西南石油大学无碳小车设计方案1
- 格式:doc
- 大小:6.73 MB
- 文档页数:10
设计一种小车,驱动其行走及转向的能量是根据能量转换原理, 由给定重力势能转换而得到的.该给定重力势能由竞赛时统一使用质量为1Kg 的标准砝码(¢50×65 mm,碳钢制作) 来获得4J 能量,要求砝码的可下降高度为400±2mm.标准砝码始终由小车承载,不允许从小车上掉落。
图1 为小车示意图。
图一要求小车在行走过程中完成所有动作所需的能量均由此给定重力势能转换而得,不可以使用任何其他来源的能量。
要求小车具有转向控制机构,且此转向控制机构具有可调节功能,以适应放有不同间距障碍物的竞赛场地。
要求小车为三轮结构。
在300~500mm 范围内产生一个“8”字型赛道障碍物间距值。
重物块从距小车底板400mm 的高处下落,带动主动轴转动,使小车运动,再通过齿轮传动和转向结构,实现在转动一定周期时,小车进行方向的改变,从而实现8 字的运动轨迹。
通过对命题的分析,我们小组有了一个比较清晰的思路。
我们在网上搜集资料,对每个结构的各种方案进行了比较,再结合我们的实际情况和自己想法,最后确定了以下结构。
对于各种参数的确定,我们只要是对齿轮进行了计算,其他参数是在原有的基础上进行了修改。
在设计过程中,我们主要采用了Auto CAD、Solidworks 软件进行辅助设计。
车架受力小,精度要求低,考虑到铝板密度小,强度对于小车也足够,而且方便加工,故本次制作选择3mm 厚铝板。
由于我们是后轮单轮驱动,前导向轮与驱动轮的横向距离过大会使小车在绕行8 字时轨迹不对称, 即一个圆大一个圆小。
为避免这种情况我们将驱动轮与导向轮的横向距离取消。
原动机构是把重物的重力势能转化为小车动能的装置.要求1。
驱动力适中,不至于小车转弯时速度过大倾翻.2.启动时提供足够的加速度使小车开始行走.3.到达终点时的速度要尽可能小,避免对小车过大的冲击. 同时使重块的动能尽可能的转化到驱动小车前进上,如果重块竖直方向的速度较大,不仅浪费了重物的动能,下落时对车架的冲击还会影响小车的运动。
第二届湖南省大学生工程训练综合能力竞赛无碳小车设计方案参赛者:陈英山(11级机自)刘少辉(11级机自吴达友(11级机自)1.车架由于车架只是起支撑作用而且不用受很大的力,精度要求不高,所以在考虑成本和车架重量后采用木材制作。
2.主动力主动力是由重块的重力势能转化而来。
能实现这一功能的方案如图所示,采用绳轮方法。
重物在下落的过程中可以通过导绳轮提供主动力。
导绳轮机构简单,.产生的主动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。
而且绕绳轮采用可以调绕线半径大小圆锥状的绳轮。
可以通过改变绕在绳轮上的半径大小来改变驱动力的大小,从而适应较多不同的场地。
3.传动机构传动机构的功能是把动力和运动传递到转向机构和驱动轮上。
要使小车行驶的更远,传动机构必需传递效率高、传动稳定、结构简单重量轻等。
所以如图所示:(1).不用其它额外的传动装置,直接由动力轴驱动轮子和转向机构.(2).采用齿轮作为传动装置,因为齿轮具有效率高、结构紧凑、传动比稳定.4.转向装置为了使小车能绕开障碍物,我们采用了如图所示的转向装置。
该装置结构简单,同时利用偏心杆将转向齿轮的旋转运动转化为满足要求的来回摆动,带动转向轮左右转动从而实现拐弯避障的功能。
前轮还采用微调螺母对转向是的距离进行微调,以获得最佳路线5.行走装置行走装置即为三个轮子,由滚动摩擦理论知道摩擦力矩与正压力的关系为δ*N M =,而对于相同的材料δ为一定值。
而滚动摩擦阻力R N R M f δ⋅==,所以轮子越大小车受到的阻力越小,因此能够走的更远。
由于小车是沿着曲线前进的,后轮必定会产生差速。
所以我们采用单轮驱动。
单轮驱动即只利用一个轮子作为驱动轮,一个为导向轮,另一个为从动轮。
㈠无碳小车设计思路根据本届竞赛题目对无碳小车(以下简称:小车)功能设计、徽标设计的要求,我们首先确定如下的设计思路:1、根据能量守恒定律,物块下落的重力势能直接转化为小车前进的动能时,能量损失最少,所以小车前进能量来源直接由重物下落过程中减少的重力势能提供为宜。
2、根据小车功能设计要求(小车在前行时能够自动避开赛道上设置的障碍物),小车前进的路线具有一定的周期性;考虑到小车转向时速度有损失,小车前进的线路是命题设计要求的最优解。
3、结构的设计与成本分析、加工工艺设计统筹考虑,力求产品的最优化设计。
4、徽标反映本届竞赛主题:无碳小车㈡无碳小车设计方案以下是具体的设计方案介绍:一、徽标设计(图1)图1(1)设计说明:整个徽标是一个椭圆形的圈,包围着一个车轮,车轮下面写着“No Carbon”的字样。
其中,车轮代表着我们所做的无碳小车。
其后面是由众多抽象的“S”形条纹组成,代表着我们的无碳小车由所要求的“S”形跑到飞驰而出。
其下的“No Carbon”字样简单明了地说明了这届大赛的主题,并且外面的椭圆圈,代表着能量的意识,说明了势能与动能相互转换的过程。
最后,以整体上看,整个图形像一只眼睛。
看着远方,对未来全球实现无碳充满希望。
(2)材料:45钢(3)制作:激光打标机喷漆外圈红色R:255 G:0 B:0 内圈红色R:170 G:0 B:0 “No”R:85 G:85 :B::85 “Carbon”R:170 G:0 B:0车轮R:255 G:85 B:85 “S”R:255 G:85~170 B:0~85二、小车动力、动力—转向、转向系统1、小车的动力系统(图2)(1)方案:根据竞赛命题要求(小车前行过程中完成的所有动作所需的能量均重物损失最少,所以以绳拉力为动力为宜。
拉力作用于锥型原动轮(以下简称:原动轮)上,形成力矩,力矩对该原动轮产生转动效应,通过一系列齿轮的传动,将动力输出,使后轮转动,小车前进。
无碳小车机构设计方案一:设计目标:1:重力势能最大限度的转化为小车的动能;2:小车能够自动的转向绕开障碍物;3:行驶的距离最大化;二:设计思路:1:小车的动力来自于重物下落的重力势能。
用皮带将重物与驱动轮轴连接,通过重物下降使皮带带动后轮轴旋转,从而实现小车的运动。
然而重物下落不可避免的要与小车碰撞从而造成能量损失。
为使重力势能最大限度转化为动能(重物与小车碰撞时速度最小或为零),则需要重物的下降过程是静止——加速——匀速——减速——静止。
而这样的过程要通过改变主动力矩实现。
具体是通过一根大小合适的锥形轴,改变动力线缠绕的半径。
从而改变主动力矩,使其与摩擦阻力矩之间的大小发生转变。
2:要使小车自动转弯,首先需要将后轮的运动传递给转向机构,其次需要设计一套装置利用后轮传递过来的运动实现前轮的偏转与还原。
最后为达到有规律的自动转弯,需进行运动参数计算,得到行驶路线图,通过小车行驶一个周期的距离前轮偏转两次,设定传动比,设定转向部件尺寸与安装位置。
3:行驶距离最大化,是需要各种其他损失最小化。
可以让小车的路线为直线——曲线——直线,即通过一个装置使小车在需要转向时转向并快速回复直线行驶,以避免曲线行驶造成的能量消耗。
也可以在小车结构尺寸设计时在满足其它条件后尽量减小尺寸,从而减小小车的重力和阻力。
三:详细设计方案1)小车结构尺寸如图所示2)机构分析1:动力机构:后轮的主运动通过缠绕在锥形轴上的皮带带动,当重物下降,带动皮带运动,皮带带动轴即后轮运动。
由于皮带缠绕在半径大小不等的锥形轴上,在起始时转动半径较大,启动转矩大,有利于启动。
启动后,转动半径开始减小(随缠绕的锥形轴半径减小),转速提高,转矩变小,和阻力平衡后小车匀速运动。
当重物距小车很近时,转径再次变小,皮带的拉力不足以使主动轴转动,但由于惯性,重物减速下降,直至与小车接触,此时重物速度很小或为零。
2:传动机构:后轮上通过键连接一个齿轮,模数为1,齿数17,然后与另一根轴(过渡轴)上齿数51的齿轮啮合,实现了一级传动比i=3,然后同一根轴上的另一模数为1,齿数17的齿轮被轴带动,它和第三根轴(转向动力轴)上齿数为68的齿轮啮合,实现了二级传动比i=4。
无碳小车方案设计论文摘要针对某一种运行要求来说,最简单有效的机械结构,必然是最理想、最复杂的数学模型。外观简单、制造方便、运行效率高的模型必然是基于复杂高等数学建模的模型。即数学建模过程越复杂,则生产出的机械结构越简单。本着这一思想,结合对无碳小车规则改进的充分利用,现对本组小车设计思路及过程作一综述。关键字:无碳小车; 非匀速比传动; 离心离合器目录一、小车布局的确定 (3)二、驱动轮主动差速机构设计思路 (3)(一)非圆齿轮副 (3)(二)偏心轮缠放线机构 (4)(三)偏心轮同步带机构 (4)(1)同步带安装间隙的利用 (6)(2)弹簧张紧 (6)(3)偏心轮(凸轮)张紧 (6)(4)张紧机构最终方案选择 (7)三、相关计算 (8)(一)转速比计算 (8)(二)小车行驶轨迹计算 (9)四、两种限速离心离合器…………………………………………………………(11)(一)摩擦块离心离合器 (12)(二)摩擦盘离心离合器 (12)五、结语 (13)无碳小车设计方案的确定,总体来说是一个由机械结构布局到数学模型再回归到机械结构的过程。依据此思路,现综述我组小车设计思路如下:一、小车布局的确定与上届比赛相比,此次选修课对小车设计的要求即规则做出了一定的调整,其重点在于1、车轮数量不限2、驱动轮位置及数量不限3、车轮布局不限。经过对规则的深入研究,依据充分利用规则的原则,我组经过讨论,大体确定了一种结构简单紧凑的设计布局,即依靠驱动轮主动差速,实现驱动与转向一体的二轮主动差速驱动、一轮自由随动的小车布局。此种布局将转向与驱动合为一体,必然大幅缩减零件数量及整车尺寸。二、驱动轮主动差速机构设计思路对于驱动轮来讲,只需要一侧轮与另一侧线速度不同,就会产生不同的转弯半径而使小车依某一瞬心发生转动。而这种转动又是周期性的,所以只需使两侧轮线速度差作周期性变化。对于单侧轮来讲,则需要一个匀速比传动,综合两侧差速周期性变化的要求来说,只需将一侧转速峰值与另一侧低点同时发生,两侧运行周期相同即可实现。所以依照此布局的小车其关键在于非匀速比传动机构的设计。在设计过程中主要考虑了一下几种非匀速传动机构。(一)非圆齿轮副为实现非匀速传动的非圆齿轮副可能的形式有椭圆齿轮副、卵线齿轮副和偏心圆齿轮副等几种。齿轮转动的明显优势就是传动效率高、机构可靠、误差小,但是非圆齿轮副对于我们现有的实力来讲,它的缺点是巨大的,即计算复杂、加工困难、调试空间狭窄。所以经过考虑,此种机构基本可以排除不用。(二)偏心轮缠放线机构通过如图所示的一组共轴异相位偏心线轮实现一个放线一个收线带动从动轮轴的非匀速传动。为防止线绳打滑可将线绳末端固定在偏心线轮上。此种机构的最主要缺陷在于线绳伸缩量对其运行精度影响较大,且线的伸缩量难以计算,不可预知性较难克服。因此排除此种机构。(三)偏心轮同步带机构通过偏心轮的主动旋转,就可以实现从动轮的非匀速旋转,并达到周期性变化的要求。而且就计算和加工来说,偏心轮不需要计算节曲线,也不需要加工形状复杂的外形,只需加工正圆即可。但是,如果采用此种偏心轮同步带传动机构的话,也会出现一些问题。如图:图示的是偏心轮的两种极限位置,借此说明偏心轮在不同相位时所需的同步带长度是不同的。所以需要一个几种防止同步带松动脱出的机构以实现此套非匀速传动机构的正常运行。首先同步带的长度应满足主动偏心轮与从动轮圆心距最大,即所需皮带长度最大时的量。随着偏心轮的转动,两轮间的圆心距会变小,所需皮带长度会变短,原来安装的同步带这时会松弛下来,甚至脱出齿槽。所以解决问题的核心应该是如何张紧变松弛的皮带。(1)同步带安装间隙的利用当偏心轮偏心距不大时,可以依靠同步带齿高实现间隙增大但不打滑的效果,不令加张紧机构。此种方案仅适用于偏心距不大且同步带具有较合适的齿形时的情况。而且极易导致传动精确度的下降,增大不可控性。(2)弹簧张紧添加如图所示的一个张紧轮,并通过弹簧的弹力被动调节张紧轮的位置,在皮带变松弛时顶起,张紧皮带;所需皮带变长时弹簧受力,张紧轮减小位移量。(3)偏心轮(凸轮)张紧张紧轮设计成偏心轮(凸轮)形状,置于同步带内侧,依靠同步带的齿拨动其转动,并利用其非圆外廓实现张紧。此种机构张紧程度控制精确,同步带受力均匀,效率高、可靠性好;但是缺点在于计算负担繁重,如果需要凸轮的话还会给加工带来难度,而且要实现在调试中随主动偏心轮偏心距的变化而变化,其难度和成本都会成倍增加。(4)张紧机构最终方案选择最终方案确定为弹簧张紧,原因如下:①较之无另加张紧机构而言可调试范围大、传动效果好、安全系数高;②较之偏心轮(凸轮)张紧机构而言,计算和加工简单、便于调试;③当主被动轮圆心距由小变大时要克服弹簧弹力,运行阻力变大,大于平均值,弹簧储存能量;当主被动轮圆心距由大变小时弹簧要释放能量,运行阻力变小,小于平均值。如图示:左右两边偏心轮相位相差180度,两边的受力情况和运转情况都相反,因此在一侧张紧轮要克服弹力,弹簧储存能量,运转阻力大的同时,另一侧张几轮的弹簧在释放能量,运转阻力小。因为左右两侧偏心轮是共轴的,所以两侧运行阻力对轴来讲恰好抵消,并不影响轴的总的转动阻力。也就是说,小车不会因此产生忽快忽慢或中途停止的现象。三、相关计算(一)转速比计算设轴距为L,偏心轮半径R,从动轮半径r,偏心轮偏心距e、转速为ω;时间t=0时两轮圆心距最大,偏心轮顺时针转动。则从动轮转速ω'=其函数图象如图:另一侧转速可表示为(二)小车行驶轨迹计算,轮距d,左侧轮速度v l,右侧轮速度v r。设轴中点转弯半径R转则有R转=其图象如图:设轨迹图象如图:车体转动角速度Ω为其中K表示车轮半径设初始位置小车中轴线与轨迹图象x轴夹角θ,小车经过时间t后转过角度Δθ,小车驱动轴中点速度v,则有一下方程:∫Ωdt=ΔθVx=v cosθVy=v sinθX=vx dtY=vy dtθ0=dydx│t=0联立以上方程求解即可得到小车驱动轴中点的运行轨迹的参数方程。四、两种限速离心离合器为了保证小车的正常运行,避免中途停车,在设计时必须对传动比取一定的安全系数,这样就造成小车的速度会越来越快。这就存在小车因速度过快而发生运动精确度降低的危险。所以就需要一种小车限速装置。(一)摩擦块离心离合器支架安装在轴上随轴转动。三个摩擦内蹄安装在支架上,并可作轴向滑动。内蹄两两之间用拉簧连接。当轴转速提高时,三个内蹄会逐渐远离轴心,加大了转动惯量,减小了加速度;当速度提高到一定程度时,内蹄会与外壳摩擦,从而将速度控制在某一定值。外壳为非封闭式的,可通过调节螺栓螺母的配合改变外壳内径,以实现调节离合器所允许的最大速度。(二)摩擦盘式离心离合器此种离心离合器原理与上一种类似,不同的是它主要靠两片摩擦盘与螺母的摩擦来实现限速的目的。两颗钢球用线绳或细杆与摩擦盘连接,当转速提高时钢球会作离心运动,同时拉动摩擦盘互相靠近,直至与轴上的螺母接触摩擦。此种离合器依靠两枚螺母之间间距的调整,同样可以实现对允许最高转速的调整。比较两种限速机构,前一种摩擦块离合器轴向尺寸较小,占用轴长度小,运行精准可靠;但是零件加工相对复杂,零件数量较多。后一种摩擦盘式的离合器结构简单,但是长度较长。为了控制小车宽度,我们选用第一种摩擦块离合器。五、结语我组设计的无碳小车,以两轮主动差速兼顾驱动和转向、一自由轮作支撑为总体布局,以偏心轮同步带的非匀速比传动为核心,以离心离合器刹车为辅助,基本实现了小车尺寸小、零件少、成本低、效率高、稳定性好的目的。。
基于旋转储能的无碳小车设计方案0 引言本份报告概述了本小队的无碳小车的设计方案、总体结构布局,最后对部分关键零件绘制了示意图进行了动力学分析,完成了零件参数的匹配设计,并对能量流动过程中的损失进行了分析和估计。
1 基于旋转储能的无碳小车结构设计根据规则,驱动小车行驶过程的所有能量来自于1kg重块从500mm高度垂直下落的重力势能并要求在行驶中避障,因此可以将设计过程分为三个环节:能量转换及储能环节、传动环节和转向环节。
1.1 能量转换与存储如何将重块的势能转换为可以驱动车辆持续行驶的动能是小车设计中至关重要的一个环节,本方案采用将重块的势能转化为旋转的动能的方式来实现能量转换与存储,如图1所示:图1 旋转储能装置在O点处安置轴承使物体可以围绕O点自由转动当重块从高空A点落下至B点时,具备较高的下落速度v,落入夹紧装置后绕O点高速旋转,从而将物体下落的势能转化为旋转动能。
在重物下落至B点时,需一掐紧装置将其抓住,其设计结构如图1中所示,主要由四个关键部件来实现,掐块(1)用来将落入筐体中的重块固定住,当重物下落与掐块接触时将掐块推入槽中,待重物落下后,掐块在复位弹簧(2)的作用下回位,挡住重块防止其在转动过程中从筐中飞出,限位块(3)的作用是防止掐块从槽中脱出,筐底的缓冲弹簧(4)用来减少重物与框体接触过程中产生的冲击。
1.2 传动环节重块下落时具有较高的速度,因此动力输出轴上具有很高的转速,在传动到车轮的过程中,必须首先进行减速增扭,另外,为了使车辆可以平稳起步,在初始阶段车辆需要一个逐步增大的较大扭矩,在车辆达到一定速度之后,力矩逐渐降低,同时需要设置一个动力缓冲机构,使重块旋转所产生的力矩逐渐施加在车辆上。
此处采用一级齿轮减速和弹簧缓冲机构来实现上述功能,如图2所示。
图中一级齿轮减速机构来对重块旋转所产生的力矩进行减速增扭,由于弹簧缓冲机构在运动初始阶段弹簧不受力,处于松弛状态,所以在重块落下时阻力为0,不会产生冲击,随着重块的选择,弹簧开始压缩,当弹簧的压缩量达到足以使弹簧推力所产生的力矩客服滚动阻力时,车辆开始起步,因此此弹簧缓冲机构可以起到类似于车辆离合器的作用,使车辆平稳起步,减少冲击。
无碳小车制作方案摘要第四届全国大学生工程训练综合能力竞赛的命名主题是“无碳小车”。
设计过程特别注重设计方法,对制作过程的材料选择,加工难度和成本也有更高要求。
我们综合运用参数化设计,数控加工等先进设计加工方法,采用SOLIDWORKS,CREO等软件配合制作。
我们把小车的制作分为材料选择,制作加工和装配三个过程。
将每个过程独立分析又联合考虑,通过学习提升加工人员综合素质、充分利用已有资源,层层把关,降低加工难度,加工误差,缩短时间和减少制作成本,一步步向最优的制作方案靠近。
根据制作方法,我们将零件分为标准件和非标准件两种。
为了制作过程更加容易完成,设计过程尽量使用标准件,然后购买。
非标准件将由参赛者加工完成。
关键字:参数化设计数控加工标准件非标准件一、材料选择1.1小车零件标准件:M4×12盘头螺钉和配套螺母、M8螺母、H8×M5*36+10隔离螺柱6个、1M-20齿齿轮1个、1M-80齿齿轮1个、M8立式KP08轴承座5个、卧式轴承座1个、导向轮、顶滑轮非标准件:底板、后轮2个、后轮轴1个、大齿轮轴1个、转片1个、转片轴、连架杆2个、微调螺杆1个、前摇杆1个、车顶1个、载重物板、撑杆3个、连杆1个1.2现有设备立式升降台铣床、立式数控加工中心、数控车床、数控铣钻床、万能外圆磨床、数控铣床、台虎钳、锯、刻度尺1.3非标准件材料选择市场上常用的机械材料有铸铝合金、铝合金、碳钢、铸铁、有机玻璃、合金钢等等。
从材料的成本和加工程度考虑,就数铝合金和亚克力板(有机玻璃)最好。
铝合金密度低,但强度比较高,接近或超过优质钢,塑性好,具有优良的导电性,导热性和抗腐蚀性。
亚克力板具有较好的透明性,化学稳定性,力学性能和耐候性,易加工,外观优美,价格低廉等特点。
通过上述分析,理应选择亚克力板,但是机电实验中心现有设备限制,在事件加工过程中,亚克力板的加工容易裂,无法满足要求。
综上所述,非标准件的材料统一采用铝合金。
第二届全国大学生工程训练综合能力竞赛无碳小车设计说明书参赛者:王金卫指导老师:刘吉兆陈丰峰2011-1-16摘要第二届全国大学生工程训练综合能力竞赛命题主题为“无碳小车”。
在设计小车过程中特别注重设计的方法,力求通过对命题的分析得到清晰开阔的设计思路;作品的设计做到有系统性规范性和创新性;设计过程中综合考虑材料、加工、制造成本等给方面因素。
我们借鉴了参数化设计、优化设计、系统设计等现代设计发发明理论方法;采用了MATLAB、PROE等软件辅助设计。
我们把小车的设计分为三个阶段:方案设计、技术设计、制作调试。
通过每一阶段的深入分析、层层把关,是我们的设计尽可能向最优设计靠拢。
方案设计阶段根据小车功能要求我们根据机器的构成(原动机构、传动机构、执行机构、控制部分、辅助部分)把小车分为车架、原动机构、传动机构、转向机构、行走机构、微调机构六个模块,进行模块化设计.使其每个零件或结构件具有平衡性已达到减小摩擦.提高校车整体平衡的目的。
分别针对每一个模块进行多方案设计,通过综合对比选择出最优的方案组合。
我们的方案为:车架采用三角底板式、原动机构采用了锥形轴、传动机构采用齿轮或没有该机构、转向机构采用四连杆机构、行走机构采用单轮驱动实现差速、微调机构采用微调螺母螺杆。
其中转向机构利用了调心轴承、关节轴承.圆锥滚子轴承。
技术设计阶段我们先对方案建立数学模型进行理论分析,借助MATLAB 分别进行了能耗规律分析、运动学分析、动力学分析、灵敏度分析。
进而得出了小车的具体参数,和运动规律。
接着应用PROE软件进行了小车的实体建模和部分运动仿真。
在实体建模的基础上对每一个零件进行了详细的设计,综合考虑零件材料性能、加工工艺、成本等。
小车大多的零件是标准件、可以购买,同时除部分要求加工精度高的部分需要特殊加工外,大多数都可以通过手工加工出来。
对于塑料会采用自制的‘电锯’切割。
因为小车受力都不大,因此大量采用胶接,简化零件及零件装配。
无碳小车设计方案设计人:张庆辉、杨志鹏、王浩指导老师:黄新平设计时间:2012年11月25日无碳小车方案设计摘要:通过对小车的功能分析,我们发现小车需要完成重力势能的转换、驱动自身行走、自动避开障碍物等三方面功能。
为了方便设计这里根据小车所要完成的功能将小车划分为五个部分进行设计(车架、原动机构、传动机构、转向机构、行走机构、微调机构)。
首先我们针对车架的选择进行了讨论分析,我们确定的车架形式有两种一种是三角底板式,另一种是骨架式的,考虑到车架的受力平衡问题以及稳定性问题,我们最终选择了三角底板式车架;确定车架后我们接着进行了原动机构的设计,经过讨论我们确定了三种原动机构,它们分别是绳轮式原动机构、弹簧储能式原动机构和链轮式原动机构。
鉴于弹簧储能式原动机构和链轮式原动机构制造起来比较困难,我们选择了绳轮式原动机构。
对于传动机构我们选择了直齿圆柱齿轮,一是制造比较方便,二是采用标准件时比较容易购买。
对于转向机构我们选择的是曲柄连杆+摇杆机构。
而行走机构我们选择了单轮驱动机构,目的在于保证运动的准确性。
微调机构我们采用的是微调螺母。
正文:接下来我们将具体介绍实现各个功能的不同部分的选择车架车架需承受较大的力,而精度要求不是很高。
考虑到重量加工成本等,车架采用304L不锈钢板加工制作成三角底板式,304L不锈钢板耐蚀性、外观、加工性、强度等特性远远超过其它材料,并且也是目前最常用的钢材,因此材料比较容易获得,可以通过回收实习工厂加工废料获得。
原动机构原动机构的作用是将重块的重力势能转化为小车的机械能即小车的驱动力。
能实现这一功能的方案有多种,但从效率和简洁性的分析来看绳轮式原动机构相较于弹簧储能式原动机构和链轮式原动机构更具有优势。
除此之外,小车对原动机构还有其它方面的具体要求:1、驱动力应适中,以防止小车在拐弯时不至于因速度过大而发生倾翻现象,或由于重块晃动影响行走路线。
2、小车到达终点前重块竖直方向的速度要尽可能小,避免对小车造成过大的冲击。