【精品】2020版高考数学一轮复习课时规范练数学归纳法理北师大版
- 格式:doc
- 大小:78.87 KB
- 文档页数:6
课时规范练51 算法初步基础巩固组1.如图,若依次输入的x分别为,相应输出的y分别为y1,y2,则y1,y2的大小关系是()A.y1=y2B.y1>y2C.y1<y2D.无法确定2.(2018河南郑州三模,3)阅读程序框图,该算法的功能是输出()A.数列{2n-1}的第4项B.数列{2n-1}的第5项C.数列{2n-1}的前4项的和D.数列{2n-1}的前5项的和3.(2018安徽六安模拟,5)某程序框图如图所示,则输出的n值是()A.21B.22C.23D.244.执行如图所示的程序框图,若输入的x=2 017,则输出的i=()A.2B.3C.4D.5(第3题图)(第4题图)5.执行如图所示的程序框图,如果输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(2018山东、湖北重点中学冲刺模拟,5)按如图所示的程序框图,某同学在区间[0,9]上随机地取一个数作为x输入,则该同学能得到“OK”的概率是()A. B. C. D.(第5题图)(第6题图)7.(2018山西模拟)阅读下列程序:如果输入x=-2,则输出结果为()A.2B.-12C.10D.-48.(2018湖南长郡中学开学考试,6)执行如图所示的程序框图输出的结果是()A.8B.6C.5D.3(第8题图)9.(2018湖南岳阳一模,9)我国古代伟大的数学家秦九韶提出了一种将一元n次多项式的求值问题转化为n个一次式的算法,数学上称之为秦九韶算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,2,则输出v的值为()A. 15B.31C.69D.12710.(2018黑龙江大庆考前模拟,14)运行如图所示的框图对应的程序,输出的结果为.(第9题图)(第10题图)综合提升组11.(2018江西南昌模拟,5)执行如图所示的程序框图,输出S的值为()A.15B.16C.24D.2512.(2018福建莆田三模,8)相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.“三分损益”包含“三分损一”和“三分益一”,用现代数学的方法解释如下,“三分损一”是在原来的长度减去一分,即变为原来的三分之二;“三分益一”是在原来的长度增加一分,即变为原来的三分之四,如图的程序是与“三分损益”结合的计算过程,若输入的x的值为1,输出的x的值为()A. B. C. D.(第11题图)(第12题图)13.(2018山东日照4月联考,12)条形码是由一组规则排列的条、空及其对应的代码组成,用来表示一定的信息,我们通常见的条形码是“EAN-13”通用代码,它是由从左到右排列的13个数字(用a1,a2,…,a13表示)组成,这些数字分别表示前缀部分、制造厂代码、商品代码和校验码,其中a13是校验码,用来校验前12个数字代码的正确性.图(1)是计算第13位校验码的程序框图,框图中符号[M]表示不超过M的最大整数(例如[365.7]=365).现有一条形码如图(2)所示(97a37040119917),其中第3个数被污损,那么这个被污损的数字a3是()图(1)图(2)A.6B.7C.8D.914.(2017河北保定二模,7)某地区出租车收费办法如下:不超过2千米收7元;超过2千米时,每车收燃油附加费1元,并且超过的里程每千米收2.6元(其他因素不考虑),计算收费标准的程序框图如图所示,则①处应填()A.y=2.0x+2.2B.y=0.6x+2.8C.y=2.6x+2.0D.y=2.6x+2.815.(2018山西期中改编)设计一个计算1×3×5×7×9的算法,下面给出了算法语句的一部分,则在横线①上应填入下面数据中的()A.8B.9C.10D.1216.(2018福建宁德5月质检,15)我国南北朝时期的数学家张丘建是世界数学史上解决不定方程的第一人,他在《张丘建算经》中给出一个解不定方程的百鸡问题,问题如下:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁母雏各几何?用代数方法表述为:设鸡翁、鸡母、鸡雏的数量分别为x,y,z,则鸡翁、鸡母、鸡雏的数量即为方程组的解.其解题过程可用框图表示如下图所示,则框图中正整数m的值为.17.(2018中原名校预测金卷,14)如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a,b,i的值分别为8,6,1,输出a和i的值,若正数x,y满足=1,则ax+iy的最小值为.(第16题图)(第17题图)参考答案课时规范练51 算法初步1.C由程序框图可知,当输入的x为时,sin>cos成立,所以输出的y1=sin=;当输入的x为时,sin>cos不成立,所以输出的y2=cos=,所以y1<y2.2.B模拟程序的运行,可得:A=0,i=1执行循环体,A=2×0+1=1=21-1,i=2,不满足条件i>5,执行循环体A=2×1+1=3=22-1,i=3,不满足条件i>5,执行循环体A=2×3+1=7=23-1,i=4,不满足条件i>5,执行循环体A=2×7+1=15=24-1,i=5,不满足条件i>5,执行循环体A=2×15+1=31=25-1,i=6,满足条件i>5,退出循环,输出A的值为31.观察规律可得该算法的功能是输出数列{2n-1}的第5项.故选B.3.C执行程序框图,有p=1,n=2,第一次执行循环体,有n=5,p=11;不满足条件p>40,第二次执行循环体,有n=11,p=33;不满足条件p>40,第三次执行循环体,有n=23,p=79;满足条件p>40,输出n的值为23.故选C.4.B根据题意,得a=2 017,i=1,b=-,i=2,a=-,b=,i=3,a=,b=2 017,不满足b≠x,退出循环,输出i=3.故选B.5.C先画出x,y满足的约束条件对应的可行域如图中的阴影部分.平移直线l0:y=-2x.当直线经过点A(1,0)时,y=-2x+S中截距S最大,此时S max=2×1+0=2.与x≥0,y≥0,x+y≤1不成立时S=1进行比较,可得S max=2.6.C当x∈,由算法可知y=-2x+2得y∈[1,2],得到“OK”;当x∈,由算法可知y=-2x+2得y∈(0,1),不能得到“OK”;当x∈[1,3),由算法可知y=log3x得y∈[0,1),不能得到“OK”;当x∈[3,9],由算法可知y=log3x得y∈[1,2],能得到“OK”;∴P==,故选C.7.D输入x=-2,则x<0,执行“y=7*x/2+3”这一语句,则输出y=-4.故选D.8.A根据程序框图和循环结构算法原理,计算过程如下:x=1,y=1,z=x+y.①z=2,x=1,y=2;②z=3,x=2,y=3;③z=5,x=3,y=5;④z=8.故选A.9.B由题意,初始值n=4,x=2,执行如题图所示的程序框图:第一次循环:满足条件,v=1×2+1=3,i=2;第二次循环:满足条件,v=3×2+1=7,i=1;第三次循环:满足条件,v=7×2+1=15,i=0;第四次循环:满足条件,v=15×2+1=31,i=-1,此时终止循环,输出结果S=31,故选B.10. 第一次循环:S=9>1,S=1,k=2,第二次循环:S=,k=4,第三次循环:S=,k=8,第四次循环:S=1,k=16,第五次循环:S=,k=32,第六次循环:S=,k=64,第七次循环:S=1,k=128,第八次循环:S=,k=256,第九次循环:S=,k=512,第十次循环:S=1,k=1 024,第十一次循环:S=,k=2 048>2 017,输出S=.11.B执行循环程序,当i=1时,1<5,i为奇数,S=1;当i=2时,2<5,i为偶数,S=1+2=3;当i=3时,3<5,i为奇数,S=3+5=8;当i=4时,4<5,i为偶数,S=8+8=16;当i=5时,5≥5,结束循环,输出S=16.故选B.12.B因为x=1⇒x=,i=2⇒x=,i=3⇒x=,i=4,结束循环,输出结果x=,故选B.13.B由程序框图可知,S表示的结果为前12项中所有偶数项之和,T表示的结果为前12项中所有奇数项之和,则:S=7+7+4+1+9+1=29,T=9+a3+0+0+1+9=19+a3,M=3×29+19+a3=106+a3,由检验码,a13=7,可知N=10-a13=3,结合选项进行检验:若a3=6,则N=106+a3-×10=106+6-×10=2,不合题意;若a3=7,则N=106+a3-×10=106+7-×10=3,符合题意;若a3=8,则N=106+a3-×10=106+8-×10=4,不合题意;若a3=9,则N=106+a3-×10=106+9-×10=5,不合题意.故选B.14.D当满足条件x>2时,即里程超过2千米.里程超过2千米时,每车收燃油附加费1元,并且超过的里程每千米收2.6元,即y=2.6(x-2)+7+1=8+2.6(x-2),整理可得y=2.6x+2.8.故选D.15.C由算法知i的取值为3,5,7,9,…,又只需计算1×3×5×7×9,因此只要保证所填数大于9,小于等于11即可,故选C.16.4由得y=25-x,故x必为4的倍数,当x=4t时,y=25-7t,由y=25-7t>0得t的最大值为3,故判断框应填入的是t<4,故m=4.17.49输入a,b,i的值分别为8,6,1;第一次循环,i=2,a=2;第二次循环,i=3,b=4;第三次循环,i=4,b=2;第四次循环,i=5,b=a;退出循环,输出a=2,i=5,ax+iy=(2x+5y)=4+25++≥49,当x=y时,等号成立,即ax+iy的最小值为49,故答案为49.。
课时规范练51 算法初步基础巩固组1.如图,若依次输入的x分别为,相应输出的y分别为y1,y2,则y1,y2的大小关系是()A.y1=y2B.y1>y2C.y1<y2D.无法确定2.(2018河南郑州三模,3)阅读程序框图,该算法的功能是输出()A.数列{2n-1}的第4项B.数列{2n-1}的第5项C.数列{2n-1}的前4项的和D.数列{2n-1}的前5项的和3.(2018安徽六安模拟,5)某程序框图如图所示,则输出的n值是()A.21B.22C.23D.244.执行如图所示的程序框图,若输入的x=2 017,则输出的i=()A.2B.3C.4D.5(第3题图)(第4题图)5.执行如图所示的程序框图,如果输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(2018山东、湖北重点中学冲刺模拟,5)按如图所示的程序框图,某同学在区间[0,9]上随机地取一个数作为x输入,则该同学能得到“OK”的概率是()A. B. C. D.(第5题图)(第6题图)7.(2018山西模拟)阅读下列程序:如果输入x=-2,则输出结果为()A.2B.-12C.10D.-48.(2018湖南长郡中学开学考试,6)执行如图所示的程序框图输出的结果是()A.8B.6C.5D.3(第8题图)9.(2018湖南岳阳一模,9)我国古代伟大的数学家秦九韶提出了一种将一元n次多项式的求值问题转化为n个一次式的算法,数学上称之为秦九韶算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,2,则输出v的值为()A. 15B.31C.69D.12710.(2018黑龙江大庆考前模拟,14)运行如图所示的框图对应的程序,输出的结果为.(第9题图)(第10题图)综合提升组11.(2018江西南昌模拟,5)执行如图所示的程序框图,输出S的值为()A.15B.16C.24D.2512.(2018福建莆田三模,8)相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.“三分损益”包含“三分损一”和“三分益一”,用现代数学的方法解释如下,“三分损一”是在原来的长度减去一分,即变为原来的三分之二;“三分益一”是在原来的长度增加一分,即变为原来的三分之四,如图的程序是与“三分损益”结合的计算过程,若输入的x的值为1,输出的x的值为()A. B. C. D.(第11题图)(第12题图)13.(2018山东日照4月联考,12)条形码是由一组规则排列的条、空及其对应的代码组成,用来表示一定的信息,我们通常见的条形码是“EAN-13”通用代码,它是由从左到右排列的13个数字(用a1,a2,…,a13表示)组成,这些数字分别表示前缀部分、制造厂代码、商品代码和校验码,其中a13是校验码,用来校验前12个数字代码的正确性.图(1)是计算第13位校验码的程序框图,框图中符号[M]表示不超过M的最大整数(例如[365.7]=365).现有一条形码如图(2)所示(97a37040119917),其中第3个数被污损,那么这个被污损的数字a3是()图(1)图(2)A.6B.7C.8D.914.(2017河北保定二模,7)某地区出租车收费办法如下:不超过2千米收7元;超过2千米时,每车收燃油附加费1元,并且超过的里程每千米收2.6元(其他因素不考虑),计算收费标准的程序框图如图所示,则①处应填()A.y=2.0x+2.2B.y=0.6x+2.8C.y=2.6x+2.0D.y=2.6x+2.815.(2018山西期中改编)设计一个计算1×3×5×7×9的算法,下面给出了算法语句的一部分,则在横线①上应填入下面数据中的()A.8B.9C.10D.1216.(2018福建宁德5月质检,15)我国南北朝时期的数学家张丘建是世界数学史上解决不定方程的第一人,他在《张丘建算经》中给出一个解不定方程的百鸡问题,问题如下:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁母雏各几何?用代数方法表述为:设鸡翁、鸡母、鸡雏的数量分别为x,y,z,则鸡翁、鸡母、鸡雏的数量即为方程组的解.其解题过程可用框图表示如下图所示,则框图中正整数m的值为.17.(2018中原名校预测金卷,14)如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a,b,i的值分别为8,6,1,输出a和i的值,若正数x,y满足=1,则ax+iy的最小值为.(第16题图)(第17题图)参考答案课时规范练51 算法初步1.C由程序框图可知,当输入的x为时,sin>cos成立,所以输出的y1=sin=;当输入的x为时,sin>cos不成立,所以输出的y2=cos=,所以y1<y2.2.B模拟程序的运行,可得:A=0,i=1执行循环体,A=2×0+1=1=21-1,i=2,不满足条件i>5,执行循环体A=2×1+1=3=22-1,i=3,不满足条件i>5,执行循环体A=2×3+1=7=23-1,i=4,不满足条件i>5,执行循环体A=2×7+1=15=24-1,i=5,不满足条件i>5,执行循环体A=2×15+1=31=25-1,i=6,满足条件i>5,退出循环,输出A的值为31.观察规律可得该算法的功能是输出数列{2n-1}的第5项.故选B.3.C执行程序框图,有p=1,n=2,第一次执行循环体,有n=5,p=11;不满足条件p>40,第二次执行循环体,有n=11,p=33;不满足条件p>40,第三次执行循环体,有n=23,p=79;满足条件p>40,输出n的值为23.故选C.4.B根据题意,得a=2 017,i=1,b=-,i=2,a=-,b=,i=3,a=,b=2 017,不满足b≠x,退出循环,输出i=3.故选B.5.C先画出x,y满足的约束条件对应的可行域如图中的阴影部分.平移直线l0:y=-2x.当直线经过点A(1,0)时,y=-2x+S中截距S最大,此时S max=2×1+0=2.与x≥0,y≥0,x+y≤1不成立时S=1进行比较,可得S max=2.6.C当x∈,由算法可知y=-2x+2得y∈[1,2],得到“OK”;当x∈,由算法可知y=-2x+2得y∈(0,1),不能得到“OK”;当x∈[1,3),由算法可知y=log3x得y∈[0,1),不能得到“OK”;当x∈[3,9],由算法可知y=log3x得y∈[1,2],能得到“OK”;∴P==,故选C.7.D输入x=-2,则x<0,执行“y=7*x/2+3”这一语句,则输出y=-4.故选D.8.A根据程序框图和循环结构算法原理,计算过程如下:x=1,y=1,z=x+y.①z=2,x=1,y=2;②z=3,x=2,y=3;③z=5,x=3,y=5;④z=8.故选A.9.B由题意,初始值n=4,x=2,执行如题图所示的程序框图:第一次循环:满足条件,v=1×2+1=3,i=2;第二次循环:满足条件,v=3×2+1=7,i=1;第三次循环:满足条件,v=7×2+1=15,i=0;第四次循环:满足条件,v=15×2+1=31,i=-1,此时终止循环,输出结果S=31,故选B.10. 第一次循环:S=9>1,S=1,k=2,第二次循环:S=,k=4,第三次循环:S=,k=8,第四次循环:S=1,k=16,第五次循环:S=,k=32,第六次循环:S=,k=64,第七次循环:S=1,k=128,第八次循环:S=,k=256,第九次循环:S=,k=512,第十次循环:S=1,k=1 024,第十一次循环:S=,k=2 048>2 017,输出S=.11.B执行循环程序,当i=1时,1<5,i为奇数,S=1;当i=2时,2<5,i为偶数,S=1+2=3;当i=3时,3<5,i为奇数,S=3+5=8;当i=4时,4<5,i为偶数,S=8+8=16;当i=5时,5≥5,结束循环,输出S=16.故选B.12.B因为x=1⇒x=,i=2⇒x=,i=3⇒x=,i=4,结束循环,输出结果x=,故选B.13.B由程序框图可知,S表示的结果为前12项中所有偶数项之和,T表示的结果为前12项中所有奇数项之和,则:S=7+7+4+1+9+1=29,T=9+a3+0+0+1+9=19+a3,M=3×29+19+a3=106+a3,由检验码,a13=7,可知N=10-a13=3,结合选项进行检验:若a3=6,则N=106+a3-×10=106+6-×10=2,不合题意;若a3=7,则N=106+a3-×10=106+7-×10=3,符合题意;若a3=8,则N=106+a3-×10=106+8-×10=4,不合题意;若a3=9,则N=106+a3-×10=106+9-×10=5,不合题意.故选B.14.D当满足条件x>2时,即里程超过2千米.里程超过2千米时,每车收燃油附加费1元,并且超过的里程每千米收2.6元,即y=2.6(x-2)+7+1=8+2.6(x-2),整理可得y=2.6x+2.8.故选D.15.C由算法知i的取值为3,5,7,9,…,又只需计算1×3×5×7×9,因此只要保证所填数大于9,小于等于11即可,故选C.16.4由得y=25-x,故x必为4的倍数,当x=4t时,y=25-7t,由y=25-7t>0得t的最大值为3,故判断框应填入的是t<4,故m=4.17.49输入a,b,i的值分别为8,6,1;第一次循环,i=2,a=2;第二次循环,i=3,b=4;第三次循环,i=4,b=2;第四次循环,i=5,b=a;退出循环,输出a=2,i=5,ax+iy=(2x+5y)=4+25++≥49,当x=y时,等号成立,即ax+iy的最小值为49,故答案为49.。
课时规范练30 等比数列及其前n项和基础巩固组1.(2018北京师大附中期中)在等比数列{a n}中,a1=3,a1+a2+a3=9,则a4+a5+a6等于()A.9B.72C.9或72D.9或-722.(2018湖南岳阳一中期末)等比数列{a n}中,a n a n+1=4n-1,则数列{a n}的公比为()A.2或-2B.4C.2D.3.(2018黑龙江仿真模拟十一)等比数列{a n}中,a n>0,a1+a2=6,a3=8,则a6=()A.64B.128C.256D.5124.在公比为正数的等比数列{a n}中,a1+a2=2,a3+a4=8,则S8等于()A.21B.42C.135D.1705.(2018重庆梁平二调)我国古代数学名著《算法统宗》中有如下问题;“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是;一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏6.(2018衡水中学仿真,6)已知数列{a n}为等比数列,且a2a3a4=-=-64,则tan·π=()A.-B.C.±D. -7.(2018陕西咸阳三模)已知数列{a n}为等比数列,且a3a11+2=4π,则tan(a1a13)的值为.8.( 2018全国3,文17)等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和,若S m=63,求m.9.(2018北京城六区一模)已知等比数列{a n}满足以a1=1,a5=a2.(1)求数列{a n}的通项公式;(2)试判断是否存在正整数n,使得{a n}的前n项和S n为?若存在,求出n的值;若不存在,说明理由.综合提升组10.(2018全国1,理14)记S n为数列{a n}的前n项和.若S n=2a n+1,则S6= .11.已知数列{a n}的前n项和为S n,对任意的正整数n,都有S n=a n+n-3成立.求证;存在实数λ,使得数列{a n+λ}为等比数列.12.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(1)求{a n}的通项公式;(2)求{b n}的前n项和.创新应用组13.(2018浙江,10)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a414.我们把满足n+1=n-的数列{n}叫做牛顿数列.已知函数f()=2-1,数列{n}为牛顿数列,设a n=ln,已知a1=2,则a3= .参考答案课时规范练30 等比数列及其前n项和1.D设等比数列{a n}的公比为q,∵a1=3,a1+a2+a3=9,∴3+3q+3q2=9,解得q=1或q=-2,当q=1时,a4+a5+a6=(a1+a2+a3)q3=9.当q=-2时,a4+a5+a6=-72,故选D.2. C设等比数列{a n}的公比为q,∵a n a n+1=4n-1>0,∴a n+1a n+2=4n且q>0,两式相除可得==4,即q2=4,∴q=2,故选C.3.A由题意结合等比数列的通项公式可得解得则a6=a1q5=2×25=64.4.D(方法一)S8=(a1+a2)+(a3+a4)+(a5+a6)+(a7+a8)=2+8+32+128=170.(方法二)q2==4,又q>0,∴q=2,∴a1(1+q)=a1(1+2)=2,∴a1=,∴S8==170.5.B设塔的顶层共有盏灯,则各层的灯数构成一个公比为2的等比数列,由=381,可得=3,故选B.6.A依题意,得a2a3a4==-64,所以a3=-4.由=64,得a7=-8,或a7=8(由于a7与a3同号,故舍去),所以a4a6=a3a7=32.tan·π=tan·π=tan11π-=-tan=-,故选A.7. ∵{a n}是等比数列,∴a3a11+2=+2=4π,即=,∴a1a13==,tan(a1a13)=tan=.8.解 (1)设{a n}的公比为q,由题设得a n=q n-1.由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.故a n=(-2)n-1或a n=2n-1.(2)若a n=(-2)n-1,则S n=.由S m=63得(-2)m=-188,此方程没有正整数解.若a n=2n-1,则S n=2n-1.由S m=63得2m=64,解得m=6.综上,m=6.9.解 (1)设{a n}的公比为q,∵a5=a2,且a5=a2q3,∴q3=,得q=,∴a n=a1q n-1=(n=1,2,…).(2)不存在n,使得{a n}的前n项和S n为,∵a1=1,q=,∴S n==21-.(方法一)令S n=,则21-=,得2n=-4,该方程无解,∴不存在n,使得{a n}的前n项和S n为.(方法二)∵对任意n∈N+,有1-<1,∴S n=21-<2,∴不存在n,使{a n}的前n项和S n为.10.-63∵S n=2a n+1,①∴S n-1=2a n-1+1(n≥2).②①-②,得a n=2a n-2a n-1,即a n=2a n-1(n≥2).又S1=2a1+1,∴a1=-1.∴{a n}是以-1为首项,2为公比的等比数列,则S6==-63.11.证明∵S n=a n+n-3, ①∴当n=1时,S1=a1+1-3,所以a1=4.当n≥2时,S n-1=a n-1+n-1-3, ②由①②两式相减得a n=a n-a n-1+1,即a n=3a n-1-2(n≥2).变形得a n-1=3(a n-1-1),而a1-1=3,∴数列{a n-1}是首项为3,公比为3的等比数列,∴存在实数λ=-1,使得数列{a n-1}为等比数列.12.解 (1)由已知,得a1b2+b2=b1,因为b1=1,b2=,所以a1=2.所以数列{a n}是首项为2,公差为3的等差数列,通项公式为a n=3n-1.(2)由(1)和a n b n+1+b n+1=nb n,得b n+1=,因此{b n}是首项为1,公比为的等比数列.记{b n}的前n项和为S n,则S n==-.13.B设等比数列的公比为q,则a1+a2+a3+a4=,a1+a2+a3=.∵a1+a2+a3+a4=ln(a1+a2+a3),∴a1+a2+a3=,即a1(1+q+q2)=.又a1>1,∴q<0.假设1+q+q2>1,即q+q2>0,解得q<-1(q>0舍去).由a1>1,可知a1(1+q+q2)>1,∴a1(1+q+q2+q3)>0,即1+q+q2+q3>0,即(1+q)+q2(1+q)>0,即(1+q)(1+q2)>0,这与q<-1相矛盾.∴1+q+q2<1,即-1<q<0.∴a1>a3,a2<a4.14.8由f()=2-1,得f'()=2,则n+1=n-=,所以n+1-1=,+1=,n+1所以=,所以ln=ln=2ln,即a n+1=2a n,所以数列{a n}是首项为2,公比为2的等比数列,则a3=2×22=8.。
【30份】2020版高考数学北师大版(理)一轮复习课时规范练目录课时规范练1集合的概念与运算 (2)课时规范练2不等关系及简单不等式的解法 (5)课时规范练3命题及其关系、充要条件 (11)课时规范练4简单的逻辑联结词、全称量词与存在量词 (15)课时规范练5函数及其表示 (20)课时规范练6函数的单调性与最值 (24)课时规范练7函数的奇偶性与周期性 (30)课时规范练8幂函数与二次函数 (35)课时规范练9指数与指数函数 (40)课时规范练10对数与对数函数 (45)课时规范练11函数的图像 (50)课时规范练12函数与方程 (55)课时规范练13函数模型及其应用 (61)课时规范练14导数的概念及运算 (68)课时规范练15导数与函数的小综合 (72)课时规范练16定积分与微积分基本定理 (78)课时规范练17任意角、弧度制及任意角的三角函数 (82)课时规范练18同角三角函数的基本关系及诱导公式 (88)课时规范练19三角函数的图像与性质 (94)课时规范练20函数y=A sin(ωx+φ)的图像及应用 (102)课时规范练21两角和与差的正弦、余弦与正切公式 (112)课时规范练22三角恒等变换 (121)课时规范练23解三角形 (129)课时规范练24平面向量的概念及线性运算 (137)课时规范练25平面向量基本定理及向量的坐标表示 (143)课时规范练26平面向量的数量积与平面向量的应用 (149)课时规范练27数系的扩充与复数的引入 (154)课时规范练28数列的概念与表示 (158)课时规范练29等差数列及其前n项和 (163)课时规范练30等比数列及其前n项和 (169)2019年5月课时规范练1集合的概念与运算基础巩固组1.(2018厦门外国语学校一模,2)已知集合A={x|y=lg(x-1)},B={x||x|<2},则A∩B=()A.(-2,0)B.(0,2)C.(1,2)D.(-2,2)2.已知全集U=R,集合A={x|x<-2或x>2},则?U A=()A.(-2,2)B.(-∞,-2)∪(2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)3.(2018百校联盟四月联考,1)设集合A={-1,0,1,2},B={y|y=2x,x∈A},则A∪B中元素的个数为()A.5B.6C.7D.84.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)5.(2018北京101中学3月模拟,1)已知集合A={x|x(x-2)<0},B={x|ln x>0},则A∩B是()A.{x|x>0}B.{x|x>2}C.{x|1<x<2}D.{x|0<x<2}6.设集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0},则M∩N=()A.{-3,-2,-1,0}B.{-2,-1,0}C.{-3,-2,-1}D.{-2,-1}7.(2018山东济南二模,1)设全集U=R,集合A={x|x-1≤0},集合B={x|x2-x-6<0},则下图中阴影部分表示的集合为()A.{x|x<3}B.{x|-3<x≤1}C.{x|x<2}D.{x|-2<x≤1}8.已知全集U=R,A={0,1,2,3},B={y|y=2x,x∈A},则(?U A)∩B=()A.(-∞,0)∪(3,+∞)B.{x|x>3,x∈N}C.{4,8}D.[4,8]9.(2018湖南衡阳一模,1)已知集合A={x|(x+1)(x-3)<0},B={x|y=ln x},则A∩B=()A.{0,3}B.(0,3)C.(-1,3)D.{-1,3}10.已知集合A={x|x(x-4)<0},B={0,1,5},则A∩B=.11.已知集合A={x|log2x≤2},B={x|x<a},若A?B,则实数a的取值范围是.12.设A,B是全集I={1,2,3,4}的子集,A={1,2},则满足A?B的B的个数为.综合提升组13.已知集合A={x|x2-2x-3≤0},B={x|x<a},若A?B,则实数a的取值范围是()A.(-1,+∞)B.[-1,+∞)C.(3,+∞)D.[3,+∞)14.(2018河北衡水中学十模,1)已知全集U=Z,A={0,1,2,3},B={x|x2=2x},则A∩(?U B)=()A.{1,3}B.{0,2}C.{0,1,3}D.{2}15.已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图阴影部分表示的集合是()A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D.[0,1]16.已知集合A={x|4≤2x≤16},B=[a,b],若A?B,则实数a-b的取值范围是.创新应用组17.已知集合A={x|x<a},B={x|1<x<2},且A∪(?R B)=R,则实数a的取值范围是()A.a≤1B.a<1C.a≥2D.a>218.若集合A={x|x2+4x+k=0,x∈R}中只有一个元素,则实数k的值为.参考答案课时规范练1集合的概念与运算1.C由题意,可知A={x|x>1},B={x|-2<x<2},∴A∩B={x|1<x<2},表示为区间即(1,2),故选C.2.C因为A={x|x<-2或x>2},所以?U A={x|-2≤x≤2}.故选C.3.B因为A={-1,0,1,2},B=,所以A∪B=-1,0,,1,2,4,A∪B中元素的个数为 6.4.D由(x-2)(x-3)≥0,解得x≥3或x≤2,所以S={x|x≤2或x≥3}.因为T={x|x>0},所以S∩T={x|0<x≤2或x≥3},故选D.5.C由题意,集合A={x|x(x-2)<0}={x|0<x<2},B={x|ln x>0}={x|x>1},所以A∩B={x|1<x<2}.故选C.6.D集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0}={x|-3<x<0},∴M∩N={-2,-1}.故选D.7.D由题意可得:A={x|x≤1},B={x|-2<x<3},∴A∩B={x|-2<x≤1},故选 D.8.C∵全集U=R,A={0,1,2,3},B={y|y=2x,x∈A}={1,2,4,8},∴(?U A)∩B={4,8}.故选 C.9.B A={x|-1<x<3},B={x|x>0},所以A∩B=(0,3),故选 B.10.{1}A={x|x(x-4)<0}=(0,4),所以A∩B={1}.11.(4,+∞)由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B={x|x<a},由于A?B,则a>4.12.4因为A={1,2}且A?B,所以B={1,2}或B={1,2,3}或B={1,2,4}或B={1,2,3,4}.13.C由题意,A=[-1,3],B=(-∞,a),∵A?B,∴a>3,∴a的取值范围是(3,+∞).14.A∵全集U=Z,A={0,1,2,3},B={x|x2=2x},∴?U B={x|x∈Z,且x≠0,且x≠2},∴A∩(?U B)={1,3}.故选 A.A∪B).15.C由题意可知阴影部分对应的集合为(?U(A∩B))∩(∵A={x|-2<x<0},B={x|-1≤x≤1},∴A∩B={x|-1≤x<0},A∪B={x|-2<x≤1},∵?U(A∩B)={x|x<-1或x≥0},∴(?U(A∩B))∩(A∪B)={x|0≤x≤1或-2<x<-1}.故选 C.16.(-∞,-2]集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4].因为A?B,所以a≤2,b≥4.所以a-b≤2-4=-2.故实数a-b的取值范围是(-∞,-2].17.C∵A∪(?R B)=R,∴B?A,∴a≥2,故选C.18.4由题意x2+4x+k=0有两个相等的实根,∴Δ=16-4k=0,解得k=4.2019年5月课时规范练2不等关系及简单不等式的解法基础巩固组1.已知a,b∈R,下列命题正确的是()A.若a>b,则|a|>|b|B.若a>b,则C.若|a|>b,则a2>b2D.若a>|b|,则a2>b22.函数f(x)=的定义域是()A.(-∞,1)∪(3,+∞)B.(1,3)C.(-∞,2)∪(2,+∞)D.(1,2)∪(2,3)3.已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a,b,c的大小关系为()A.a<b≤cB.b≤c<aC.b<c<aD.b<a<c4.使不等式2x2-5x-3≥0成立的一个充分不必要条件是()A.x≥0B.x<0或x>2C.x∈{-1,3,5}D.x≤-或x≥35.若函数f(x)=的定义域为R,则实数m的取值范围为()A.[-4,0]B.[-4,0)C.(-4,0)D.(-∞,4]∪{0}。
课时规范练14导数的概念及运算基础巩固组1.已知函数f(x)=+1,则的值为()A.-B.C. D.02.若f(x)=2xf'(1)+x2,则f'(0)等于()A.2B.0C.-2D.-43.已知奇函数y=f(x)在区间(-∞,0]上的解析式为f(x)=x2+x,则曲线y=f(x)在横坐标为1的点处的切线方程是()A.x+y+1=0B.x+y-1=0C.3x-y-1=0D.3x-y+1=04.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的距离的最小值为()A.1B.C. D.5.已知a为实数,函数f(x)=x3+ax2+(a-3)x的导函数为f'(x),且f'(x)是偶函数,则曲线y=f(x)在原点处的切线方程为()A.y=3x+1B.y=-3xC.y=-3x+1D.y=3x-36.设曲线y=sin x上任一点(x,y)处切线的斜率为g(x),则函数y=x2g(x)的部分图像可以为()7.一质点做直线运动,由始点经过t s后的距离为s=t3-6t2+32t,则速度为0的时刻是()A.4 s末B.8 s末C.0 s末与8 s末D.4 s末与8 s末8.(2018河北衡水中学17模,14)函数y=f(x)的图像在点M(2,f(2))处的切线方程是y=2x-8,则=.9.(2018天津,文10)已知函数f(x)=e x ln x,f'(x)为f(x)的导函数,则f'(1)的值为.10.(2018河南六市联考一,14)已知函数f(x)=x++b(x≠0)在点(1,f(1))处的切线方程为y=2x+5,则a-b=.11.函数f(x)=x e x的图像在点(1,f(1))处的切线方程是.12.若函数f(x)= x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是.综合提升组13.已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为()A.x+y-1=0B.x-y-1=0C.x+y+1=0D. x-y+1=014.下面四个图像中,有一个是函数f(x)= x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图像,则f(-1)=()A. B.-C. D.-15.(2018全国3,理14)直线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=.创新应用组16.(2018湖南长郡中学四模,4)已知f(x)=3+2cos x,f'(x)是f(x)的导函数,则在区间任取一个数x0使得f'(x0)<1的概率为()A. B.C. D.17.(2018河北衡水中学押题二,12)已知函数f(x)=若关于x的方程f(x)=kx-恰有四个不相等的实数根,则实数k的取值范围是()A.B.C.D.参考答案课时规范练14导数的概念及运算1.A∵f'(x)=,∴=-=-f'(1)=-=-.2.D f'(x)=2f'(1)+2x,令x=1,则f'(1)=2f'(1)+2,得f'(1)=-2,所以f'(0)=2f'(1)+0=-4.故选D.3.B由函数y=f(x)为奇函数,可得f(x)在[0,+∞)内的解析式为f(x)=-x2+x,故切点为(1,0).因为f'(x)=-2x+1,所以f'(1)=-1,故切线方程为y=-(x-1),即x+y-1=0.4.B因为定义域为(0,+∞),所以y'=2x-,令2x-=1,解得x=1,则曲线在点P(1,1)处的切线方程为x-y=0,所以两平行线间的距离为d==.故所求的最小值为.5.B因为f(x)=x3+ax2+(a-3)x,所以f'(x)=3x2+2ax+(a-3).又f'(x)为偶函数,所以a=0,所以f(x)=x3-3x,f'(x)=3x2-3.所以f'(0)=-3.故所求的切线方程为y=-3x.6.C根据题意得g(x)=cos x,则y=x2g(x)=x2cos x为偶函数.又x=0时,y=0,故选C.7.D s'=t2-12t+32,由导数的物理意义可知,速度为零的时刻就是s'=0的时刻,解方程t2-12t+32=0,得t=4或t=8.故选D.8.-由导数的几何意义可知f'(2)=2,又f(2)=2×2-8=-4,所以=-.9.e∵f(x)=e x ln x,∴f'(x)=e x ln x+.∴f'(1)=eln 1+=e.10.-8∵f'(x)=1-=,∴f'(1)=1-a=2,∴a=-1,f(1)=1+a+b=b,∴在点(1,f(1))处的切线方程为y-b=2(x-1),∴b-2=5,b=7,∴a-b=-8.11.y=2e x-e∵f(x)=x e x,∴f(1)=e,f'(x)=e x+x e x,∴f'(1)=2e,∴f(x)的图像在点(1,f(1))处的切线方程为y-e=2e(x-1),即y=2e x-e.12.[2,+∞)∵f(x)= x2-ax+ln x,∴f'(x)=x-a+.∵f(x)的图像存在垂直于y轴的切线,∴f'(x)存在零点,∴x+-a=0有解,∴a=x+≥2(x>0).13.B设直线l的方程为y=kx-1,直线l与f(x)的图像相切于点(x0,y0),则解得∴直线l的方程为y=x-1,即x-y-1=0.14.D∵f'(x)=x2+2ax+a2-1,∴f'(x)的图像开口向上,故②④排除.若f'(x)的图像为①,则a=0,f(-1)=;若f'(x)的图像为③,则a2-1=0.又对称轴x=-a>0,∴a=-1,∴f(-1)=-.15.-3设f(x)=(ax+1)e x,∵f'(x)=a·e x+(ax+1)e x=(ax+a+1)e x,∴f(x)=(ax+1)e x在点(0,1)处的切线斜率k=f'(0)=a+1=-2,∴a=-3.16.D由f'(x)=-2sin x<1,x∈得x∈,因此所求概率为=,故选D.17.C方程f(x)=kx-恰有四个不相等的实数根转化为y=f(x)的图像与y=kx-的图像有四个不同的交点,如图所示,直线y=kx-过定点,且过点(1,0)时,函数y=f(x)的图像与y=kx-的图像有三个不同的交点,此时k==.设直线y=kx-与y=ln x(x>1)切于点(x0,ln x0),则过该切点的切线方程为y-ln x0=(x-x0).把点代入切线方程,可得--ln x0=-1,解得x0=,所以切点为,则切线的斜率为=,所以方程f(x)=kx-恰有四个不相等的实数根,则实数k的取值范围是,故选C.。
课时规范练13函数模型及其应用基础巩固组1.如图,下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图像表示该容器中水面的高度h和时间t之间的关系,其中不正确的有()A.1个B.2个C.3个D.4个2.在某个物理实验中,测得变量x和变量y的几组数据,如下表:则对x,y最适合的拟合函数是()A.y=2xB.y=x2-1C.y=2x-2D.y=log2x3.某产品的总成本y(单位:万元)与产量x(单位:台)之间的函数关系是y=3 000+20x-0.1x2(0<x<240,x∈N+),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台4.一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在t秒的路程为s=t2米,那么,此人()A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但期间最近距离为14米D.不能追上汽车,但期间最近距离为7米5.企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业年后需要更新设备.6.如图,动物园要建造一面靠墙的两间相同的矩形熊猫居室,如果可供建造围墙的材料总长是30 m.(1)用宽x(单位:m)表示所建造的两间熊猫居室的面积y(单位:m2);(2)怎么设计才能使所建造的熊猫居室面积最大?并求出每间熊猫居室的最大面积?7.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(单位:μg)与时间t(单位:h)之间的关系近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数解析式y=f(t);(2)据进一步测定:当每毫升血液中含药量不少于0.25 μg时,治疗有效.求服药一次后治疗有效的时间.综合提升组8.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子租不出去.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出去的房子不需要花这些费用).要使公司获得最大利润,每套公寓月租金应定为()A.3 000元B.3 300元C.3 500元D.4 000元9.已知甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某商人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t4时刻卖出所有商品,那么他将获得的最大利润是()A.40万元B.60万元C.120万元D.140万元10.某商人购货,进价已按原价a扣去25%.他希望对货物订一新价,以便按新价让利20%销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x与按新价让利总额y之间的函数关系式为.11.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②(注:利润和投资单位:万元).图①图②(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部资金投入到A,B两种产品的生产中.①若平均投入生产两种产品,可获得多少利润?②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润为多少万元?创新应用组12.(2018江苏苏北四市模拟,17)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆O及其内接等腰三角形ABC绕底边BC上的高所在直线AO旋转180°而成,如图2.已知圆O的半径为10 cm,设∠BAO=θ,0<θ<,圆锥的侧面积为S cm2.(1)求S关于θ的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积S最大.求S取得最大值时腰AB的长度.参考答案课时规范练13函数模型及其应用1.A水面的高度h和时间t之间的关系可以从高度随时间的变化率上反映出来,图①应该是匀速的,故下面的图像不正确,②中的变化率是越来越慢的,正确;③中的变化规律是逐渐变慢再变快,正确;④中的变化规律是逐渐变快再变慢,也正确,故只有①是错误的.故选A.2.D根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B、C;将各数据代入函数y=log2x,可知满足题意.故选D.3.C设利润为f(x)万元,则f(x)=25x-(3 000+20x-0.1x2)=0.1x2+5x-3 000(0<x<240,x∈N+).令f(x)≥0,得x≥150,∴生产者不亏本时的最低产量是150台.4.D已知s=t2,车与人的间距d=(s+25)-6t=t2-6t+25=(t-6)2+7.当t=6时,d取得最小值7.5.10由题意可知x年的维护费用为2+4+…+2x=x(x+1),所以x年的平均费用y=)=x++1.5,由基本不等式得y=x++1.5≥2+1.5=21.5,当且仅当x=,即x=10时取等号,所以该企业10年后需要更新设备.6.解 (1)设熊猫居室的宽为x(单位:m),由于可供建造围墙的材料总长是30 m,两间熊猫居室的长为30-3x(单位:m),所以两间熊猫居室的面积y=x(30-3x),又,-,得0<x<10,于是y=-3x2+30x(0<x<10)为所求.(2)由(1)知,y=-3x2+30x=-3(x-5)2+75,二次函数图像开口向下,对称轴x=5,且x∈(0,10),当x=5时,所建造的熊猫居室面积最大,其中每间熊猫居室的最大面积为 m2.7.解 (1)根据所给的曲线,可设y=,, -,当t=1时,由y=4,得k=4,由-=4,得a=3.则y=,, -,(2)由y≥0.25,得,或,-,解得≤t≤5.因此服药一次后治疗有效的时间为5-=(h).8.B由题意,设利润为y元,租金定为(3 000+50x)元 0≤x≤70,x∈N),则y=(3 000+50x)(70-x)-100(70-x)=(2 900+50x)(70-x)=50(58+x)(70-x)≤50-=204 800,当且仅当58+x=70-x,即x=6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B.9.C甲6元时该商人全部买入甲商品,可以买120÷6=20(万份),在t2时刻全部卖出,此时获利20×2=40(万元),乙4元时该商人买入乙商品,可以买(120+40)÷4=40(万份),在t4时刻全部卖出,此时获利40×2=80(万元),共获利40+80=120(万元),故选C.10.y=x(x∈N+)设新价为b,依题意,有b(1-20%)-a(1-25%)=b(1-20%)·25%,化简得b=a.∴y=b·20%·x=a·20%·x,即y=x(x∈N+).11.解 (1)设A,B两种产品都投资x万元(x≥0),所获利润分别为f(x)万元、g(x)万元,由题意可设f(x)=k1x,g(x)=k2,根据题图可得f(x)=0.25x(x≥0),g(x)=2(x≥0).(2)①由(1)得f(9)=2.25,g(9)=2=6,故总利润y=8.25(万元).②设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元,则y=(18-x)+2,0≤x≤18.令=t,t∈[0,3 ],则y=(-t2+8t+18)=-(t-4)2+.故当t=4时,y max==8.5,此时x=16,18-x=2.所以当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润8.5万元.12.解 (1)设AO交BC于点D,过O作OE⊥AB,垂足为E,如下图.在△AOE中,AE=10cos θ,AB=2AE=20cos θ,在△ABD中,BD=AB·sin θ=20cos θ·sin θ,所以S=π·20sin θcos θ·20cos θ=400πsin θcos2θ,0<θ<.(2)要使侧面积最大,由(1)得,S=400πsin θcos2θ=400π sin θ-sin3θ),设f(x)=x-x3(0<x<1),则f'(x)=1-3x2,由f'(x)=1-3x2=0,得x=,当x∈,时,f'(x)>0,当x∈,时,f'(x)<0,所以f(x)在区间,上递增,在区间,上递减,所以f(x)在x=时取得极大值,也是最大值,。
课时规范练1 集合的概念与运算基础巩固组1.(2018厦门外国语学校一模,2)已知集合A={x|y=lg(x-1)},B={x||x|<2},则A∩B=()A.(-2,0)B.(0,2)C.(1,2)D.(-2,2)2.已知全集U=R,集合A={x|x<-2或x>2},则∁U A=()A.(-2,2)B.(-∞,-2)∪(2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)3.(2018百校联盟四月联考,1)设集合A={-1,0,1,2},B={y|y=2x,x∈A},则A∪B中元素的个数为()A.5B.6C.7D.84.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)5.(2018北京101中学3月模拟,1)已知集合A={x|x(x-2)<0},B={x|ln x>0},则A∩B是()A.{x|x>0}B.{x|x>2}C.{x|1<x<2}D.{x|0<x<2}6.设集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0},则M∩N=()A.{-3,-2,-1,0}B.{-2,-1,0}C.{-3,-2,-1}D.{-2,-1}7.(2018山东济南二模,1)设全集U=R,集合A={x|x-1≤0},集合B={x|x2-x-6<0},则下图中阴影部分表示的集合为()A.{x|x<3}B.{x|-3<x≤1}C.{x|x<2}D.{x|-2<x≤1}8.已知全集U=R,A={0,1,2,3},B={y|y=2x,x∈A},则(∁U A)∩B=()A.(-∞,0)∪(3,+∞)B.{x|x>3,x∈N}C.{4,8}D.[4,8]9.(2018湖南衡阳一模,1)已知集合A={x|(x+1)(x-3)<0},B={x|y=ln x},则A∩B=()A.{0,3}B.(0,3)C.(-1,3)D.{-1,3}10.已知集合A={x|x(x-4)<0},B={0,1,5},则A∩B=.11.已知集合A={x|log2x≤2},B={x|x<a},若A⊆B,则实数a的取值范围是.12.设A,B是全集I={1,2,3,4}的子集,A={1,2},则满足A⊆B的B的个数为.综合提升组13.已知集合A={x|x2-2x-3≤0},B={x|x<a},若A⊆B,则实数a的取值范围是()A.(-1,+∞)B.[-1,+∞)C.(3,+∞)D.[3,+∞)14.(2018河北衡水中学十模,1)已知全集U=Z,A={0,1,2,3},B={x|x2=2x},则A∩(∁U B)=()A.{1,3}B.{0,2}C.{0,1,3}D.{2}15.已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图阴影部分表示的集合是()A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D.[0,1]16.已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是.创新应用组17.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A.a≤1B.a<1C.a≥2D.a>218.若集合A={x|x2+4x+k=0,x∈R}中只有一个元素,则实数k的值为.参考答案课时规范练1 集合的概念与运算1.C由题意,可知A={x|x>1},B={x|-2<x<2},∴A∩B={x|1<x<2},表示为区间即(1,2),故选C.2.C因为A={x|x<-2或x>2},所以∁U A={x|-2≤x≤2}.故选C.3.B因为A={-1,0,1,2},B=,所以A∪B=-1,0,,1,2,4,A∪B中元素的个数为6.4.D由(x-2)(x-3)≥0,解得x≥3或x≤2,所以S={x|x≤2或x≥3}.因为T={x|x>0},所以S∩T={x|0<x≤2或x≥3},故选D.5.C由题意,集合A={x|x(x-2)<0}={x|0<x<2},B={x|ln x>0}={x|x>1},所以A∩B={x|1<x<2}.故选C.6.D集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0}={x|-3<x<0},∴M∩N={-2,-1}.故选D.7.D由题意可得:A={x|x≤1},B={x|-2<x<3},∴A∩B={x|-2<x≤1},故选D.8.C∵全集U=R,A={0,1,2,3},B={y|y=2x,x∈A}={1,2,4,8},∴(∁U A)∩B={4,8}.故选C.9.B A={x|-1<x<3},B={x|x>0},所以A∩B=(0,3),故选B.10.{1}A={x|x(x-4)<0}=(0,4),所以A∩B={1}.11.(4,+∞)由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B={x|x<a},由于A⊆B,则a>4.12.4因为A={1,2}且A⊆B,所以B={1,2}或B={1,2,3}或B={1,2,4}或B={1,2,3,4}.13.C由题意,A=[-1,3],B=(-∞,a),∵A⊆B,∴a>3,∴a的取值范围是(3,+∞).14.A∵全集U=Z,A={0,1,2,3},B={x|x2=2x},∴∁U B={x|x∈Z,且x≠0,且x≠2},∴A∩(∁U B)={1,3}.故选A.15.C由题意可知阴影部分对应的集合为(∁U(A∩B))∩(A∪B).∵A={x|-2<x<0},B={x|-1≤x≤1},∴A∩B={x|-1≤x<0},A∪B={x|-2<x≤1},∵∁U(A∩B)={x|x<-1或x≥0},∴(∁U(A∩B))∩(A∪B)={x|0≤x≤1或-2<x<-1}.故选C.16.(-∞,-2]集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4].因为A⊆B,所以a≤2,b≥4.所以a-b≤2-4=-2.故实数a-b的取值范围是(-∞,-2].17.C∵A∪(∁R B)=R,∴B⊆A,∴a≥2,故选C.18.4由题意x2+4x+k=0有两个相等的实根,∴Δ=16-4k=0,解得k=4.。
课时规范练34归纳与类比基础巩固组1.(2018河北衡水枣强中学期中,7)下列三句话按“三段论”模式排列顺序正确的是()①y=cos x(x∈R)是三角函数;②三角函数是周期函数;③y=cos x(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①2.(2018安徽合肥一中冲刺,7)观察下图:123 43456745678910……则第()行的各数之和等于2 0172.A.2 010B.2 018C.1 005D.1 0093.(2018河北辛集中学月考,10)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数,由以上规律,则这些三角形数从小到大形成一个数列{a n},那么a10的值为()A.45B.55C.65D.664.(2018吉林梅河口五中期中,9)在一次体育兴趣小组的聚会中,要安排6人的座位,使他们在如图所示的6个椅子中就座,且相邻座位(如1与2,2与3)上的人要有共同的体育兴趣爱好,现已知这6人的体育兴趣爱好如下表所示,且小林坐在1号位置上,则4号位置上坐的是()A.小方B.小张C.小周D.小马5.(2018黑龙江哈尔滨二模,9)对大于或等于2的自然数的正整数幂运算有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7,23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若m2=1+3+5+…+11,n3的分解中最小的正整数是21,则m+n=()A.10B.11C.12D.136.(2018河南信阳一中模拟,9)若“*”表示一种运算,满足如下关系:(1)1*1=1;(2)(n+1)*1=3(n*1)(n∈N+),则n*1=()A.3n-2B.3n+1C.3nD.3n-17.(2018河北衡水中学五模,8)下面推理过程中使用了类比推理方法,其中推理正确的个数是()①“数轴上两点间距离公式为|AB|=,平面上两点间距离公式为|AB|=”,类比推出“空间内两点间的距离公式为|AB|=”;②“代数运算中的完全平方公式(a+b)2=a2+2a·b+b2”类比推出“向量中的运算(a+b)2=a2+2a·b+b2仍成立”;③“平面内两条不重合的直线不平行就相交”类比到空间“空间内两条不重合的直线不平行就相交”也成立;④“圆x2+y2=1上点P(x0,y0)处的切线方程为x0x+y0y=1”,类比推出“椭圆=1(a>b>0)上点P(x0,y0)处的切线方程为=1”.A.1B.2C.3D.48.(2018福建三明一中期末,11)观察图形:…则第30个图形比第27个图形中的“☆”多()A.59颗B.60颗C.87颗D.89颗9.(2018河北衡水一模,14)已知自主招生考试中,甲、乙、丙三人都恰好报考了清华大学、北京大学中的某一所大学,三人分别给出了以下说法:甲说:“我报考了清华大学,乙也报考了清华大学,丙报考了北京大学.”乙说:“我报考了清华大学,甲说得不完全对.”丙说:“我报考了北京大学,乙说得对.”已知甲、乙、丙三人中恰好有1人说得不对,则报考了北京大学的是.10.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知,四面体ABCD的四个面的面积分别为S1,S2,S3,S4,四面体ABCD的体积为V,内切球半径为R,则R=.11.(2018中山模拟,14)在△ABC中,不等式成立;在凸四边形ABCD中,不等式成立;在凸五边形ABCDE中,不等式成立…依此类推,在凸n 边形A1A2…A n中,不等式+…+≥成立.12.(2018河北保定模拟,17)数列{a n}的前n项和记为S n,已知a1=1,a n+1=S n(n∈N+).证明:(1)数列是等比数列;(2)S n+1=4a n.综合提升组13.(2018河南中原名校五联,10)老师在四个不同的盒子里面放了4张不同的扑克牌,分别是红桃A,梅花A,方片A以及黑桃A,让小明、小红、小张、小李四个人进行猜测:小明说:第1个盒子里面放的是梅花A,第3个盒子里面放的是方片A;小红说:第2个盒子里面放的是梅花A,第3个盒子里放的是黑桃A;小张说:第4个盒子里面放的是黑桃A,第2个盒子里面放的是方片A;小李说:第4个盒子里面放的是红桃A,第3个盒子里面放的是方片A;老师说:“小明、小红、小张、小李,你们都只说对了一半.”则可以推测,第4个盒子里装的是() A.红桃A或黑桃A B.红桃A或梅花AC.黑桃A或方片AD.黑桃A或梅花A14.(2018湖南岳阳一模,9)将棱长相等的正方体按下图所示的形状摆放,从上往下依次为第1层,第2层,第3层,…,则第2 018层正方体的个数共有()A.2 018B.4 028C.2 037 171D.2 009 01015.如图,我们知道,圆环也可以看作线段AB绕圆心O旋转一周所形成的平面图形,又圆环的面积S=π(R2-r2)=(R-r)×2π×.所以,圆环的面积等于以线段AB=R-r为宽,以AB中点绕圆心O旋转一周所形成的圆的周长2π×为长的矩形面积.请你将上述想法拓展到空间,并解决下列问题:若将平面区域M={(x,y)|(x-d)2+y2≤r2}(其中0<r<d)绕y轴旋转一周,则所形成的旋转体的体积是.创新应用组16.(2018河北衡水模拟,14)将给定的一个数列{a n}:a1,a2,a3,…按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列.如在上述数列中,我们将a1作为第一组,将a2,a3作为第二组,将a4,a5,a6作为第三组,…,依次类推,第n组有n个元素(n∈N+),即可得到以组为单位的序列:(a1),(a2,a3),(a4,a5,a6),…,我们通常称此数列为分群数列.其中第1个括号称为第1群,第2个括号称为第2群,第3个数列称为第3群,…,第n个括号称为第n群,从而数列{a n}称为这个分群数列的原数列.如果某一个元素在分群数列的第m个群中,且从第m个括号的左端起是第k个,则称这个元素为第m群中的第k个元素.已知数列1,1,3,1,3,9,1,3,9,27,…,将数列分群,其中,第1群为(1),第2群为(1,3),第3群为(1,3,32),…,以此类推.设该数列前n项和N=a1+a2+…+a n,若使得N>14 900成立的最小a n位于第m群,则m=()A.11B.10C.9D.817. (2018黑龙江仿真模拟四,14)已知命题:在平面直角坐标系xOy中,椭圆=1(a>b>0),△ABC的顶点B在椭圆上,顶点A,C分别为椭圆的左、右焦点,椭圆的离心率为e,则,现将该命题类比到双曲线中,△ABC的顶点B在双曲线上,顶点A、C分别为双曲线的左、右焦点,设双曲线的方程为=1(a>0,b>0),双曲线的离心率为e,则有.参考答案课时规范练34归纳与类比1.B根据“三段论”:“大前提”→“小前提”⇒“结论”可知:①y=cos x(x∈R)是三角函数是“小前提”;②三角函数是周期函数是“大前提”;③y=cos x(x∈R)是周期函数是“结论”.故“三段论”模式排列顺序为②①③.故选B.2.D由图形知,第一行各数和为1;第二行各数和为9=32;第三行各数和为25=52;第四行各数和为49=72,…,∴第n行个数之和为(2n-1)2,令(2n-1)2=2 0172⇒2n-1=2 017,解得n=1 009,故选D.3.B a1=1,a2=1+2,a3=1+2+3,a4=1+2+3+4,故a10=1+2+3+4+…+10=55,故选B.4.A依据题意可得从1~6号依次为小林、小马、小李、小方、小周、小张,则4号位置上坐的是小方,故选A.5.B∵m2=1+3+5+…+11=×6=36,∴m=6,∵23=3+5,33=7+9+11,43=13+15+17+19,∴53=21+23+25+27+29,∵n3的分解中最小的数是21,∴n3=53,n=5.∴m+n=6+5=11,故选B.6.D由题设:①1*1=1,②(n+1)*1=3(n*1),则n*1=3((n-1)*1)=3×3((n-2)*1)=…=3n-1(1*1)=3n-1.故选D.7.C对于①,根据空间内两点间距离公式可知,类比正确;对于②,(a+b)2=(a+b)·(a+b)=a2+a·b+b·a+b2=a2+2a·b+b2,类比正确;对于③,在空间内不平行的两条直线,有相交和异面两种情况,类比错误;对于④,椭圆+=1(a>b>0)上点P(x0,y0)处的切线方程为+=1,为真命题,综合上述,可知正确个数为3个,故选C.8.C设第n个图形“☆”的个数为a n,则a1=1,a2=1+2=3,a3=1+2+3=6,a n=1+2+…+n=,∴第30个图形比第27个图形中的“☆”多的个数为:-=87.故选C.9.甲、丙若甲说得不对,则乙、丙说得对,即乙一定报考了清华大学,丙一定报考了北京大学,甲只可能报考了北京大学.若乙、丙说得不对,则得出与“甲、乙、丙三人中恰好有1人说得不对”矛盾,所以报考了北京大学的是甲、丙.所以填甲、丙.10.三角形的面积类比四面体的体积,三角形的边长类比四面体四个面的面积,内切圆半径类比内切球的半径,二维图形中的“2”类比三维图形中的“3”,得R=.11.(n∈N+,n≥3)∵++≥=,+++≥=,++++≥=,…,∴++…+≥(n∈N+,n≥3).12.证明 (1)∵a n+1=S n+1-S n,a n+1=S n,∴(n+2)S n=n(S n+1-S n),即nS n+1=2(n+1)S n.∴=2·,又=1≠0,(小前提)故是以1为首项,2为公比的等比数列.(结论)(2)由(1)可知=4·(n≥2),∴S n+1=4(n+1)·=4··S n-1=4a n(n≥2),(小前提)又a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提)∴对于任意正整数n,都有S n+1=4a n.(结论)13.A因为四个人都只猜对了一半,故有以下两种可能:(1)当小明猜对第1个盒子里面放的是梅花A时,第3个盒子里面放的不是方片A,则小李猜对第4个盒子里面放的是红桃A,小张猜对第2个盒子里面放的是方片A,小红猜对第3个盒子里面放的是黑桃A;。
课时规范练数学归纳法基础巩固组.如果命题()对(∈)成立,则它对也成立.若()对也成立,则下列结论正确的是()()对所有正整数都成立()对所有正偶数都成立()对所有正奇数都成立()对所有自然数都成立.用数学归纳法证明命题“当是正奇数时能被整除”,在第二步时,正确的证法是().假设(∈),证明时命题成立.假设(是正奇数),证明时命题成立.假设(∈),证明时命题成立.假设(是正奇数),证明时命题成立.(安徽蚌埠期末)用数学归纳法证明不等式“…(>)”的过程中,归纳递推由到时,不等式的左边() .增加了一项.增加了两项.增加了两项,又减少了一项.增加了一项,又减少了一项.(辽宁辽阳期末)证明等式…(∈)时,某学生的证明过程如下:()当时,等式成立;()假设(∈)时,等式成立,即…,则当时,…()(),所以当时,等式也成立,故原等式成立.那么上述证明().全过程都正确.当时验证不正确.归纳假设不正确.从到的推理不正确.(辽宁抚顺期中)用数学归纳法证明:“两两相交且不共点的条直线把平面分为()部分,则().”证明第二步归纳递推时,用到()()..试证:当∈时()能被整除..(山东师范大学附属中学期中)证明:对任意的∈,不等式·…·成立..(广东中山一中三模)设数列{}满足(∈).()求的值,并猜想数列{}的通项公式(不需证明);()记为数列{}的前项和,用数学归纳法证明:当≥时,有<成立.综合提升组.设()是定义在正整数集上的函数,且()满足:“当()≥成立时,总可推出()≥()成立”.则下列命题总成立的是().若()≥成立,则当≥时,均有()≥成立.若()≥成立,则当≤时,均有()≤成立。
课时规范练64 不等式选讲基础巩固组1.(2018河南最后一次模拟,23)已知函数f(x)=|2x+4|+|2x-a|.(1)当a=6时,求f(x)≥12的解集;(2)已知a>-2,g(x)=x2+2ax+,若对于x∈-1, ,都有f(x)≥g(x)成立,求a的取值范围.2.(2018湖南长沙模拟二,23)已知函数f(x)=|x-1|,关于x的不等式f(x)<3-|2x+1|的解集记为A.(1)求A;(2)已知a,b∈A,求证:f(ab)>f(a)-f(b).3.(2018安徽淮南二模,23)已知函数f(x)=|x-2|-|x+1|.(1)解不等式f(x)+x>0.(2)若关于x的不等式f(x)≤a2-2a的解集为R,求实数a的取值范围.4.(2018河北衡水中学三轮检测,23)已知函数f(x)=|ax-1|-(a-2)x.(1)当a=3时,求不等式f(x)>0的解集;(2)若函数f(x)的图像与x轴没有交点,求实数a的取值范围.综合提升组5.已知函数f(x)=|x-a|.(1)当a=-2时,解不等式f(x)≥16-|2x-1|;(2)若关于x的不等式f(x)≤1的解集为[0,2],求证:f(x)+f(x+2)≥2.6.(2018河南南阳模拟,23)已知函数f(x)=|x-2a+1|+|x+2|,g(x)=3x+1.(1)当a=1时,求不等式f(x)≤g(x)的解集;(2)x∈[-2,a),f(x)≥g(x),求a的取值范围.7.已知函数f(x)=|2x+1|,g(x)=|x+1|,不等式f(x)≤g(x)+1的解集为A.(1)求A;(2)证明:对于任意的a,b∈∁R A,都有g(ab)>g(a)-g(-b)成立.创新应用组8.已知函数f(x)=|x-2|-|x|+m(m∈R).(1)若m=0,解不等式f(x)≥x-1;(2)若方程f(x)=-x有三个不同的解,求实数m的取值范围.9.(2018安徽安庆热身考,23)若关于x的不等式|3x+2|+|3x-1|-t≥0的解集为R,记实数t的最大值为a.(1)求a的值;(2)若正实数m,n满足4m+5n=a,求y=的最小值.参考答案课时规范练64 不等式选讲1.解 (1)当a=6时,f(x)=|2x+4|+|2x-6|,f(x)≥12等价于|x+2|+|x-3|≥6,因为|x+2|+|x-3|=所以或或解得x≥或x≤-,所以解集为.(2)当a>-2时,且x∈-1,时,f(x)=2x+4-(2x-a)=4+a,所以f(x)≥g(x),即4+a≥g(x).又g(x)=x2+2ax+的最大值必为g(-1),g之一,所以即解得-≤a≤,所以a的取值范围为-,.2.解 (1)由f(x)<3-|2x+1|,得|x-1|+|2x+1|<3,即或或解得-1<x≤-或-<x<1,所以,集合A={x∈R|-1<x<1}.(2)证明∵a,b∈A,∴-1<ab<1,∴f(ab)=|ab-1|=1-ab,f(a)=|a-1|=1-a,f(b)=|b-1|=1-b,∵f(ab)-[f(a)-f(b)]=1-ab-1+a+1-b=(1+a)(1-b)>0,∴f(ab)>f(a)-f(b).3.解 (1)不等式f(x)+x>0可化为|x-2|+x>|x+1|.当x<-1时,-(x-2)+x>-(x+1),解得x>-3,即-3<x<-1;当-1≤x≤2时,-(x-2)+x>x+1,解得x<1,即-1≤x<1;当x>2时,x-2+x>x+1,解得x>3,即x>3.综上所述:不等式f(x)+x>0的解集为{x|-3<x<1或x>3}.(2)由不等式f(x)≤a2-2a可得|x-2|-|x+1|≤a2-2a,∵|x-2|-|x+1|≤|x-2-x-1|=3,∴a2-2a≥3,即a2-2a-3≥0.解得a≥3或a≤-1.故实数a的取值范围是a≥3或a≤-1.4.解 (1)当a=3时,不等式可化为|3x-1|-x>0,即|3x-1|>x.∴3x-1<-x或3x-1>x,即x<或x>.即不等式f(x)>0的解集是x.(2)当a>0时,f(x)=要使函数f(x)与x轴无交点,只需即1≤a<2.当a=0时,f(x)=2x+1,函数f(x)与x轴有交点.当a<0时,f(x)=要使函数f(x)与x轴无交点,只需此时a无解.综上可知,当1≤a<2时,函数f(x)与x轴无交点.5.(1)解当a=-2时,不等式为|x+2|+|2x-1|≥16,当x≤-2时,原不等式可化为-x-2-2x+1≥16,解得x≤-,当-2<x≤时,原不等式可化为x+2-2x+1≥16,解得x≤-13,不满足,舍去;当x>时,原不等式可化为x+2+2x-1≥16,解得x≥5.综上不等式的解集为x或x≥5.(2)证明f(x)≤1即|x-a|≤1,解得a-1≤x≤a+1,而f(x)≤1的解集是[0,2],所以解得a=1,从而f(x)=|x-1|.于是证明f(x)+f(x+2)≥2,即证|x-1|+|x+1|≥2,因为|x-1|+|x+1|=|1-x|+|x+1|≥|1-x+x+1|=2,所以|x-1|+|x+1|≥2,所以原不等式得证.6.解 (1)当a=1时,f(x)=|x-1|+|x+2|,①当x≤-2时,f(x)=-2x-1,由-2x-1≤3x+1,知此时无解;②当-2<x<1时,f(x)=3,由3≤3x+1,解得≤x<1;③当x≥1时,f(x)=2x+1,由2x+1≤3x+1,解得x≥1,综上所述,不等式的解集为x.(2)当x∈[-2,a)时,f(x)=|x-2a+1|+x+2≥3x+1,即|x-2a+1|≥2x-1.①当-2<a≤时,2x-1<0,|x-2a+1|≥2x-1恒成立;②当a>,x∈-2,时,2x-1<0,|x-2a+1|≥2x-1恒成立;x∈,a时,|x-2a+1|2≥(2x-1)2恒成立,即3x2+2(2a-3)x-4a(a-1)≤0恒成立,令g(x)=3x2+2(2a-3)x-4a(a-1),g(x)的最大值只可能是g或g(a),g≤0,g(a)=3a2-2a≤0,得0≤a≤.又a>,所以<a≤.综上所述,a的取值范围是a.7.(1)解不等式f(x)≤g(x)+1,即|x+1|-|2x+1|+1≥0.当x<-1时,不等式可化为-x-1+(2x+1)+1≥0,解得x≥-1,∴x无解;当-1≤x≤-,不等式可化为x+1+(2x+1)+1≥0,解得x≥-1,∴-1≤x≤-;当x>-时,不等式可化为x+1-(2x+1)+1≥0,解得x≤1,∴-<x≤1.∴不等式f(x)≤g(x)+1的解集A={x|-1≤x≤1}.(2)证明∵g(a)-g(-b)=|a+1|-|-b+1|≤|a+1-(-b+1)|=|a+b|,∴要证g(ab)>g(a)-g(-b)成立,只需证|ab+1|>|a+b|,即证|ab+1|2>|a+b|2,也就是证明a2b2+2ab+1>a2+2ab+b2成立,即证a2b2-a2-b2+1>0,即证(a2-1)(b2-1)>0.∵A={x|-1≤x≤1},a,b∈∁R A,∴|a|>1,|b|>1,a2>1,b2>1,∴(a2-1)(b2-1)>0成立.从而对于任意的a,b∈∁R A,都有g(ab)>g(a)-g(-b)成立.8.解 (1)因为m=0,所以f(x)=|x-2|-|x|,有或或解得,x∈⌀或0≤x≤1或x<0.所以不等式f(x)≥x-1的解集为(-∞,1].(2)因为f(x)=|x-2|-|x|+m,所以方程f(x)=-x有三个不同的解等价于函数g(x)=|x-2|-|x|的图像与直线y=-x-m有三个不同的交点,作图可知,当直线y=-x-m经过点A(0,2)时,m=-2;当直线y=-x-m经过点B(2,-2)时,m=0.所以实数m的取值范围是(-2,0).9.解 (1)由题意得|3x+2|+|3x-1|≥t对x∈R恒成立,又|3x+2|+|3x-1|=|3x+2|+|1-3x|≥3,∴t≤3.∴a=3.(2)由(1)得4m+5n=3,且m,n>0,∴3y=+(4m+5n)=+[(m+2n)+(3m+3n)]=5++≥5+2=9.当且仅当=且4m+5n=3,即m=n=时等号成立.∴y≥3,即y=+的最小值为3.。
课时规范练36 数学归纳法基础巩固组1.如果命题p(n)对n=k(k∈N+)成立,则它对n=k+2也成立.若p(n)对n=2也成立,则下列结论正确的是()A.p(n)对所有正整数n都成立B.p(n)对所有正偶数n都成立C.p(n)对所有正奇数n都成立D.p(n)对所有自然数n都成立2.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步时,正确的证法是()A.假设n=k(k∈N+),证明n=k+1时命题成立B.假设n=k(k是正奇数),证明n=k+1时命题成立C.假设n=2k+1(k∈N+),证明n=k+1时命题成立D.假设n=k(k是正奇数),证明n=k+2时命题成立3.(2018安徽蚌埠期末,5)用数学归纳法证明不等式“+…+(n>2)”的过程中,归纳递推由n=k到n=k+1时,不等式的左边()A.增加了一项B.增加了两项C.增加了两项,又减少了一项D.增加了一项,又减少了一项4.(2018辽宁辽阳期末,6)证明等式12+22+32+…+n2=(n∈N+)时,某学生的证明过程如下:(1)当n=1时,12=,等式成立;(2)假设n=k(k∈N+)时,等式成立,即12+22+32+…+k2=,则当n=k+1时,12+22+32+…+k2+(k+1)2=+(k+1)2===,所以当n=k+1时,等式也成立,故原等式成立.那么上述证明()A.全过程都正确B.当n=1时验证不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确5.(2018辽宁抚顺期中,14)用数学归纳法证明:“两两相交且不共点的n条直线把平面分为f(n)部分,则f(n)=1+.”证明第二步归纳递推时,用到f(k+1)=f(k)+.6.试证:当n∈N+时,f(n)=32n+2-8n-9能被64整除.7.(2018山东师范大学附属中学期中,18)证明:对任意的n∈N+,不等式·…·成立.8.(2018广东中山一中三模,21)设数列{a n}满足a1=3,a n+1=-2na n+2(n∈N+).(1)求a2,a3,a4的值,并猜想数列{a n}的通项公式(不需证明);(2)记S n为数列{a n}的前n项和,用数学归纳法证明:当n≥6时,有S n<2n成立.综合提升组9.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”.则下列命题总成立的是()A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立B.若f(5)≥25成立,则当k≤5时,均有f(k)≤k2成立C.若f(7)<49成立,则当k≥8时,均有f(k)<k2成立D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立10.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,f(n)=(用n表示).11.(2018辽宁六校协作体期中,17)是否存在常数a,b使得等式12+22+…+n2=n(2n+1)(an+b)对一切正整数n都成立?若存在,求出a,b值,并用数学归纳法证明你的结论;若不存在,请说明理由.创新应用组12.(2018河南洛阳模拟,18)将正整数作如下分组:(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),….分别计算各组包含的正整数的和如下,S1=1,S2=2+3=5,S3=4+5+6=15,S4=7+8+9+10=34,S5=11+12+13+14+15=65,S6=16+17+18+19+20+21=111,(1)求S7的值;(2)由S1,S1+S3,S1+S3+S5,S1+S3+S5+S7的值,试猜测S1+S3+…+S2n-1的结果,并用数学归纳法证明.13.已知函数f0(x)=(x>0),设f n(x)为f n-1(x)的导数,n∈N+.(1)求2f1+f2的值;(2)证明:对任意的n∈N+,等式nf n-1+f n=都成立.参考答案课时规范练36 数学归纳法1.B n=k时成立,当n=2时,n=k+2成立,n为2,4,6,…,故n为所有正偶数.2.D相邻两个正奇数相差2,故D选项正确.3.C当n=k时,左边=++…+, ①当n=k+1时,左边=++…++,②所以增加了两项+,又减少了一项,故答案为C.4.A考查所给的证明过程:当n=1时验证是正确的,归纳假设是正确的,从n=k到n=k+1的推理也是正确的,即证明过程中不存在任何的问题.故选A.5.k+1当n=k(k≥2)时,有f(k)=1+,当n=k+1时,f(k+1)=1+,∴从k到k+1左端需增加的代数式1+-1-=(k+2-k)=k+1,∴在证明第二步归纳推理的过程中,用到f(k+1)=f(k)+(k+1).6.证明 (1)当n=1时,f(1)=64,命题显然成立.(2)假设当n=k(k∈N+,k≥1)时,f(k)=32k+2-8k-9能被64整除,则当n=k+1时,f(k+1)=32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+9·8k+9·9-8(k+1)-9=9(32k+2-8k-9)+64(k+1),即f(k+1)=9f(k)+64(k+1),因此当n=k+1时命题也成立.根据(1)(2)可知,对于任意n∈N+,命题都成立.7.证明①当n=1时,左边=,右边=,因为>,所以不等式成立.②假设当n=k时不等式成立,即···…·>成立.则当n=k+1时,左边···…··>·===>,所以当n=k+1时,不等式也成立.由①②可得不等式恒成立.8.解 (1)a2=5,a3=7,a4=9,猜想a n=2n+1.(2)S n==n2+2n,下证:n≥6(n∈N+)时都有2n>n2+2n.当n=6时,26>62+2×6,即64>48成立;假设n=k(k≥6,k∈N+)时,2k>k2+2k成立,那么当n=k+1时,2k+1=2·2k>2(k2+2k)=k2+2k+k2+2k>k2+2k+3+2k=(k+1)2+2(k+1),即n=k+1时,不等式成立.故对于所有的n≥6(n∈N+),都有2n>n2+2n成立.9.D对A,当k=1或2时,不一定有f(k)≥k2成立;对B,只能得出:对于任意的k≥5,均有f(k)≥k2成立,不能得出:对任意的k≤5,均有f(k)≤k2成立;对C,若f(7)<49成立不能推出任何结论;对D,∵f(4)=25≥16,∴对于任意的k≥4,均有f(k)≥k2成立.故选D.10.5 (n+1)(n-2)f(3)=2,f(4)=f(3)+3=2+3=5,f(n)=f(3)+3+4+…+(n-1)=2+3+4+…+(n-1)=(n+1)(n-2).11.解分别令n=1,2,可得解得故猜想等式12+22+…+n2=对一切正整数n都成立.下面用数学归纳法证明:①当n=1时,由上面的探求可知等式成立.②假设n=k(k∈N+,k≥1)时猜想成立,即12+22+…+k2=.当n=k+1时,12+22+…+k2+(k+1)2=+(k+1)2===.所以当n=k+1时,等式也成立.由①②知猜想成立,即存在a=,b=使命题成立.12.解 (1)S7=22+23+24+25+26+27+28=175.(2)S1=1;S1+S3=16;S1+S3+S5=81;S1+S3+S5+S7=256;猜测S1+S3+S5+…+S2n-1=n4.证明如下:记M n=S1+S3+S5+…+S2n-1,①当n=1时,猜想成立.②设当n=k时,命题成立,即M k=S1+S3+S5+…+S2k-1=k4.下面证明当n=k+1时,猜想也成立.事实上,由题设可知S n是由1+2+3+…+(n-1)+1=+1开始的n个连续自然数的和.所以S n=+1++2+…++n=,所以S2k+1==(2k+1)(2k2+2k+1)=4k3+6k2+4k+1,从而M k+1=M k+S2k+1=k4+4k3+6k2+4k+1=(k+1)4,所以猜想在n=k+1时也成立.综合(1)(2)可知猜想对任何n∈N+都成立.13.(1)解由已知,得f1(x)=f'0(x)='=-,于是f2(x)=f'1(x)='-'=--+,所以f1=-,f2=-+,故2f1+f2=-1.(2)证明由已知,得xf0(x)=sin x,等式两边分别对x求导,得f0(x)+xf'0(x)=cos x,即f0(x)+xf1(x)=cos x=sin x+,类似可得,2f1(x)+xf2(x)=-sin x=sin(x+π),3f2(x)+xf3(x)=-cos x=sin x+,4f3(x)+xf4(x)=sin x=sin(x+2π).下面用数学归纳法证明等式nf n-1(x)+xf n(x)=sin x+对所有的x∈N+都成立.①当n=1时,由上可知等式成立.②假设当n=k时,等式成立,即kf k-1(x)+xf k(x)=sin x+.因为[kf k-1(x)+xf k(x)]'=kf'k-(x)+f k(x)+xf'k(x)=(k+1)f k(x)+xf k+1(x),1sin x+'=cos x+·x+'=sin x+,所以(k+1)f k(x)+xf k+1(x)=sin x+.因此当n=k+1时,等式也成立.综合①②可知等式nf n-1(x)+xf n(x)=sin x+对所有的n∈N+都成立.令x=,可得nf n-1+f n=sin +(n∈N+),所以nf n-1+f n=(n∈N+).。