盾构机的设计特点
- 格式:doc
- 大小:274.50 KB
- 文档页数:7
盾构机形状分类盾构机是一种重要的地下施工设备,广泛应用于地铁、公路、水利等基础设施建设。
盾构机的形状分类主要基于其推进方式和土壤类型,下面将详细介绍这两种分类方式。
一、按照推进方式分类1.圆盘式盾构机:这种盾构机的掘进面为圆形,采用高压压缩空气或水压力将土壤从盾构机前面强制排出。
由于掘进方式相对简单,适用于掌子面等不太严格的地质条件下。
其特点在于掘进速度快,但对土壤的适应性相对较弱。
2.双层壳式盾构机:这种盾构机的设计特点是其扩大的空间,使得泥圈有时间沉淀,泥圈能够良好地控制口径,减轻推力。
因此,它适用于高压地层和软岩地层。
其优点在于管道底部和顶部可同时施工,提高了施工效率。
3.泥水平衡式盾构机:这种盾构机采用了水力平衡措施,利用泥土的液力来平衡水的压力,使盾构机推力稳定,不易失控。
因此,它广泛应用于河底隧道和河岸隧道等水下施工的场合。
其特点在于能适应复杂的地质环境,保持掘进稳定。
4.泡沫平衡盾构机:这种盾构机的设计特点在于其表面能够保证泡沫的流动和泡沫切断器的正常使用。
由于泡沫的体积轻,泡沫能够松散地填充盾构机背壁径向面积,使其平衡并且浮力较大,使推进面更加稳定。
因此,它适用于对掘进面稳定性要求较高的场合。
二、按照土壤类型分类盾构机还可以根据施工地段的土壤类型进行分类,如硬岩盾构机、软土盾构机等。
硬岩盾构机主要适用于硬质岩石、石头、灰岩、花岗岩等围岩质地的掘进,能够应对高硬度的土壤环境。
而软土盾构机则更适用于软土、粘土等软质土壤环境,其掘进方式更加温和,对土壤的扰动较小。
总的来说,盾构机的形状分类主要基于其推进方式和土壤类型,不同的分类方式反映了盾构机适应不同施工环境和土壤条件的能力。
在选择盾构机时,需要根据具体的施工需求和地质条件来选择合适的类型,以保证施工的顺利进行。
盾构法隧道主要内容一、盾构施工技术的进展历史二、盾构施工技术的国内外进呈现状三、盾构机的种类四、盾构施工的技术特点五、盾构机工作原理五、盾构施工的主要工序六、中国承受盾构修建地铁历史及规划八、工程案例一、盾构施工技术的进展历史1盾构施工法的制造1818 年,Brunel 从一种食船虫在船身上打洞一事受到启发,争论出了盾构工法。
历经艰辛,终在1841 年使泰晤士河底隧道贯穿,该隧道自1825 年开工,历时17 年,可充分说明技术的成功是多么的坎坷!2盾构施工法的进展阶段自1818 年诞生进展到现在已有180 多年的历史,概括而言,有四个阶段:(1)初期盾构:以Brunel 盾构为代表;(2)其次代盾构:以机械式、气压式、TBM 及城市盾构工法为代表;(3)第三代盾构:以闭胸式盾构为代表〔泥水式、土压式〕;(4)第三代盾构:以安全、高速、大深度、大断面、断面多样化、异形化为特色。
二、盾构施工技术的国内外进呈现状1国外盾构施工技术现状以欧洲和日本最为兴旺。
美国:纽约自1900 年起用气压盾构就建筑了数十条水底隧道,目前根本是以盾构施工占90%以上;前苏联:莫斯科自1932 年开头承受盾构法施工地铁等地下工程;德国、法国、英国、加坡等也在广泛承受盾构法施工地下工程。
日本:自1917 年在国铁羽越线折渡隧道〔泻县〕的建设中首次承受盾构工法。
日本从盾构施工法正式开头用于城市隧道建设的1964 年至1984 年约20 年间,工研制盾构机超过5000 台。
目前日本已经成为世界上盾构制造技术以及施工技术的大国,占据世界上仅80%的盾构份额。
1917 年——日本国铁隧道建设中首次承受盾构工法1953 年——日本关门隧道承受盾构工法1957 年——日本地铁承受顶盖式盾构施工,这是城市隧道首次承受盾构1960 年——日本名古屋地铁承受盾构施工1962 年——东京下水道承受圆形盾构。
此后,盾构渐渐用于小断面的市政管道建设1964 年——日本下水道工程,最先承受泥水式盾构1974 年——日本独立争论出土压式盾构1975 年——日本争论出砾石泥水式盾构1981 年——日本争论出加气泡盾构2国内盾构施工技术现状国内最早是在1956 年,阜海州露天煤矿承受直径2.66m 的盾构,在砂土层中成功地开掘了一条流水巷道。
盾构在砂层中掘进的技术措施一、概况盾构在砂层中穿越,地面为城市交通要道或湖面,隧道埋深约为7.8m~14.3m,砂层为良好的富水和透水地层,饱含地下水,渗透系数为8.26~29.11m/d。
二、盾构机技术特点1、土压平衡式盾构又称削土密封式或泥土加压式盾构。
适用于含水的软土、软岩、硬岩及混合地层的隧道掘进。
2、掘进施工可采用复合式土压平衡盾构机具有敞开式、半敞开式及土压平衡三种掘进模式。
掘进操作可自动控制、也可半自动控制或手动控制。
通过试验段的掘进选定六个施工管理指标来进行掘进控制管理:a、土仓压力;b、推进速度;c、总推力;d、排土量;e、刀盘转速和扭矩;f、注浆压力和注浆量,其中土仓压力是主要的管理指标。
3、盾构机配备了自动导向系统, 可控制和稳定掘进方向, 具有灵活转向纠偏能力。
4、盾构刀盘结构能满足不同地层的掘进速度要求。
5、盾构配备了同步注浆系统, 有利于控制隧道周围土体沉陷及建筑物保护。
6、盾构配备了泡沫及膨润土注入系统, 有利于碴土改良。
配备了压缩空气系统, 有利于防止工作面的渗水及控制地表沉降。
三、掘进施工技术1、出现问题:盾构机在富水砂层施工时,容易引起地层沉降大、隧道喷涌、盾构姿态难控制等问题。
2、主要施工技术措施(1)采用土压平衡模式掘进,进行开挖面稳定计算,设定合理的掘进参数,控制盾构机姿态,控制土压力以稳定开作面,控制地表沉降,将施工对地层的影响减到最小。
1)掘进过程土仓顶部压力控制在1.0bar,掘进速度控制在30mm/min以上,出土量不得大于50m3;2)盾构机姿态保持向上,趋势控制在范围±4。
3)掘进的过程必须尽可能的快,中间尽量减少停滞时间。
4)在掘进接近1600mm时根据土仓顶部压力减少或不出土,以使掘进至1800mm时土仓顶部压力达到2.0bar~3.0bar范围。
(2)注入泡沫剂1)盾构掘进过程中向土仓内及刀盘面注入泡沫等添加材料, 形成隔水泥膜,防止水从地层中渗出,提高土仓内碴土的稠度来改善碴土的止水性以及在螺旋输送机上安装保压泵碴装置,以使土仓内的压力稳定平衡。
盾构的分类及其工作原理盾构作为一种现代化的隧道掘进技术,广泛应用于隧道建设和地下管网工程中。
它的分类和工作原理是大家在学习和了解盾构技术时必须掌握的基础知识。
一、盾构的分类根据盾构机的工作原理和结构特点,盾构可分为以下几类:1. 土压平衡盾构:土压平衡盾构是最常见的一种盾构类型,适用于稳定的软土和黏土层。
其工作原理是通过对盾构机前部施加适当的土压力来平衡管道周围土层的压力,保持隧道面的稳定。
土压平衡盾构一般配备有刀盘,刀盘上装有刀具,能够切削和推进土层。
2. 水压平衡盾构:水压平衡盾构主要用于软土层、淤泥和水下地层的掘进。
其工作原理是通过在盾构机前部与周围水压力相等的水力平衡,来消除土层和水的差异压力,保持隧道面的稳定。
水压平衡盾构一般需要在盾构机前部设置压力室,通过泥浆注入来维持水力平衡。
3. 双层壳体盾构:双层壳体盾构是一种特殊的盾构类型,它结合了土压平衡盾构和水压平衡盾构的优点,适用于不同地层的掘进。
双层壳体盾构的前部设有泥浆注入区和土压平衡区,可以根据不同地层的要求进行调整和切换。
4. 泥水平衡盾构:泥水平衡盾构主要用于稠密的粉质土和泥质土的掘进。
其工作原理是通过在盾构机前部注入泥浆来平衡土层的压力,同时利用泥浆的密度控制土层的稳定性。
泥水平衡盾构适用于较敏感的地层,能够减小地层沉降和地面沉降的风险。
二、盾构的工作原理盾构机的工作原理可以简单概括为:切削土层、推进管片、注浆补偿和排土运输。
1. 切削土层:盾构机前部的刀盘装有刀具,可以切削土层。
盾构机在掘进过程中,通过转动刀盘和推进盾构机来切削和破碎土层,实现隧道的掘进。
2. 推进管片:盾构机在切削土层的同时,还需要推进管片来支撑和构建隧道。
盾构机后部设有一个推进系统,可以将管片逐个推进到切削区域,并与前部的土层形成一环环的支护结构。
3. 注浆补偿:在盾构机掘进过程中,为了保持隧道的稳定,需要通过注浆来补偿土层的失去。
注浆可以填充土层中的空隙,增加土层的支撑能力,同时还可以降低地下水位和地层的沉降风险。
复杂地质大直径盾构机性能特征
复杂地质大直径盾构机是一种专用于地下隧道建设的机械设备,具有以下性能特征:
1. 直径大:复杂地质大直径盾构机的直径一般在10米以上,有的甚至可以达到15米以上,可以满足建设大直径隧道的需求。
2. 强大的推进力:复杂地质大直径盾构机配备了强大的推进系统,可以提供足够的
推进力量,使机械设备能够在复杂的地质条件下顺利推进。
3. 高效的开挖能力:复杂地质大直径盾构机具有高效的开挖能力,可以在较短的时
间内完成大量的土方开挖作业。
4. 精确的造隧能力:复杂地质大直径盾构机采用了先进的导向系统和测量技术,可
以保证隧道的精确造就,并且能够自动调整隧道的姿态。
5. 高可靠性:复杂地质大直径盾构机采用了先进的工程技术和材料,具有高可靠性
和耐久性,能够适应各种复杂的地质条件。
6. 安全性能优良:复杂地质大直径盾构机配备了完善的安全监测和控制系统,可以
实时监测工作状态和环境条件,确保工人的安全。
7. 环境友好:复杂地质大直径盾构机采用了低噪音、低振动和低排放的设计,对周
围环境的影响较小。
8. 模块化设计:复杂地质大直径盾构机采用了模块化设计,方便运输、装配和维护,可以快速适应不同项目的需求。
9. 自动化程度高:复杂地质大直径盾构机配备了先进的自动化控制系统,可以实现
自动导向、自动开挖和自动推进,减少对人力的依赖。
复杂地质大直径盾构机具有直径大、推进力强、开挖能力高、造隧精确、可靠性高、
安全性好、环境友好、模块化设计、自动化程度高等特点,是隧道建设中的重要设备。
①地下施工,必须面对复杂的地质条件和敏感的地面环境。
②所用设备集成度高,技术含量高。
③涉及的专业领域较多,对复合型人才有较多需求。
2、盾构法施工的优点(1)盾构法隧道施工不受地面自然条件的影响。
在盾构支护下进行地下工程暗挖施工,不受地面交通、河道、航运、潮汐、季节、气候等条件的影响,能较经济合理地保证隧道安全施工。
(2)盾构法施工隧道机械化、自动化程度高。
盾构的推进、出土、衬砌拼装等可实行自动化、智能化和施工远程控制信息化,掘进速度较快,施工劳动强度较低。
(3)地面人文自然景观受到良好的保护,周围环境不受盾构施工干扰。
在松软地层中,开挖埋置深度较大的长距离、大直径隧道,具有经济、技术、安全、军事等方面的优越性。
①需要隧道衬砌管片预制、运输、衬砌、衬砌结构防水及堵漏、施工测量、场地布置、机械安装等施工技术的配合,系统工程协调复杂;②施工过程变化断面尺寸困难;只能前进,不能后退,当隧道曲线半径过小或隧道埋深较浅时,施工难度大,在饱和含水的松软地层中施工,地表沉陷风险较大;③盾构机制造周期长,造价较昂贵,盾构的拼装、转移等较复杂,建造短于750m 的隧道经济性差。
4、盾构施工工艺流程4.1大流程:盾构总体施工流程大流程:盾构总体施工流程始发井交付使用→盾构托架就位→盾构机下井、安装、调试→初始掘进(L=约100m )→负环拆除及其它调整→正常掘进→盾构机到达中间站→盾构机通过中间站→盾构机再次安装、调试→盾构机再次初始掘进→正常掘进→盾构机到达终点站→盾构机解体外运→隧道清理准备验收。
4.2小流程:盾构掘进流程准备工作→转动刀盘→启动次级运输系统(皮带机)→启动推进千斤顶→启动首级运输系统(螺旋机)→停止掘进→安装管片→回填注浆→准备下一环掘进。
开挖→出土→拼装→注浆。
盾构机下井 盾构机就位调试 初始掘进 正常掘进到达车站 过 站 再次始发到达终点站 盾构机解体外运设备调整始发端头加固 反力架安装 洞门密封圈安装洞门围护墙凿除到达端头加固洞门密封圈安装 盾构机托架再次就位调试始发站中间站到达站。
第 1 章绪论1.1 引言近年来,我国开展大规模的城市市政工程建设,尤其是几个重要城市都已开始了地下铁路的建设工程。
在这些地下工程中,由于受到施工场地、道路交通等城市环境因素的限制,使得传统的施工方法难以普遍适用。
在这种情况下,对城市正常机能影响很小的隧道施工方法--盾构施工法普遍得到了人们的关注,并且在一些地区已经有了较为广泛的使用。
盾构法施工技术已被广泛应用于铁路隧道、过江隧道、公路隧道和城市地下工程。
全断面隧道掘进机是集机、电、液、光、计算机技术为一体的大型地下工程施工装备,是大规模开发利用地下空间的前提条件。
1.2盾构机掘进机概况盾构掘进机作为典型的复杂机电产品的代表,是机电液一体化高度集成的大型设备,也是多单元集成的大型水利、国防、地铁、交通等领域的基础关键设备。
“十一五”期间,国家在先进制造领域重点扶持盾构掘进机系列化设计和制造关键技术的研究与开发,以制造样机和进行工程试用为目标,争取2015年实现系列化和产业化。
近年来,由于我国基础设施建设的需要,盾构法施工技术的应用在国内得到快速发展。
据不完全统计,国际建筑市场的全断面隧道掘进机年需求量上千台,年营业额超过100 亿美元;到2020 年我国对各类大型全断面隧道掘进机可以预见的需求将超过1000 台。
由于重大技术装备制造水平的发展跟不上我国经济快速发展的要求,一些大型重要工程为保证工期和质量,倾向依赖于进口装备,造成我国机械产品贸易逆差逐年加大,核心技术对外依赖性不断增强,蕴涵着较高的国际经济及政治风险。
与传统的隧道掘进技术相比,盾构掘进机施工隧道断面一次成型,支护和衬砌及时,具有安全可靠、工作环境好、土方量少、进度快、施工成本低等优点,尤其在地质条件复杂、地下水位高而埋深较大时,只能依赖全断面盾构掘进机。
根据国外全断面掘进机的发展经验和趋势,结合我国国情,目前,国内盾构生产、施工过程中遇到的主要问题及难点主要集中在以下几个方面:(1)液压推进系统实时、智能化精确控制技术;(2)刀具和刀盘设计技术;(3)结构参数的优化和系统集成技术;(4)精确控制地表沉降技术;(5)提高姿态控制精度的激光导向技术;(6)隧道管片拼装的全自动化技术等。
盾构技术特点、分类及适用范围国培学员: S1.盾构法盾构法是暗挖隧道的专用机械在地面以下建造隧道的一种施工方法。
盾构掘进机的特点:盾构掘进机(简称盾构)是地面下暗挖施工隧道的专用工程机械, 具有一个可以移动的钢结构外壳(盾壳), 内装有开挖、排土、拼装和推进等机械装置, 可以进行开挖、支护、衬砌等多种作业一体化施工, 广泛应用于地铁、铁路、公路、市政、水电隧道工程建设。
目前, 在欧美等工业发达国家使用盾构机进行施工的城市隧道占90%以上。
2、现代盾构掘进机集液压、机电控制、测控、计算机、材料等各类技术于一体, 属于技术密集型产品, 其生产主要集中在日本、德国、英国、美国、加拿大等少数发达国家, 其中又以德国、美国、日本技术最为先进。
盾构施工法与矿山法相比具有的特点是地层掘进、出土运输、衬砌拼装、接缝防水和盾尾间隙注浆充填等主要作业都在盾构保护下进行, 工艺技术要求高、综合性强(土建、机械)。
盾构施工技术的优缺点:优点:a)具有良好的隐蔽性;b)掘进速度快且施工费用不受埋置深度大而影响;c)适宜在不同颗粒条件下的土层中施工, 尤其在松软含水地层中修建埋深较大的长隧道往往具有技术和经济方面的优越性;d)多车道的隧道可做到分期施工, 分期运营, 可减少一次性投资。
缺点:a)盾构施工是不可后退的;b)盾构是一种价格昂贵、针对性很强的专用施工机械, 对于每一条用盾构法施工的隧道, 必须根据施工隧道的断面大小、埋深条件、地基围岩的基本条件进行设计、制造或改造, 一般不能简单的倒用到其它隧道工程中重复使用;3、c)对隧道曲线半径过小或隧道顶部覆土太浅时, 施工困难较大, 而且不够安全, 特别是饱和含水松软土层, 在隧道上方一定范围内地表沉陷尚难完全防止, 拼装衬砌时对衬砌整体防水技术要求很高。
4、盾构施工技术先在隧道的一端建造竖井或基坑, 以供盾构安装就位。
盾构从竖井或基坑的墙壁预留孔处出发, 在地层中沿着设计轴线, 向另一竖井或基坑的设计预留孔洞推进。
盾构机的分类-回复盾构机是一种用于地下工程中隧道开挖的专业设备。
根据不同的应用需求和工程要求,盾构机可以分为多个分类。
本文将一步一步回答关于盾构机分类的问题,以帮助读者更好地了解盾构机的应用领域和特点。
第一步:盾构机按照使用环境分类盾构机根据使用环境的不同,可以分为两类:土压平衡盾构机(Earth Pressure Balance Shield Machine,简称EPB盾构机)和水压平衡盾构机(Slurry Shield Machine)。
1. 土压平衡盾构机(EPB盾构机):适用于软弱土壤、黏土和含水量较高的地层中的隧道开挖。
它利用盾构机内部的土压平衡系统,通过给予前方土体与盾构机内部土体较为相等的土压力来平衡地下水压力,以实现隧道的稳定开挖。
EPB盾构机广泛应用于城市地铁、水利工程、下水道建设等领域。
2. 水压平衡盾构机:适用于含有大量水分和较坚硬地层的隧道开挖。
它采用密闭的工作环境和水压平衡系统,能够在开挖过程中有效控制地下水位和地下水压力,保证隧道的安全稳定推进。
水压平衡盾构机通常用于河床、湖底隧道等水下工程。
第二步:盾构机按照施工方式分类盾构机也可以根据施工方式的不同进行分类,这将影响到盾构机的结构和工作原理。
1. 轮式盾构机:使用装有刀盘和轴承的切削头,通过切削地层并将地层推到井口,由提升机将土壤抛到地面上。
该类型盾构机适用于地层坚硬、粉状颗粒较少的隧道工程。
2. 双层或多层盾构机:具有更高的推力和更大的切削力,适用于较大断面的隧道工程,如大型地铁隧道、水利隧道等。
3. 泥水平衡盾构机:利用注入泥浆来平衡土压力,从而实现稳定的隧道开挖。
泥水平衡盾构机适用于含有较高水分和粉质黏土的地层。
4. 机械盾构机:采用机械切割头进行地层的开挖,并通过转运系统将土壤从切削头后方搬运到井口。
该类型盾构机适用于各种地质条件的隧道工程。
第三步:盾构机按照切削头类型分类盾构机还可以按照切削头的类型进行分类,不同类型的切削头适用于不同的地层和工程要求。
本机的设计特点
通过对本工程地质的详细分析,施工中可能出现的特点、重点、难点,盾构机的要求以及结合我公司以往的施工经验,本复合型土压平衡式盾构机具有以下这些特点,能最大限度地满足本工程的要求。
◆盾构机为能满足从砂砾层(所含砂砾不大)到砂、砾砂层及软土层的铰接型
土压式平衡盾构机,同时具备土压平衡掘进模式、敞开式掘进模式,半敞开式掘进模式3种掘进模式。
在土仓内上下左右配置了4个具有高灵敏度的压力传感器(其中2个为球铰型式,可在隧道施工中进行更换),通过PLC能将土仓内的土压传送到操作台上的触摸显示屏显示,并且能自动地与设定土压进行比较,调节螺旋机的转速,土压过高过低都会在操作台上报警,因此操作人员能很好地控制土压平衡,减少地面沉降,适合本工程砂、砾砂层及砂砾地层掘进的需要。
◆刀盘结构为辐条加面板型,便于刀具的布置及受力,结构坚固、强度高、刚
性大、耐磨程度高,刀盘开口率45%。
既能适应粘性土地层中土压平衡掘进时大扭矩切削排土要求工况,又能适应在砂、砾砂层较大强度和受力不均匀复合地层的大推力工况。
◆刀盘的设计及刀具的配置选择及布局要求合理,必须具有足够的寿命。
◆盾构机采用8台75kW变频电动机驱动,具有较大的扭矩和转速,可适应不
同地层的掘进需要。
◆推进油缸和铰接油缸布置具备良好的纠偏性能,保证能在不均匀复合地层中
的轴线控制。
◆具有超前钻探加固的能力,容易在地质复杂区段对前方地层进行超前钻探,
甚至注浆加固。
在气压人行闸处安装1个可摆动的钻探口、在盾构机胸板安装有8个可摆动的钻探口、前壳体上安装有10个固定钻探口,具有超前钻探、注浆加固的能力。
超前钻机可方便地安装在盾构机的操作平台上。
◆管片拼装机具有6个自由度,保证管片容易拼装及拼装的质量。
◆管片拼装机通过辅助措施可以对盾尾密封刷进行更换。
◆螺旋输送机采用有轴带式,后部尾部处排土,具有二道闸门,能够伸缩,前
部具有二个封闭闸门,且螺旋输送机前端叶片及前筒体堆有耐磨材料,抗磨性能优越。
◆具有良好可靠的泡沫和添加济注入系统,用于开挖面、土仓及螺旋机中土体
的改善。
设有自动控制的膨润土及添加剂注入设备和管路,刀盘上设置5个添加剂注入口,能对开挖面的土体进行充分的改善,并且在土仓胸板处、人行闸处及螺旋输送机上也设置若干个膨润土及添加剂的注入口,从而达到改善碴土性质。
◆具有良好可靠的同步注浆注入系统,能及时充填管片与地层的间隙,减小沉
降。
同步注浆注入系统即可以采用单液浆,也可以采用双液浆,并且能对注浆管道进行清洗,改善及防止管道的堵塞。
◆具有双仓式气压人行闸,设置土仓自动调压装置,保证更换刀具的便利及人
员的安全,以适应在掘进中的换刀要求。
◆盾构机主机的密封装置(刀盘驱动密封及盾尾密封等)在较高水土压力状态
下具有良好的密封功能。
◆电气和液压元件质量可靠、响应迅捷,防水性能好,适应隧道内的高温、高
湿工作环境。
◆具有应对紧急突发事件的能力,如紧急停电时螺旋机出土闸门可以通过操作
台边上的开关关闭,并且在主机内及操作室内的操作台上各有1个紧急停止开关。
◆控制系统的自动化程度高且具有连锁功能,减少了劳动强度和错误操作的发
生。
◆盾构机具有故障自诊断及故障内容显示功能,方便维修人员的检修。
◆具备高精度的盾构机导向测量系统。
配备由美国Trimble 公司生产的5603
光波自动全站仪,导向精度高,能实时反映盾构机当前位置和理论位置,并提供调整指示。