a、b、c,若a∥c,b∥c,则a与b的位置关系是()A.a⊥b B.a∥b C.a⊥b或a∥b D.无法确定【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行”进行分析,得出正确答案.【解答】解:由于直线a、b都与直线c平行,依据平行公理的推论,可推出a∥b.故选:B.二.填空题(共5小题)11.如图,直线a,b都与c相交,给出条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°④∠5+∠8=180°,其中能判断a∥b的条件是①②③④(只填序号).【分析】四个都可以判定a∥b:(1)利用同位角相等判定两直线平行;(2)利用内错角相等判定两直线平行;(3)∠6与∠4是对顶角相等,再利用∠6+∠7=180°,同旁内角互补判定两直线平行;(4)∠5与∠7互补,再利用∠7=∠8,同位角相等判定两直线平行.【解答】解:①∵∠1=∠2,∴a∥b(同位角相等,两直线平行);②∵∠3=∠6,∴a∥b(内错角相等,两直线平行);③∵∠6=∠4(对顶角相等),又∵∠4+∠7=180°,∴∠6+∠7=180°,∴a∥b(同旁内角互补,两直线平行);④∵∠5+∠7=180°(邻补角的定义),又∵∠5+∠8=180°,∴∠7=∠8,∴a∥b(同位角相等,两直线平行).12.如图所示,请你添加一个条件,使得AD∥BC,∠EAD=∠B(∠CAD=∠C或∠BAD+∠B=180°).【分析】根据平行线的判定方法进行添加.【解答】解:根据同位角相等,两条直线平行,可以添加∠EAD=∠B;根据内错角相等,两条直线平行,可以添加∠CAD=∠C;根据同旁内角互补,两条直线平行,可以添加∠BAD+∠B=180°.故答案为:∠EAD=∠B(∠CAD=∠C或∠BAD+∠B=180°).13.如图所示,请写出能判定CE∥AB的一个条件∠DCE=∠A(答案不唯一).【分析】能判定CE∥AB的,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以判定的条件是:∠DCE =∠A或∠ECB=∠B或∠A+∠ACE=180°.【解答】解:能判定CE∥AB的一个条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE =180°.故答案为:∠DCE=∠A(答案不唯一).14.如图,如果∠1=∠2,那么ED∥BC,根据内错角相等两直线平行.(只需写出一种情况)【分析】欲证AB∥CD,在图中根据“三线八角”中的同位角、内错角、同旁内角补充条件.【解答】解:∵∠1=∠2∴ED∥BC(内错角相等两直线平行).15.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有AB∥CD,EF∥CG.【分析】由∠2=∠C,根据同位角相等,两直线平行得到EF∥CG;而∠1=∠2,等量代换得到∠1=∠C,则AB∥CD.【解答】解:∵∠2=∠C,∴EF∥CG,又∵∠1=∠2,∴∠1=∠C,∴AB∥CD.故答案为EF∥CG,AB∥CD.三.解答题(共5小题)16.完成下面的证明如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.完成推理过程BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).【分析】首先根据角平分线的定义可得∠ABD=2∠α,∠BDC=2∠β,根据等量代换可得∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β),进而得到∠ABD+∠BDC=180°,然后再根据同旁内角互补两直线平行可得答案.【解答】证明:BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).故答案为:角平分线的定义,角平分线的定义,等量代换,等量代换,同旁内角互补两直线平行.17.如图,已知∠D=∠A,∠B=∠FCB,试问ED与CF平行吗?为什么?【分析】先利用内错角相等,两直线平行证明ED∥AB,CF∥AB,再根据平行于同一条直线的两直线平行可证得ED∥CF.【解答】解:ED∥CF.理由如下:∵∠D=∠A,∴ED∥AB(内错角相等,两直线平行).∵∠B=∠FCB,∴CF∥AB(内错角相等,两直线平行),∴ED∥CF.18.如图,已知∠1=∠2=90°,∠A=∠D=50°,AB与CD平行吗?并说明理由.【分析】根据∠1=∠2=90°得出AE∥FD,从而得出∠A=∠BFD,又∠A=∠D=50°,可得出∠BFD=∠D,从而得出AB∥CD.【解答】解:AB与CD平行,证明:∵∠1=∠2=90°,∴AE∥FD,∴∠A=∠BFD,又∵∠A=∠D=50°,∴∠BFD=∠D,∴AB∥CD.19.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.【分析】首先利用平行线的性质以及角平分线的性质得到满足关于AD∥BC的条件,内错角∠2和∠E相等,得出结论.【解答】证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.20.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.【分析】先根据题意得出∠1+∠3=∠2+∠E,再由∠2+∠E=∠5可知,∠1+∠3=∠5,即∠ADC=∠5,据此可得出结论.【解答】证明:∵∠1=∠2,∠3=∠E,∴∠1+∠3=∠2+∠E.∵∠2+∠E=∠5,∴∠1+∠3=∠5,∴∠ADC=∠5,∴AD∥BE.。
人教版七年级数学下册《5.2 平行线及其判定》同步练习题-附带答案一、选择题1.已知P是直线AB外一点,过点P作直线AB的平行线,这样的平行线()A.有无数条B.有且只有一条C.不存在D.不存在或只有一条2.直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是()A.相交B.平行C.垂直D.不确定3.如图,点P是直线AB外一点,过点P分别作CP//AB,PD//AB则点C、P、D三个点必在同一条直线上,其依据是()A.两点确定一条直线B.同位角相等,两直线平行C.过直线外一点有且只有一条直线与这条直线平行D.平行于同一条直线的两条直线平行4.如图,直线a,b被直线c所截,当∠1=∠2=48°时,直线a,b的位置关系是()A.a∥b B.a∥b C.a⊥b D.无法确定5.如图所示,下列说法中,错误的是()A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180,则a∥c6.在同一平面内,将两个完全相同的三角板按如图摆放,可以画出两条互相平行的直线l1与l2.这样画的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等7.如图所示为一张四边形纸片ABCD,下列测量方法中,能判定AD∥BC的是()A.AB⊥BC,CD⊥BC B.AB⊥BC,AB⊥ADC.AB⊥BC,CD⊥AD D.AB=DC8.如图,给出下列条件:①∠1=∠3;②∠2=∠3;③∠4=∠5;④∠2+∠4=180°.其中能判定直线l1∥l2的有()A.1个B.2个C.3个D.4个二、填空题9.在平面内,若a⊥b,a⊥c则b c.10.斑马线的作用是为了引导行人安全地通过马路.某数学兴趣小组为了验证斑马线是由若干条平行线组成的,在保证安全的前提下,按照如图方式分别测出∠1=∠2=85°,这种验证方法的数学依据是.11.如图,不添加辅助线,请写出一个能判定AB//CD的条件.12.如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=.13.如图,将木条a,b与c钉在一起∠1=60°,∠2=35°要使木条a与b平行,木条a转动的度数至少是度.三、解答题14.如图,CE⊥DG,垂足为G,∠BAF=50°,∠ACE=140°.CD与AB平行吗?为什么?15.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°,求证:AB∥CD.16.如图,直线CD、EF交于点O,OA,OB分别平分∠COE和∠DOE,且∠1+∠2=90°.(1)求证:AB∥CD;(2)若∠2:∠3=25,求∠BOF的度数参考答案1.B2.B3.C4.A5.C6.A7.B8.C9.∥10.同位角相等 ,两直线平行11.①∠1=∠2;②∠A =∠CDE ;③∠A +∠ADC =180°;④∠ABC +∠C =180°这四个条件中任一个即可 12.135°13.2514.解:结论:AB ∥CD .理由:∵CE ⊥DG∴∠ECG=90°∵∠ACE=140°∴∠ACG=50°∵∠BAF=50°∴∠BAF=∠ACG∴AB ∥DG .15.证明:∵BE 平分∠ABD ,DE 平分∠BDC ∴∠ABD =2∠1 ∠BDC =2∠2∵∠1+∠2=90°∴∠ABD +∠BDC =2(∠1+∠2)=180° ∴AB ∥CD .16.(1)证明:∵OA ,OB 分别平分∠COE 和∠DOE ∴∠AOE=∠AOC=12∠COE ,∠2=∠BOE=12∠DOE 又∵∠COE+∠DOE=180°∴∠2+∠AOC=90°∵∠1+∠2=90°∴∠1=∠AOC∴AB∥CD.(2)解:∵∠COE=∠3∴∠AOC=12∠3由(1)知,∠2+∠AOC=90°∴∠2+12∠3=90°∵∠2:∠3=2:5∴∠3=52∠2∴∠2+12×52∠2=90°∴∠2=40°∴∠3=100°∴∠BOF=∠2+∠3=140°。
数学人教版七年级下册同步训练:5.2 平行线及其判定一、单选题1.下列说法正确的有( )①同位角相等;②两点之间的所有连线中,线段最短;③过一点有且只有一条直线与已知直线平行;④两点之间的距离是两点间的线段;⑤已知同一平面内70AOB ∠=︒,30BOC ∠=︒,则100AOC ∠=︒;A. 1个B. 2个C. 3个D. 4个2.如图,已知,AB CD BC DA ==,下列结论:①BAC DCA ∠=∠;②ACB CAD ∠=∠;③//AB CD .其中正确的结论有( )A. 0个B.1个C. 2个D.3个3.如图,在下列四个条件中,可得CE AB ∥的条件是( )A.23∠∠=B.4180ACD ∠∠︒+=C.14∠∠=D.2180BCE ∠∠︒+=4.如图所示,一个零件ABCD 只需要满足AB 边与CD 边平行就合格,现只有一个量角器,测得拐角120ABC ∠︒=,60BCD ∠︒=,那么这个零件是否合格( )A.合格B.不合格C.不一定D.无法判断5.下列说法不正确的是( )A.100米跑道的跑道线所在的直线是平行线B.马路的斑马线所在的直线是平行线C.若//a b ,//b d ,则a d ⊥D.过直线外一点有且只有一条直线与已知直线平行6.如图,12∠∠=,则直线AB CD ∥的是( )A. B.C. D.7.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度是( )A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°8.如图,点E 在BC 的延长线上,下列条件中不能判定AB CD ∥的是( )A.12∠∠=B.34∠∠=C.B DCE ∠∠=D.180D DAB ∠∠︒+=二、填空题9.在同一平面内有三条直线,如果其中有且只有两条直线平行,那么这三条直线有且只有 个交点.10.如图所示,木工师傅用角尺画出工件边缘的两条垂线,则这两条垂线 .11.如图,要使CF BG ∥,你认为应该添加的一个条件是 .12.如图,70A ∠︒=,O 是AB 上一点,直线OD 与AB 所夹角82BOD ∠︒=,要使OD AC ∥,直线OD 绕点O 按逆时针方向旋转 度.13.已知,如图,ABC ADC ∠∠=,BF DE ,分别平分ABC ∠与ADC ∠,且13∠∠=.试说明:AB CD ∥.请根据条件进行推理,得出结论,并在括号内注明理由.解:BF DE ,分别平分ABC ∠与ADC ∠,112ABC ∴∠∠=,122ADC ∠∠=( ) ABC ADC ∠∠=,∴∠ ∠= .13∠∠=,2∴∠= (等量代换)∴ ∥ ( )三、解答题14.已知,如图,AD 是一条直线,160∠︒=,2120∠︒=.试说明//BE CF .参考答案1.答案:A ①同位角不一定相等,错误;②两点之间的所有连线中,线段最短,正确;③过直线外一点有且只有一条直线与已知直线平行,错误;④两点之间的距离是两点间的线段的长度,错误;⑤已知同一平面内70,30AOB BOC ∠=︒∠=︒,则100AOC ∠=︒或40︒,错误。
5.2.2平行线的判定关键问答①由平行线的定义来判定平行线,在什么地方不便操作?②平行线的判定方法有哪些?1.①图5-2-10是我们学过的用直尺和三角尺画平行线的方法示意图,画图原理是()图5-2-10A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.如果两条直线都和第三条直线平行,那么这两条直线平行2.②用两块相同的三角尺按如图5-2-11所示的方式作平行线AB和CD,能解释其中道理的依据是()图5-2-11A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角互补,两直线平行D.平行于同一直线的两直线平行3.如图5-2-12,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()图5-2-12A.AB∥BC B.BC∥CD C.AB∥CD D.AB与CD相交命题点1同位角相等,两直线平行[热度:94%]4.如图5-2-13,直线a与直线b相交于点A,与直线c相交于点B,∠1=120°,∠2=45°.若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()图5-2-13A.15°B.30°C.45°D.60°5.③已知∠1=∠2,下列能判定AB∥CD的是()图5-2-14方法点拨③先判断∠1,∠2是由哪两条直线被哪条直线所截得到的,再确定两角位于被截直线之间还是同旁,在截线同侧还是异侧.6.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°7.如图5-2-15,PE⊥MN,QF⊥MN,∠1=∠2,直线AB与CD平行吗?为什么?图5-2-15命题点2内错角相等,两直线平行[热度:94%]8.④如图5-2-16,已知∠1=∠2,那么()图5-2-16A.AB∥CD,根据内错角相等,两直线平行B.AD∥BC,根据内错角相等,两直线平行C.AB∥CD,根据同位角相等,两直线平行D.AD∥BC,根据同位角相等,两直线平行解题突破④分析∠1,∠2是由哪两条直线被哪条直线所截得到的,是一对什么位置关系的角.9.⑤如图5-2-17,点A在直线DE上,当∠BAC=________°时,DE∥BC.图5-2-17方法点拨⑤求角时,先看能否将其转化成已知角的和与差,这时的标志是其与已知角有公共顶点和公共边;再看所求角与已知角是不是同位角、内错角或同旁内角.10.如图5-2-18,已知AB⊥BC,DC⊥BC,∠1=∠2,直线BE,CF平行吗?为什么?图5-2-1811.如图5-2-19,∠1=60°,∠2=60°,∠3=100°.要使AB∥EF,∠4应为多少度?说明理由.图5-2-19命题点3同旁内角互补,两直线平行[热度:94%]12.⑥如图5-2-20,AE平分∠BAC,CE平分∠ACD,不能判定AB∥CD的条件是()图5-2-20A.∠1=∠2 B.∠1+∠2=90°C.∠3+∠4=90°D.∠2+∠3=90°方法点拨⑥对于复杂图形,可以采用去掉与条件无关的直线的方法,使图形变得简单,从而使问题难度减小.13.⑦如图5-2-21,∠ABD=90°,∠BDC=90°,∠1+∠2=180°,CD与EF平行吗?为什么?图5-2-21方法点拨⑦准确识别同位角、内错角、同旁内角是判断哪两条直线平行的关键.一般地,“F”形中有同位角,“Z”形中有内错角,“U”形中有同旁内角.每一对角的公共边所在的直线是截线,另外两边所在的直线是被截线,即需判定平行的两条直线.命题点4平行线判定方法的选用[热度:96%]14.如图5-2-22,已知AB⊥BC,∠1+∠2=90°,∠2=∠3,BE与DF平行吗?为什么?图5-2-2215.⑧小明到工厂进行社会实践活动时,发现工人师傅生产了一种如图5-2-23所示的零件,要求AB∥CD,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,就说AB与CD肯定是平行的.你知道原因吗?图5-2-23方法点拨⑧(1)判定两直线平行,通常找这两条直线被第三条直线所截得的同位角、内错角、同旁内角的数量关系;(2)若找到的“截线”是折线,通常过折线的拐点再作一条直线,把图形转化成多个两直线被第三条直线所截的图形,再用(1)解决.典题讲评与答案详析1.A 2.A 3.C4.A[解析]∵∠1=120°,∴∠1的邻补角为60°.当直线b与直线c平行时,∵∠2=45°,∴∠1的邻补角为45°,∴可将直线b绕点A逆时针旋转15°.故选A.5.D[解析] 在四个选项中,只有选项D满足“同位角相等,两直线平行”.6.A[解析] 此题可看作平行线性质的实际应用,解决该题单纯从文字方面去分析,很难判断出结果,但是结合题意画出各选项的示意图后,结果也就一目了然了.各选项的示意图如下:虽然有的图形符合了两直线平行,但行驶方向与原来的方向不相同.两次拐弯的方向与角度决定了行驶方向与原来的方向是否相同.对照上面示意图,发现A选项是正确的.7.解:AB∥CD.理由如下:∵PE⊥MN,QF⊥MN(已知),∴∠MEP=∠MFQ=90°(垂直的定义).又∵∠1=∠2(已知),∴∠MEP-∠1=∠MFQ-∠2(等式的性质),即∠MEB=∠MFD,∴AB∥CD(同位角相等,两直线平行).8.B[解析]∠1,∠2是直线AD,BC被直线AC所截得到的内错角,由内错角相等,两直线平行,可知AD∥BC.故选B.9.5710.解:BE∥CF.理由如下:因为AB⊥BC,DC⊥BC,所以∠ABC=∠BCD=90°.又因为∠1=∠2,所以∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF,所以BE∥CF(内错角相等,两直线平行).11.解:∠4应为100°.理由如下:∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行).∵∠4=∠3=100°,∴EF∥CD(内错角相等,两直线平行),∴AB∥EF(平行于同一直线的两条直线平行).12.A[解析]AE平分∠BAC,CE平分∠ACD,选项A中,由∠1=∠2,可得∠BAC=∠ACD,而∠BAC,∠ACD是一对同旁内角,显然不能判定AB∥CD.13.解:CD∥EF.理由如下:∵∠ABD=90°,∠BDC=90°,∴∠ABD+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行).又∵∠1+∠2=180°,∴AB∥EF(同旁内角互补,两直线平行),∴CD∥EF(平行于同一条直线的两直线平行).14.解:BE∥DF.理由如下:∵AB⊥BC,∴∠ABC=90°,即∠3+∠EBC=90°.又∵∠1+∠2=90°,且∠2=∠3,∴∠1=∠EBC,∴BE∥DF.15.解:以E为顶点,AE为一边,在∠AED的内部作∠AEM=∠BAE=35°,∴AB∥EM(内错角相等,两直线平行).又∵∠AED=90°,∴∠DEM=∠EDC=55°,∴CD∥EM(内错角相等,两直线平行),∴AB∥CD(平行于同一条直线的两直线平行).【关键问答】①要确定同一平面内两直线不相交,比较困难,因此不便操作.②方法1:同位角相等,两直线平行;方法2:内错角相等,两直线平行;方法3:同旁内角互补,两直线平行.。
5.2 平行线及其判定 同步练习一、填空题:1、如图1,∠1和∠2是直线_______和直线________被直线_____所截得的同位角,∠2和∠3是直线_____和直线________被直线______所截得的__________角。
321FE DCB AHG21ED C BA54321F EDC BA(1) (2) (3) (4)2、如图2,AC 、BC 分别平分∠DAB 、∠ABE ,且∠1与∠2互余, 则______∥_______,理由是_________________________________________。
3、如图3所示,是同位角是的_________________,是内错角的是___________________,是同旁内角关系的是______________________________。
4.如图4,∠B =∠D =∠E ,那么图形中的平行线有___________________________,理由是_________________________________________。
二、选择题:5.如图5,下列推理错误的是( )A.∵∠1=∠2,∴a ∥bB.∵∠1=∠3,∴a ∥bC.∵∠3=∠5,∴c ∥dD.∵∠2+∠4=180°,∴c ∥dd cb a54321l 3l 2l 14321DCBA(5) (6) (7) 6.如图6,3条直线两两相交,其中同位角共有( ) A.6对 B.8对 C.12对 D.16对7.如图7,在下列四组条件中,能判定AB ∥CB 的是( )A.∠1=∠2;B.∠3=∠4;C.∠BAD +∠ABC =180°;D.∠ABD =∠BDC8.在同一平面内有3条直线,如果其中只有两条平行,那么它们的交点个数为( ) A.0 B.1 C.2 D.39.若两条平行线被第3条直线所截,则一组同位角的平分线互相( ) A.垂直 B.平行 C.重合 D.相交10.如图,直线a 、b 与直线c 相交,给出下列条件:①∠1=∠2, ②∠3=∠6, ③∠4+∠7=180°, ④∠5+∠3=180°,其中能判断a ∥b 的是( ) A.①②③④ B.①③④ C.①③ D.②④ 三、解答题:11.如图,∠ABC =∠ADC 、DE 是∠ABC 、∠ ADC 的角平分线,∠1=∠2,求征DC ∥AB 。
第五章相交线与平行线5.2平行线及其判定5.2.1平行线1.在同一平面内的两条不重合的直线的位置关系()A.有两种:垂直或相交B.有三种:平行,垂直或相交C.有两种:平行或相交D.有两种:平行或垂直2.在同一平面内,下列说法中,错误的是()A.过两点有且只有一条直线B.过一点有无数条直线与已知直线平行C.过直线外一点有且只有一条直线与已知直线平行D.过一点有且只有一条直线与已知直线垂直3.如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由是.第3题图第4题图第6题图4.平面上不重合的四条直线,可能产生交点的个数最多为个,最少为个.5.如图所示,直线AB,CD是一条河的两岸,并且AB∥CD,点E为直线AB,CD外一点,现想过点E作河岸CD的平行线,只需过点E作的平行线即可,其理由是.6.观察如图所示的长方体,回答下列问题.(1)用符号表示两棱的位置关系:A1B1AB,AA1AB,A1D1C1D1,AD BC;(2)AB与B1C1所在的直线不相交,它们(填“是”或“不是”)平行线. 由此可知,在内,两条不相交的直线才是平行线.7.如图,P,Q分别是直线EF外两点.(1)过P画直线AB∥EF,过Q画直线CD∥EF;(2)AB与CD有怎样的位置关系?为什么?8.在同一平面内,任意三条直线有哪几种不同的位置关系?你能画图说明吗?下面是小明的解题过程:解:有两种位置关系,如图:你认为小明的解答正确吗?如果不正确,请你给出正确的解答.9.利用直尺画图:(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)把图2网格中的三条线段通过平移使三条线段AB,CD,EF首尾顺次相接组成一个三角形;(3)在图3的网格中画一个四边形,满足:①两组对边互相平行;②任意两个顶点都不在一条网格线上;③顶点都在格点上.5.2.2平行线的判定1.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是.第1题图第2题图2.如图,已知∠1=70°,要使AB∥CD,则需具备的另一个条件是()A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°3.如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为()第3题图第4题图第5题图A.120°B.100°C.80°D.60°4.如图,对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°5.如图,∠1=∠2,则小明判断AD∥BC,你认为他的结论正确吗?你的结论是:.6.已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.7.看图填空.(1)∵∠1=(已知),∴AC∥ED(同位角相等,两直线平行).(2)∵∠2=(已知),∴AB∥FD(内错角相等,两直线平行).(3)∵∠2+=180°(已知),∴AC∥ED(同旁内角互补,两直线平行). 8.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.9.如图,∠A+∠B+∠C+∠D=360°,且∠A=∠C,∠B=∠D,那么AB∥CD,AD∥BC.请说明理由.10.如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH 平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.11.如图,∠BAF=46°,∠ACE=136°,CE⊥CD.问CD∥AB吗?为什么?12.如图所示,AB⊥BD于点B,CD⊥BD于点D,∠1+∠2=180°,试问CD与EF平行吗?为什么?参考答案1. C2. B3.经过直线外一点,有且只有一条直线与这条直线平行.4. AB,平行于同一条直线的两条直线平行.6.(1) A1B1∥AB,AA1⊥AB,A1D1⊥C1D1,AD∥BC;(2)不是,同一平面.7.解:(1)如图.(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD.8.解:不正确,如图所示,故在同一平面内,任意三条直线有四种不同的位置关系.9.解:如图(1),CD∥AB,PQ⊥AB;如图(2),△EFG或△EFH都是所求作的三角形;如图(3),四边形ABCD是所求的平行四边形.5.2.2平行线的判定1.同位角相等,两直线平行.2. C3. D4. D5. AB∥CD.6.平行.7.(1)∠C (2)∠BED (3)∠AFD8.解:∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD. 9.解:∵∠A=∠C,∠B=∠D,∴∠B+∠C=∠D+∠A=360°÷2=180°.∴AB∥CD.∵∠A=∠C,∠B=∠D,∴∠A+∠B=∠C+∠D=360°÷2=180°.∴AD∥BC.10.解:PG∥QH,AB∥CD.理由如下:∵PG平分∠APQ,QH平分∠DQP,∴∠1=∠GPQ=12∠APQ,∠PQH=∠2=12∠PQD.又∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD.∴PG∥QH,AB∥CD.11.解:CD∥AB.理由如下:∵CE⊥CD,∴∠DCE=90°.∵∠ACE=136°,∴∠ACD=360°-136°-90°=134°.∵∠BAF=46°,∴∠BAC=180°-∠BAF=180°-46°=134°.∴∠ACD=∠BAC.∴CD∥AB.12.解:CD∥EF.理由如下:∵AB⊥BD,CD⊥BD,∴AB∥CD.∵∠1+∠2=180°,∴AB∥EF.∴CD∥EF.。
人教版七年级数学下册第五章5.2平行线及其判定同步练习一、选择题1. 下列说法正确的是()A. 同一平面内,两条直线的位置关系只有相交、平行两种B. 同一平面内,不相交的两条线段平行C. 不相交的两条直线是平行线D. 同一平面内,不相交的两条射线平行【答案】A【解析】解:两条线段或两条射线平行,是指它们所在的直线平行,两条线段或射线不相交,不能保证它们所在的直线不相交,故B、D错误;平行线一定是在同一个平面内,在六面体中,很容易找到既不相交,也不平行的直线,故C错误;根据平行线的定义,易知A正确.故选A.2. 下列四种说法中正确的有()①过一点有且只有一条直线与已知直线垂直;②过直线外一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④过直线外一点,有且只有一条直线与已知直线平行。
A. 1种B. 2种C. 3种D. 4种【答案】C【解析】解:①过一点有且只有一条直线与已知直线垂直,正确;②过直线外一点有且只有一条直线与已知直线垂直,正确;③过直线外一点有且只有一条直线与已知直线平行,故错误;④过直线外一点,有且只有一条直线与已知直线平行,正确.故选C.3. 如图所示,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD,其中能使AD∥BC的条件是()A. ①②B. ③④C. ②④D. ①③④【答案】C【解析】①AC=BD,不能判断两直线平行,故错误;②∠DAC=∠BCA,根据内错角相等,两直线平行可得AD∥BC,故正确;③∠ABD和∠CDB是直线AB、CD被BD所截形成的内错角,故可得AB∥CD,故错误;④∠ADB=∠CBD,根据内错角相等,两直线平行可得AD∥BC,故正确.4. 如图所示,下列条件中,能判断直线l1∥l2的是()A. ∠2=∠1B. ∠1=∠4C. ∠2=∠4D. ∠4+∠2=180°【答案】D【解析】A.∠1与∠2并不是由直线l1,l2被第三条直线截得的角,所以无法判定l1//l2,此答案错误;B. ∠1与∠4并不是由直线l1,l2被第三条直线截得的角,所以无法判定l1//l2,此答案错误;C.∠2与∠4是由直线l1,l2被第三条直线截得的同旁内角,但是由∠2=∠4不一定得到∠2+∠4=180°,所以无法判定l1//l2,此答案错误;D. ∠2与∠4是由直线l1,l2被第三条直线截得的同旁内角,且∠2+∠4=180°,所以l1//l2,故此答案正确.故答案选D.【点睛】判别两线平行,常依据以下判定定理:①两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(同位角相等,两直线平行);②条直线被第三条直线所截,如果内错角相等,那么这两条直线平行(内错角相等,两直线平行);③两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(同旁内角互补,两直线平行);④两直线都与第三条直线平行,那么这两条直线也互相平行(若直线a//直线b,直线b//直线c,那么直线a//直线c)(平行的传递性).5. 在同一平面内有三条直线,如果要使其中两条且只有两条平行,那么它们()A. 没有交点B. 只有一个交点C. 有两个交点D. 有三个交点【答案】C【解析】由题意知,第三条直线和两条平行线分别相交,两直线相交只有一个交点,故第三条直线两条平行线相交,共有2个交点.6. 如图所示的四个图形中,∠1=∠2,能判定AB∥CD的是()A. B. C. D.【答案】C【解析】解:选项A、B、D中∠1与∠2均不能形成内错角或同位角,选项C中,∠1和∠2是直线AB和CD被直线AC所截形成的内错角,所以若∠1=∠2,则AB∥CD.故选C.7. 如图所示,要得到DE∥BC,则需要条件()A. CD⊥AB,GF⊥ABB. ∠4+∠5=180°C. ∠1=∠3D. ∠2=∠3【答案】C【解析】解:∠1和∠3是直线DE和BC被直线CD所截形成的内错角,所以要得到DE∥BC,需∠1=∠3.故选C.8. 如图所示,下列说法正确的是()A. 若∠3=∠5,则CD∥EFB. 若∠2=∠6,则CD∥EFC. 若∠4=∠3,则CD∥EFD. 若∠1=∠6,则GH∥AB【答案】C【解析】解:∠4和∠3是直线EF和CD被直线GB所截形成的内错角,所以∠4=∠3时,CD∥EF.故选C.9. 如图所示,要使AB∥CD∥EF,则需∠BAC+∠ACE+∠CEF等于()A. 360°B. 270°C. 200°D. 180°【答案】A。
人教版七年级放学期 5.1 平行线及其判断同步测试一、选择题1.以下说法不正确的选项是().过马路的斑马线是平行线.100米跑道的跑道线是平行线.若a∥b,b∥d,则a⊥d.过直线外一点有且只有一条直线与已知直线平行以下说法正确的选项是().同一平面内不订交的两线段必平行.同一平面内不订交的两射线必平行.同一平面内不订交的一条线段与一条直线必平行.同一平面内不订交的两条直线必平行以下图,在这些四边形AB不平行于CD的是()以下图,能说明AB∥DE的有()①∠1=∠D;②∠CFB+∠D=180°;③∠B=∠D;④∠BFD=∠D.A.1个B.2个C.3个D.4个4.以下图,能说明AD∥BC,以下条件建立的是()A.∠2=∠3B.∠1=∠4C.∠1+∠2=∠3+∠4D.∠A+∠C=180°以下图,假如∠D=∠EFC,那么()∥∥BC∥DC∥EF以下说法错误的选项是()A.同位角不必定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行8.不相邻的两个直角,假如它们有一边在同向来线上,那么另一边相互()A.平行C.平行或垂直B.垂直D.平行或垂直或订交以下说法正确的有()①不订交的两条直线是平行线;②在同一平面内,不订交的两条线段平行③过一点有且只有一条直线与已知直线平行;④若a∥b,bc,则a与c不订交.个个个个在同一平面内,两条不重合直线的地点关系可能是()A.平行或订交B.垂直或订交C.垂直或平行D.平行、垂直或订交二、填空题以下图,若∠1=30°,∠2=80°,∠3=30°,∠4=70°,若AB∥____.12.以下图,若∠1=110°,∠2=70°,则a_______b.如图,光芒AB、CD被一个平面镜反射,此时∠1=∠3,∠2=∠4,那么AB和CD的地点关系是,BE和DF的地点关系是.14.如图,AB∥EF,∠ECD=∠E,则CD∥AB.说理以下:∵∠ECD=∠E()∴CD∥EF()又AB∥EF()∴CD∥AB().在同一平面内,若直线a,b,c知足a⊥b,a⊥c,则b与c的地点关系是______.三、综合题16.以下图,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗??为何?以下图,已知直线EF和AB,CD分别订交于K,H,且EG⊥AB,∠CHF=60,∠E=?30°,试说明AB∥CD.18.(1)如图①,若∠B+∠D=∠BED,试猜想AB 与CD的地点关系,并说明原因。
平行线及其判定第3课时配套练习
1.如图1所示,下列条件中,能判断AB ∥CD 的是( )
A.∠BAD=∠BCD
B.∠1=∠2;
C.∠3=∠4
D.∠BAC=∠ACD
34D C B A
21
F E D C B A E D
C A (1) (2) (3)
2.如图2所示,如果∠D=∠E FC,那么( )
A.AD ∥BC
B.EF ∥BC
C.AB ∥DC
D.AD ∥EF
3.如图3所示,能判断AB ∥CE 的条件是( )
A.∠A=∠ACE
B.∠A=∠ECD
C.∠B=∠BCA
D.∠B=∠ACE
4.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是 ( )
A 、 第一次右拐50 o ,第二次左拐130 o
B 、 第一次左拐50 o ,第二次右拐50 o
C 、 第一次左拐50 o ,第二次左拐130 o
D 、 第一次右拐50 o ,第二次右拐50 o
5.(2000.江苏)如图所示,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( )
A.①②
B.①③
C.①④
D.③④
6.如图,∠B =60°,∠C =120°,则___________
7.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.
(1)由∠CBE=∠A 可以判断______∥______,根据是_________.
(2)由∠CBE=∠C 可以判断______∥______,根据是_________. 8.如图,∠5=∠CDA =∠ABC ,∠1=∠4,∠2=∠3,∠BAD+∠CDA=180°,填空: ∵∠5=∠CDA (已知)
∴ // ( ) ∵∠5=∠ABC (已知)
E
D C B A A B C D
8765
c b a 3412
D C B A 2
1∴ // ( ) ∵∠2=∠3(已知)
∴ // ( ) ∵∠BAD+∠CDA=180°(已知)
∴ // ( ) ∵∠5=∠CDA (已知),又∵∠5与∠BCD 互补( ) ∠CDA 与 互补(邻补角定义)
∴∠BCD=∠6( )
∴ // ( )
9.如图所示,已知∠1=∠2,AB 平分∠DAB,试说明DC ∥AB.
10.如图是小民家买的一个铝合金制作的镜框,他想知道这镜框相对的两边是否平行,你能帮他想一想办法吗?并说明你的理由?
11.如图,BC 、DE 分别平分∠ABD 和∠BDF ,且∠1=∠2,请找出平行线,并说明理由。
答案
1. D
2. D
3. A
4. B
5. A
6.AB∥CD
7.(1)AD∥CB,两直线平行,同位角相等(2)AB∥CD,两直线平行,内错角相等
8.AD, BC, 两直线平行,内错角相等,AB, CD, 两直线平行,同位角相等,AB, CD, 两直
线平行,内错角相等,AB, CD, 两直线平行,同旁内角互补,邻补角的定义,∠6,等角的补角相等,AD, BC, 两直线平行,同旁内角互补
9.略
10.略
11.AB∥DF ,BC∥DE。