天津市河西区2020-2021学年度高二第一学期期中考试数学试卷
- 格式:pdf
- 大小:498.19 KB
- 文档页数:6
天津市第一中学2020-2021学年高二上学期期中数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +a 2-1=0平行,则a 等于( ) A .-1 B .-1或2 C .2 D .12.过点P (1,2)引直线使两点A (2,3)、B (4,-5)到它的距离相等,则直线方程是( ) A .4x +y -6=0B .x +4y -6=0C .2x +3y -7=0或x +4y -6=0D .4x +y -6=0或3x +2y -7=03.过点P(1,4)且在x 轴,y 轴上的截距的绝对值相等的直线共有 ( )A .1条B .2条C .3条D .4条4.圆x 2+y 2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( ) A .36 B .18 C . D .5.若圆x 2+y 2+ax -by =0的圆心在第二象限,则直线x +ay -b =0一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.已知圆C :x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是( )A .32B .43C .53D .54 7.过椭圆9x 2+25y 2=225的右焦点且倾斜角为45°的弦长AB 的长为( ) A .5 B .6 C .9017 D .78.已知椭圆x 2+4y 2=12的左、右焦点分别为F 1、F 2,点P 在椭圆上,线段PF 1的中点在y 轴上,则∣PF 1∣是∣PF 2∣的( )A .3倍B .4倍C .5倍D .7倍 9.若椭圆2a 2x 2-ay 2=2的一个焦点是(-2,0),则a =( )A B C D 10.已知A 、B 为椭圆的左、右顶点,F 为左焦点,点P 为椭圆上一点,且PF ⊥x 轴,过点A 的直线与线段PF 交于M 点,与y 轴交于E 点,若直线BM 经过OE 中点,则椭圆的离心率为( )A .12 B C .13 D二、填空题11.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是________________ 12.如果x 2+y 2-2x +y +k =0是圆的方程,则实数k 的取值范围是_____.13.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :1y x =-被该圆所截得的弦长为C 的标准方程为 .14.过直线:0l x y +-=上一点P 作圆:221x y +=的两条切线的夹角为60°,则点P 的坐标为__________.15.椭圆的两焦点为F 1(-4,0),F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆方程为________.16.椭圆2212516x y +=的左、右焦点为F 1、F 2,点P 在椭圆上,若Rt F 1PF 2,则点P 到x 轴的距离为_____.三、解答题17.在三棱锥P -ABC 中,∠APB =90°,∠P AB =60°,AB =BC =CA ,平面P AB ⊥平面ABC . (1)求直线PC 与平面ABC 所成角的正弦值;(2)求二面角B -AP -C 的余弦值.18.已知直线x +y -1=0与椭圆C :b 2x 2+a 2y 2=a 2b 2(a >b >0)相交于A ,B 两点,且线段AB 的中点在直线l :x -2y =0上.(1)求此椭圆C 的离心率;(2)若椭圆C 的右焦点关于直线l 的对称点在圆x 2+y 2=4上,求此椭圆C 的方程. 19.已知(0,3)A ,直线:24=-l y x ,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1y x =-上,过A 作圆C 的切线,求切线方程;(2)若圆C 上存在点M ,使||2||MA MO =,求圆心C 的横坐标a 取值范围. 20.已知直线l :x =my +1过椭圆C :b 2x 2+a 2y 2=a 2b 2(a >b >0)的右焦点F ,且交椭圆C 于A 、B 两点,点A 、B 在直线G :x =a 2上的射影依次为点D 、E .(1)若22113||e OF OA FA +=,其中O 为原点,A 2为右顶点,e 为离心率,求椭圆C 的方程;(2)连接AF ,BD ,试探索当m 变化时,直线AE ,BD 是否相交于一定点N ?若交于定点N ,请求出N 点的坐标,并给予证明;否则说明理由.参考答案1.A【分析】根据直线平行关系可得方程组,解方程组求得结果.【详解】由1l 与2l 平行得:()()()21202161a a a a ⎧--=⎪⎨-≠-⎪⎩,解得:1a =- 故选:A .【点睛】本题考查两直线1111:+0l A x B y C +=与2222:+0l A x B y C +=平行时有12212112=A B A B B C B C ⎧⎨≠⎩, 易错点是忽略直线不能重合,造成增根.2.D【分析】当直线l 的斜率不存在时,直线l 的方程为x =1,不成立;当直线l 的斜率存在时,设直线l 的方程为20kx y k --+=,由此利用点到直线的距离公式能求出直线方程.【详解】当直线l 的斜率不存在时,直线l 的方程为x =1,不成立;当直线l 的斜率存在时,设直线l 的方程为2(1)y k x -=-,即20kx y k --+=,∵直线l 与两点A (2,3), B (4,-5)的距离相等,=解得4k =-或32k =- .:.直线l 的方程为4420x y --++=或332022x y --++= 整理,得:460x y +-=或3270x y +-=故选:D【点睛】解决本题要注意设直线方程时,分直线的斜率存在、不存在两种情况讨论,然后根据点到直线的距离相等即可求解.3.C【详解】当直线经过原点时,横、纵截距都为0,符合题意, 当直线不经过原点时,设直线方程为1x y a b+=. 由题意得141,,a b a b ⎧+=⎪⎨⎪=⎩解得33a b =-⎧⎨=⎩或55a b =⎧⎨=⎩综上,符合题意的直线共有3条.故选:C .【点睛】首先明白直线的截距的概念,就是直线和坐标轴的交点的坐标,可正,可负,可0,截距不是距离.截距绝对值相等,截距互为相反数,横截距是纵截距的两倍,都要考虑过原点的情况.4.C【分析】先看直线与圆的位置关系,如果相切或相离最大距离与最小距离的差是直径;相交时,圆心到直线的距离加上半径为所求.【详解】圆x 2+y 2-4x-4y-10=0的圆心为(2,2),半径为r =,圆心到到直线x+y-14=0=,所以圆上的点到直线的距离的最大值为d r +=d r -= 因此最大距离与最小距离的差是,故选C .5.C【分析】由圆心位置确定a ,b 的正负,再结合一次函数图像即可判断出结果.【详解】因为圆22+0x y ax by +-=的圆心坐标为,22a b ⎛⎫-⎪⎝⎭, 由圆心在第二象限可得0,0a b >>, 所以直线0x ay b +-=的斜率10a -<,y 轴上的截距为0b a>, 所以直线不过第三象限.故选:C6.B【分析】圆C 化成标准方程,得圆心为C (4,0)且半径r =1,根据题意可得C 到直线y =kx ﹣2的距离小于或等于2,利用点到直线的距离公式建立关于k 的不等式,即可得到k 的最大值.【详解】∵圆C 的方程为x 2+y 2﹣8x +15=0,∴整理得:(x ﹣4)2+y 2=1,可得圆心为C (4,0),半径r=1.又∵直线y =kx ﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点, ∴点C 到直线y =kx ﹣2的距离小于或等于22≤, 化简得:3k 2﹣4k ≤0,解之得0≤k ≤43, 可得k 的最大值是43. 故选:B7.C【分析】求出焦点坐标和直线方程,与椭圆方程联立,利用韦达定理和弦长公式可得答案.【详解】由9x 2+25y 2=225得,221259x y +=,2225,9a b ==,所以216c =,右焦点坐标为(4,0),直线AB 的方程为4y x =-,所以2241259y x x y =-⎧⎪⎨+=⎪⎩得2342001750x x -+=, 设1122(,),(,)A x y B x y ,所以1212100175,1734x x x x +==,||AB ==9017==. 故选:C.【点睛】本题主要考查直线与椭圆的弦长公式||AB =应用.8.D【分析】由已知得到焦点坐标,设(,)P x y ,根据中点坐标公式得到横坐标等于零得到P 点坐标,再利用两点间的距离公式可得答案.【详解】由椭圆x 2+4y 2=12得,221123x y += ,2222212,3,9a b c a b ===-=, 所以1(3,0)F F (-3,0),,设(,)P x y ,则线段1PF 的中点坐标为3,22x y -⎛⎫ ⎪⎝⎭, 因为线段PF 1的中点在y 轴上,所以302x -=,所以3x =,所以2231123y +=,解得y =P ⎛ ⎝⎭,1||PF ==2||2PF ==,所以12||7||PF PF =, 当3,2P ⎛- ⎝⎭,1||2PF ==,2||2PF ==,所以12||7||PF PF =, 故选:D.9.C【分析】方程化为椭圆的标准方程,根据焦点求解即可.【详解】 由原方程可得222y 112x a a-=, 因为椭圆焦点是(-2,0), 所以2124a a ⎛⎫--= ⎪⎝⎭,解得14a =±, 因为20a->,即0a <,所以14a =, 故选:C10.C【分析】根据已知条件求出,,B H M 三点坐标,再由三点共线可得斜率相等,从而得出3a c =可得答案.【详解】由题意可设(,0),(,0),(,0)F c A a B a --,设直线AE 的方程(由题知斜率存在)为()y k x a =+,令x c =-,可得(),()M c k a c --,令0x =,可得(0,)E ka ,设OE 的中点为H ,可得0,2ka H ⎛⎫ ⎪⎝⎭,由,,B H M 三点共线,可得BH BM k k =,即()2ka k a c a c a-=---,即为3a c =,可得13c e a ==, 故选:C.【点睛】本题考查求椭圆的离心率,解题关键是根据三点共线找到关于,a c 的等量关系.11.4250x y --=【解析】试题分析:先求出中点的坐标,再求出垂直平分线的斜率,点斜式写出线段AB 的垂直平分线的方程,再化为一般式解:线段AB 的中点为(2,32),垂直平分线的斜率 k=1AB k -=2,∴线段AB 的垂直平分线的方程是 y-32=2(x-2),4x-2y-5=0,故答案为4250x y --=. 考点:直线方程点评:本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.12.5-4∞⎛⎫ ⎪⎝⎭,【分析】根据2240D E F +->即可求解.【详解】由2240D E F +->即(-2)2+12-4k >0,解得k <54. 所以实数k 的取值范围是5-4∞⎛⎫ ⎪⎝⎭,.故答案为:5-4∞⎛⎫ ⎪⎝⎭,. 【点睛】本题考查了圆的一般方程,考查了基本运算求解能力,属于基础题. 13.22(3)4x y -+= 【详解】设圆心为(,0)a ,则圆心到直线10x y --=的距离为d =因为圆截直线所得的弦长根据半弦、半径、弦心距之间的关系有222(1)a +=-,即2(1)4a -=,所以3a =或1a =-(舍去),半径r=3-1=2所以圆C 的标准方程为22(3)4x y -+=14.【详解】 设切断为E 、F60EPF ∠=由切线的性质可知30OPF ∠=,因为,OE PE ⊥所以设,由故点P 的坐标为()2,2.【考点定位】此题考查了直线与圆的位置关系,直角三角形的性质,以及切线的性质.已知切线往往连接圆心与切点,借助图形构造直角三角形解决问题,培养了学生数形结合的思想,分析问题,解决问题的能力15.221259x y +=【解析】当点P 为椭圆的短轴顶点时,△PF 1F 2的面积最大,此时△PF 1F 2的面积为S =12×8×b =12,解得b =3.又a 2=b 2+c 2=25,所以椭圆方程为22259x y +=1.16.165或163【分析】设点P (x ,y ),表示出点P 到x 轴的距离为||y ,由哪一个角是直角来分类讨论,在第一类中直接令x =士3得结果,在第二类中要列出方程组,再用等面积法求y. 【详解】设点(,)P x y ,则到x 轴的距离为||y 由于5a =,4b =,3c ∴=,(1)若1290PF F ∠=︒或2190PF F ∠=︒,令3x =±得29y =291616(1)2525-=,16||5y ∴=,即P 到x 轴的距离为165.(2)若1290F PF ∠=︒,则122221210||6PF PF PF PF ⎧+=⎪⎨+=⎪⎩, 22121||||(106)322PF PF ∴=-=,121211||||||||22PF PF F F y =, 6|1|3y ∴=, 由(1)(2)知:P 到x 轴的距离为165或163, 故答案为:165或163. 【点睛】解决本题的关键是要注意分类讨论的思想,题目中的直角三角形,要分清楚那个角是直角,是解决问题的先决条件. 17.(12【分析】(1)设AB 中点为D ,AD 中点为O ,连接,,OC OP CD ,可以证出∠OCP 为直线PC 与平面ABC 所成的角.不妨设P A =2,则OD = 1 , OP AB =4,在Rt △OCP 中求解;(2)过D 作DE AP ⊥于E ,连接CE ,可证明CED ∠就是二面角B -AP -C 的平面角,解三角求解即可. 【详解】(1)设AB 中点为D ,取AD 中点为O ,连接OC ,连接PD 、CD . 如图,因为∠APB =90°,∠P AB =60°,1,2AP AB AD PD AD ===, 所以PAD 为等边三角形, 所以PO AB ⊥,因为平面P AB ⊥平面ABC ,AB 为交线, 所以PO ⊥平面ABC所以OCP ∠为直线PC 与平面ABC 所成的角 因为AB =BC =CA ,所以CD ⊥AB . 因为∠APB =90°,∠P AB =60°,不妨设P A =2,则OD =1,OP AB =4.所以,OC ==在Rt OCP 中,13tan OP O C C O P ===∠,所以sin 4OCP ∠=故直线PC 与平面ABC (2)过D 作DE AP ⊥于E ,连接CE . 如图,由已知可得,CD ⊥平面P AB. 根据三垂线定理可知,CE ⊥P A ,所以,CED ∠就是二面角B -AP -C 的平面角.由(1)知,DE 在Rt △CDE 中, tan 2CED CDDE==∠,所以cos CED ∠=故二面角B AP C --. 【点睛】求立体几何中空间的角,利用传统做法把握好两方面即可:一是要找到或作出所求角,并要适当证明,二是要把角放在合适的三角形中求解.18.(1)2(2)22184x y +=【分析】(1)联立直线方程与椭圆方程,利用韦达定理以及中点坐标公式解得线段AB 中点M 坐标,代入直线l 的方程,解得离心率;(2)利用方程组解得右焦点关于直线l 的对称点坐标,代入圆方程,结合(1)解得a ,b ,即可求出椭圆标准方程. 【详解】椭圆C :b 2x 2+a 2y 2=a 2b 2(a >b >0),即22221x y a b+=,(1)设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),由2222101x y x y a b +-=⎧⎪⎨+=⎪⎩得:()222222220a b x a x a a b +-+-=. ()()()222222220aab a a b ∆=--+->,即221a b +>.x 1+ x 2=2222a a b+, y 1+ y 2=-( x 1+ x 2)+2=2222b a b +,∴点M 的坐标为(222a a b +,222b a b +). 又点M 在直线l 上,∴2222222a b a b a b -++=0, ∴()222222a b a c ==-,∴222a c =,∴c e a ==. (2)由(1)知b c =,设椭圆的右焦点F (b ,0)关于直线l : 12y x =的对称点为(x 0,y 0),由000001121222y x b y x b -⎧⋅=-⎪-⎪⎨+⎪=⋅⎪⎩,解得003545x b y b ⎧=⎪⎪⎨⎪=⎪⎩ ∵22004x y +=,∴2234455b b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, ∴24b =,222822b a c =∴==,显然有221a b +>.∴所求的椭圆的方程为22184x y +=.【点睛】解决此题的关键在于求出A ,B 两点的中点坐标,利用中点坐标在直线l :x -2y =0上,建立关于,a b 的方程,结合222a b c =+,转化为关于,a c 的方程,求出椭圆的离心率e . 19.(1)3y =或34120x y +-=;(2)1205a . 【分析】(1)根据圆心在直线:24=-l y x 上也在直线1y x =-上,求得圆心坐标,可得过A 的圆C 的切线方程.(2)设圆C 的方程为22()(24)1x a y a -+-+=,再设(,)M x y ,根据2MA MO =,求得圆22:(1)4D x y ++=,根据题意,圆C 和圆D 有交点,可得2112CD -+,即221(241)3a a +-+,由此求得a 的范围.【详解】解:(1)根据圆心在直线:24=-l y x 上,若圆心C 也在直线1y x =-上,则由241y x y x =-⎧⎨=-⎩,求得32x y =⎧⎨=⎩,可得圆心坐标为(3,2).设过(0,3)A 的圆C 的切线方程为3(0)y k x -=-,即30kx y -+=, 根据圆心到直线30kx y -+=的距离等于半径11=,求得0k =,或34k =-,故切线方程为3y =,或34120x y +-=.(2)根据圆心在直线:24=-l y x 上,可设圆的方程为22()(24)1x a y a -+-+=.若圆C 上存在点M ,使||2||MA MO =,设(,)M x y ,2MA MO =,∴=化简可得22(1)4x y ++=,故点M 在以(0,1)D -为圆心、半径等于2的圆上.根据题意,点M 也在圆C 上,故圆C 和圆D 有交点,2112CD ∴-+,即221(241)3a a +-+,求得251280a a -+,且25120a a -,解得1205a . 【点睛】本题主要考查直线和圆的位置关系的应用,点到直线的距离公式,圆的标准方程,考查学生的数学抽象能力与计算能力,属于中档题.20.(1)22143x y +=(2)相较于定点5(2N ,0),证明见解析.【分析】(1)设椭圆的半焦距为c ,由题意可得1c =,由已知等式可得e ,进而得到a ,b ,即可得到椭圆方程;(2)当0m =时,求得AE ,BD 的交点,猜想定点5(2N ,0).当0m ≠时,分别设A ,B 的坐标为1(x ,1)y ,2(x ,2)y ,由题意可得1(4,)D y ,2(4,)E y ,联立直线l 的方程和椭圆方程,运用韦达定理,结合三点共线的性质,计算直线BN ,DN 的斜率,可判断B ,N ,D 共线,同理可判断A ,E ,N 共线,即可得到定点N .【详解】(1)椭圆的方程为22221(0)x y a b a b+=>>,设椭圆的半焦距为c ,由题意可得1c =, 由22113||||||e OF OA FA +=,可得113ec a a c+=-, 即有113a ce c a -+-=,即14e e =,解得12e =,则2a =,b ==所以椭圆的方程为22143x y +=;(2)当0m =时,直线AB 垂直于x 轴,可得四边形ABED 为矩形,直线AE ,BD 相交于点5(2,0),猜想定点5(2N ,0);当0m ≠时,分别设A ,B 的坐标为1(x ,1)y ,2(x ,2)y ,由题意可得1(4,)D y ,2(4,)E y ,由2213412x my x y =+⎧⎨+=⎩可得22(43)690m y my ++-=, 122643m y y m+=-+,122943y y m =-+, 由2252BN y k x =-,1542DN y k =-, 由212235()2235()22BN DNy y x k k x ---=-,又212121222353369(1)()()()022224343m y y my y y my y m m m -+-=+-=---=++, 则0BN DN k k -=,即BN DN k k =,所以B ,D ,N 三点共线; 同理可得A ,E ,N 三点共线.则直线AE ,BD 相交于一定点5(2N ,0).【点睛】本题考查椭圆的方程和性质,以及直线和椭圆的位置关系,注意联立直线方程和椭圆方程,运用韦达定理和直线的斜率公式,考查方程思想和运算能力,属于中档题.。
河西区2024~2025学年度第一学期高二年级期中质量调查化学试卷可能用到的相对原子质量:H 1 C 12 N 14 O 16 Mg 24本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为第1页至第6页,第Ⅱ卷为第7页至第8页。
试卷满分100分。
考试时间60分钟。
第I卷(选择题共60分)第.1~10..1.个选项是最符合题目要求的............。
.........只有....4.分,..列出的四个选项中,....题,每题..在.每题1.下列变化过程中一定不存在化学能转化为热能的是A.干冰升华B.谷物酿酒C.木材燃烧D.鞭炮燃放2.下列日常生活情境与化学反应速率无关的是A.用较浓的白醋清洗水壶垢B.夏天将食物放在冰箱中冷藏C.糖果制作过程中添加着色剂D.面团加酵母粉放在温热处发酵3.下列事实,不能..用勒夏特列原理解释的是A.开启汽水瓶盖后,瓶中立刻泛起大量气泡B.对2HI(g)H2(g)+I2(g)平衡体系加压,气体颜色变深C.硫酸工业中,增大O2的浓度有利于提高SO2的转化率D.滴有酚酞的氨水溶液,适当加热溶液(忽略氨气挥发)后颜色变深4.下列有关反应2CO(g) = 2C(s)+O2(g) △H>0的推测正确的是A.低温下能自发进行B.高温下能自发进行C.任何温度下都不能自发进行D.任何温度下都能自发进行5.在10 L密闭容器内发生反应2A(g)+B(g)C(g),气体A在2 s内由8 mol/L变为6 mol/L,2 s内平均反应速率v(A)[单位均为mol/(L·s)]正确的是A.0.1 B.0.05 C.1 D.26.在密闭容器中,反应2X(g)+Y(g)3Z(g)达到平衡后,若将容器体积缩小一半,对反应产生的影响是A.v(正)减小,v(逆)增大B.v(正)增大,v(逆)减小C.v(正)和v(逆)都减小D.v(正)和v(逆)都增大7.已知:H 2(g)+F 2(g)=2HF(g) △H =-270 kJ/mol 。
最新天津市中考数学一模试卷一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣3)+(﹣2)的结果等于()A.﹣5 B.5 C.﹣1 D.12.tan30°的值等于()A.B.C.D.3.下列标志中,可以看作是轴对称图形的是()A.B.C.D.4.根据海关统计,2015年1月4日,某市共出口钢铁1488000吨,148000这个数用科学记数法表示为()A.1.488×104B.0.1488×107C.14.88×106D.1.488×1065.如图是由5个相同的正方体组成的一个立体图形,它的左视图是()A.B.C.D.6.方程的解为()A.x=﹣2B.x=2 C.x=﹣1D.x=7.某校260名学生参加植树活动,要求每人值4﹣7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校植树量达到6棵的学生有()A.26名 B.52名 C.78名 D.104名8.正六边形的边心距是,则它的边长是()A.1 B.2 C.2D.39.反比例函数y=的图象经过点A(﹣2,﹣5),则当1<x<2时,y的取值范围是()A.﹣10<y<﹣5 B.﹣2<y<﹣1 C.5<y<10 D.y>1010.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4B.6C.2D.811.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.105°B.150°C.75°D.30°12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题3分,满分18分)13.计算(﹣a2)3的结果等于.14.在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是白球的概率是.15.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= .16.已知抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,那么抛物线的对称轴为直线.17.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为.18.如图,将三角形ABC放在每个小正方形的边长为1的网格中,点A,点B,点C,点P 均落在格点上.(1)计算三角形ABC的周长等于.(2)请在给定的网格内作三角形ABC的内接矩形EFGH,使得点E,H分别在边AB,AC上,点F,G在边BC上,且使矩形EFGH的周长等于线段BP长度的2倍,并简要说明你的作图方法(不要求证明)三、解答题(共7小题,满分66分)19.解不等式请结合题意填空,完全本题的解答(1)解不等式①,得.(2)解不等式②,得.(3)把不等式①和②的解集在数轴上表示出来.(4)原不等式组的解集为.20.某校开展社团活动,准备组件舞蹈、武术、球类(足球、篮球、乒乓球、羽毛球).花样滑冰四类社团,为了解在校学生对这4个社团活动的喜爱情况,学校随机抽取部分学生进行了“你最喜爱的社团”调查,依据相关数据绘制以下的统计图表,请根据图表中的信息解答下列问题:“你最喜爱的社团”调查统计图表社团类别人数占总人数的比例舞蹈60 25%武术m 10%花样滑冰36 n%球类120 50%(1)被调查的学生总人数是;m= ,n= .(2)被调查喜爱球类的学生中有12人最喜爱乒乓球,若该校有2600名学生,试估计全校最喜爱乒乓球的人数.21.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.22.天津北宁公园内的致远塔,塔高九层,塔内四周墙壁上镶钳着历史题材为内容的瓷板油彩画或青石刻浮雕,叠双向盘旋楼梯或电梯可达九层,津门美景尽收眼底,是我国目前最高的宝塔.某校数学情趣小组实地测量了致远塔的高度AB,如图,在C处测得塔尖A的仰角为45°,再沿CB方向前进31.45m到达D处,测得塔尖A的仰角为60°,求塔高AB(精确到0.1m,≈1.732)23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).x(亩)20 25 30 35z(元)1700 1600 1500 1400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.24.在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E 的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣3)+(﹣2)的结果等于()A.﹣5 B.5 C.﹣1 D.1【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(3+2)=﹣5,故选A.【点评】此题考查了有理数的加法,熟练掌握有理数加法法则是解本题的关键.2.tan30°的值等于()A.B.C.D.【分析】根据特殊角的三角函数值解答.【解答】解:tan30°=.故选C.【点评】本题考查特殊角的三角函数值.特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.3.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:C上下折叠能重合,是轴对称图形,故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.根据海关统计,2015年1月4日,某市共出口钢铁1488000吨,148000这个数用科学记数法表示为()A.1.488×104B.0.1488×107C.14.88×106D.1.488×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:148000这个数用科学记数法表示为1.488×105,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图是由5个相同的正方体组成的一个立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.方程的解为()A.x=﹣2B.x=2 C.x=﹣1D.x=【分析】观察方程可得最简公分母是:x(x﹣1),两边同时乘最简公分母可把分式方程化为整式方程来解答.【解答】解:方程两边同乘以x(x﹣1)得,2x﹣2=3x,解得:x=﹣2.经检验:x=﹣2是原方程的解;故选A.【点评】此题考查了分式方程的解,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.7.某校260名学生参加植树活动,要求每人值4﹣7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校植树量达到6棵的学生有()A.26名 B.52名 C.78名 D.104名【分析】用学生总人数乘以植树量为6棵的百分比即可求解.【解答】解:观察统计图发现植树量为6棵的占30%,故植树量达6棵的人数有260×30%=78人,故选C.【点评】本题考查了用样本估计总体及扇形统计图的知识,解题的关键是从扇形统计题中整理出植树量达6棵所占的百分比,难度不大.8.正六边形的边心距是,则它的边长是()A.1 B.2 C.2D.3【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选B.【点评】本题考查了正六边形和圆,掌握外接圆的半径等于正六边形的边长是解此题的关键.9.反比例函数y=的图象经过点A(﹣2,﹣5),则当1<x<2时,y的取值范围是()A.﹣10<y<﹣5 B.﹣2<y<﹣1 C.5<y<10 D.y>10【分析】将点A的坐标代入反比例函数解析式中,求出k值,结合反比例函数的性质可知当x>0时,反比例函数单调递减,分别代入x=1、x=2求出y值,由此即可得出结论.【解答】解:∵反比例函数y=的图象经过点A(﹣2,﹣5),∴﹣5=,解得:k=10,∴反比例函数解析式为y=.当x>0时,反比例函数单调递减,当x=1时,y==10;当x=2时,y==5.∴当1<x<2时,5<y<10.故选C.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及待定系数法求函数解析式,解题的关键是求出k值.本题属于基础题,难度不大,解决该题型题目时,由给定点的坐标利用待定系数法求出k的值,再根据反比例函数的性质确定其单调性,代入x 的值即可得出结论.10.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4B.6C.2D.8【分析】首先连接OA,OC,过点O作OD⊥AC于点D,由圆周角定理可求得∠AOC的度数,进而可在构造的直角三角形中,根据勾股定理求得弦AC的一半,由此得解.【解答】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故选A.【点评】此题主要考查了三角形的外接圆以及勾股定理的应用,还涉及到圆周角定理、垂径定理以及直角三角形的性质等知识,难度不大.11.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.105°B.150°C.75°D.30°【分析】根据旋转的性质得出AB=AB′,∠BAB′=30°,进而得出∠B的度数,再利用平行四边形的性质得出∠C的度数.【解答】解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=÷2=75°,∴∠C=180°﹣75°=105°.故选A.【点评】此题主要考查了旋转的性质以及平行四边形的性质,根据已知得出∠B=∠AB′B=75°是解题关键.12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个B.3个C.2个D.1个【分析】根据已知画出图象,把x=﹣2代入得:4a﹣2b+c=0,2a+c=2b﹣2a;把x=﹣1代入得到a﹣b+c>0;根据﹣<0,推出a<0,b<0,a+c>b,计算2a+c=2b﹣2a>0;代入得到2a﹣b+1=﹣c+1>0,根据结论判断即可.【解答】解:根据二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=﹣2代入得:4a﹣2b+c=0,∴①正确;把x=﹣1代入得:y=a﹣b+c>0,如图A点,∴②错误;∵(﹣2,0)、(x1,0),且1<x1,∴取符合条件1<x1<2的任何一个x1,﹣2•x1<﹣2,∴由一元二次方程根与系数的关系知x1•x2=<﹣2,∴不等式的两边都乘以a(a<0)得:c>﹣2a,∴2a+c>0,∴③正确;④由4a﹣2b+c=0得2a﹣b=﹣,而0<c<2,∴﹣1<﹣<0∴﹣1<2a﹣b<0∴2a﹣b+1>0,∴④正确.所以①③④三项正确.故选B.【点评】本题主要考查对二次函数图象上点的坐标特征,抛物线与X轴的交点,二次函数与系数的关系等知识点的理解和掌握,能根据图象确定与系数有关的式子得符号是解此题的关键.二、填空题(共6小题,每小题3分,满分18分)13.计算(﹣a2)3的结果等于﹣a6.【分析】直接利用积的乘方运算法则求出答案.【解答】解:(﹣a2)3=﹣a6.故答案为:﹣a6.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.14.在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是白球的概率是.【分析】用白球的个数除以球的总个数即可.【解答】解:∵在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,∴从中任意摸出一个球,是白球的概率是:.故答案为.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.15.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= 2 .【分析】根据一次函数的增减性列出关于m的不等式组,求出m的值即可.【解答】解:∵一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,∴,解得m=2.故答案为:2.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系及其增减性是解答此题的关键.16.已知抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,那么抛物线的对称轴为直线x=1 .【分析】根据二次函数的图象具有对称性,由抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,可以得到它的对称轴,本题得以解决.【解答】解:∵抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,∴抛物线的对称轴为直线x=,故答案为:x=1.【点评】本题考查二次函数的性质,解题的关键是明确二次函数的性质,知道二次函数的图象具有对称性.17.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为88°.【分析】由AB=AC=AD,可得B,C,D在以A为圆心,AB为半径的圆上,然后由圆周角定理,证得∠CAD=2∠CBD,∠BAC=2∠BDC,继而可得∠CAD=2∠BAC.【解答】解:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44°,∴∠CAD=2∠BAC=88°.故答案为:88°.【点评】此题考查了圆周角定理.注意得到B,C,D在以A为圆心,AB为半径的圆上是解此题的关键.18.如图,将三角形ABC放在每个小正方形的边长为1的网格中,点A,点B,点C,点P 均落在格点上.(1)计算三角形ABC的周长等于3+5 .(2)请在给定的网格内作三角形ABC的内接矩形EFGH,使得点E,H分别在边AB,AC上,点F,G在边BC上,且使矩形EFGH的周长等于线段BP长度的2倍,并简要说明你的作图方法(不要求证明)【分析】(1)根据勾股定理分别求出AB、AC即可解决问题.(2)在线段AB上截取BE=AB,作EF⊥BC于F,EH∥BC交AC于H,作HG⊥BC于G,矩形EFGH计算所求作的矩形.作AM⊥BC于M,交EH于N,设EF=x,则MN=EF=x,由△AEH∽△ABC,得=,列出方程即可解决.【解答】解:(1)∵AB==,AC==2,BC=5,∴AB+AC+BC=3+5,∴△ABC的周长为3+5.故答案为3+5.(2)在线段AB上截取BE=AB,作EF⊥BC于F,EH∥BC交AC于H,作HG⊥BC于G,矩形EFGH计算所求作的矩形.理由:作AM⊥BC于M,交EH于N,设EF=x,则MN=EF=x,∵矩形EFGH的周长为8,∴EH=4﹣x,∵EH∥BC,∴△AEH∽△ABC,∴=,∴,∴x=,∴EF=,∵EF∥AM,∴===,∴BE=AB,∴当BE=AB时,矩形EFGH的周长等于线段BP长度的2倍.【点评】本题考查矩形性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是先利用相似三角形的性质求出矩形的长、宽,然后确定点E位置,属于中考常考题型.三、解答题(共7小题,满分66分)19.解不等式请结合题意填空,完全本题的解答(1)解不等式①,得x≥﹣1 .(2)解不等式②,得x≤1 .(3)把不等式①和②的解集在数轴上表示出来.(4)原不等式组的解集为﹣1≤x≤1 .【分析】先根据不等式基本性质求出两个不等式的解集,再将不等式解集表示在数轴上,根据解集在数轴上的表示求其公共解.【解答】解:(1)解不等式①,得:x≥﹣1,(2)解不等式②,得:x≤1,(3)把不等式①和②的解集表示在数轴上,如图:(4)∴原不等式组的解集为:﹣1≤x≤1;故答案为:(1)x≥﹣1;(2)x≤1;(4)﹣1≤x≤1.【点评】本题考查的是一元一次不等式组的整数解,会求一元一次不等式组的解集是解决此类问题的关键.求不等式组的解集,借助数轴找公共部分或遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.某校开展社团活动,准备组件舞蹈、武术、球类(足球、篮球、乒乓球、羽毛球).花样滑冰四类社团,为了解在校学生对这4个社团活动的喜爱情况,学校随机抽取部分学生进行了“你最喜爱的社团”调查,依据相关数据绘制以下的统计图表,请根据图表中的信息解答下列问题:“你最喜爱的社团”调查统计图表社团类别人数占总人数的比例舞蹈60 25%武术m 10%花样滑冰36 n%球类120 50%(1)被调查的学生总人数是240 ;m= 24 ,n= 15 .(2)被调查喜爱球类的学生中有12人最喜爱乒乓球,若该校有2600名学生,试估计全校最喜爱乒乓球的人数.【分析】(1)用“舞蹈”类人数除以其占总人数百分比可得总人数,将“武术”类人数占总人数百分比×总人数可得m的值,将“花样滑冰”类人数除以总人数可得其所占百分比;(2)用乒乓球类人数占样本总数的百分比乘以2600可得.【解答】解:(1)被调查的学生总人数是60÷25%=240(人),“武术”类人数m=240×10%=24(人),“花样滑冰”类人数占总人数百分比n=×100=15;(2)×2600=130(人),答:估计全校最喜爱乒乓球的人数约为130人.故答案为:(1)240,24,15.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.【分析】(1)连接OC,则∠OCP=90°,根据∠CPA=30°,求得∠COP,再由OA=OC,得出∠A=∠ACO,由PD平分∠APC,即可得出∠CDP=45°.(2)由PC是⊙O的切线,得∠OCP=90°.再根据PD是∠CPA的平分线,得∠APC=2∠APD.根据OA=OC,可得出∠A=∠ACO,即∠COP=2∠A,在Rt△OCP中,∠OCP=90°,则∠COP+∠OPC=90°,从而得出∠CDP=∠A+∠APD=45°.所以∠CDP的大小不发生变化.【解答】解:(1)连接OC,∵PC是⊙O的切线,∴OC⊥PC∴∠OCP=90°.∵∠CPA=30°,∴∠COP=60°∵OA=OC,∴∠A=∠ACO=30°∵PD平分∠APC,∴∠APD=15°,∴∠CDP=∠A+∠APD=45°.(2)∠CDP的大小不发生变化.∵PC是⊙O的切线,∴∠OCP=90°.∵PD是∠CPA的平分线,∴∠APC=2∠APD.∵OA=OC,∴∠A=∠ACO,∴∠COP=2∠A,在Rt△OCP中,∠OCP=90°,∴∠COP+∠OPC=90°,∴2(∠A+∠APD)=90°,∴∠CDP=∠A+∠APD=45°.即∠CDP的大小不发生变化.【点评】本题考查了切线的性质以及角平分线的性质、等腰三角形的性质,要注意各个知识点的衔接.22.天津北宁公园内的致远塔,塔高九层,塔内四周墙壁上镶钳着历史题材为内容的瓷板油彩画或青石刻浮雕,叠双向盘旋楼梯或电梯可达九层,津门美景尽收眼底,是我国目前最高的宝塔.某校数学情趣小组实地测量了致远塔的高度AB,如图,在C处测得塔尖A的仰角为45°,再沿CB方向前进31.45m到达D处,测得塔尖A的仰角为60°,求塔高AB(精确到0.1m,≈1.732)【分析】先设AB=x米,根据题意分析图形:本题涉及到两个直角三角形Rt△ACB和Rt△ADB,应利用其公共边BA构造等量关系,解三角形可求得CB、DB的数值,再根据CD=BC﹣BD=31.45,进而可求出答案.【解答】解:设AB=x米,在Rt△ACB和Rt△ADB中,∵∠C=45°,∠ADB=60°,CD=31.45m,∴CB=x,BD=x,∵CD=BC﹣BD=x﹣x=31.45,解得:x≈74.4.答:塔高AB约为74.4米.【点评】本题考查了解直角三角形的应用﹣仰角俯角;能借助仰角构造直角三角形并结合图形利用三角函数解直角三角形是解决问题的关键.23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).x(亩)20 25 30 35z(元)1700 1600 1500 1400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.【分析】(1)根据图表的性质,可以得出P关于x的函数关系式和出x的取值范围.(2)根据利润=亩数×每亩利润,可得①当0<x≤15时②当15<x<20时,利润的函数式,即可解题;【解答】解:(1)观察图表的数量关系,可以得出P关于x的函数关系式为:P=(2)∵利润=亩数×每亩利润,∴①当0<x≤15时,W=1800x+1380(40﹣x)+2400=420x+57600;当x=15时,W有最大值,W最大=6300+57600=63900;②当15<x<20,W=﹣20x2+2100x+1380(40﹣x)+2400=﹣20(x﹣18)2+64080;∴x=18时有最大值为:64080元.综上x=18时,有最大利润64080.【点评】本题主要考查了一次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是一次函数的性质.24.在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E 的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.【分析】(1)以点O为圆心,以OE为半径画弧,与y轴正半轴相交于点N,以OD为半径画弧,与x轴负半轴相交于点M,连接MN即可;(2)以M为圆心,以AC长为半径画弧与x轴负半轴相交于点A′,B′与N重合,C′与M重合,然后顺次连接即可;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,判断出B′C′平分∠A′B′O,再根据角平分线上的点到角的两边距离相等和角平分线的对称性可得B′F=B′O=OE=x,F C′=O C′=OD=3,利用勾股定理列式求出A′F,然后表示出A′B′、A′O,在Rt△A′B′O中,利用勾股定理列出方程求解即可.【解答】解:(1)△OMN如图所示;(2)△A′B′C′如图所示;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知:B′C′平分∠A′B′O,且C′O⊥O B′,所以,B′F=B′O=OE=x,F C′=O C′=OD=3,∵A′C′=AC=5,∴A′F==4,∴A′B′=x+4,A′O=5+3=8,在Rt△A′B′O中,x2+82=(4+x)2,解得x=6,即OE=6.【点评】本题考查了利用旋转变换作图,利用平移变换作图,勾股定理,熟练掌握旋转变化与平移变化的性质是解题的关键.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)先联立抛物线与直线的解析式得出关于x的方程,再由直线BC和抛物线有两个不同交点可知△>0,求出a的取值范围,令x=0求出y的值即可得出A点坐标,把抛物线的解析式化为顶点式的形式即可得出M点的坐标;(2)利用待定系数法求出直线MA的解析式,联立两直线的解析式可得出N点坐标,进而可得出P点坐标,根据S△PCD=S△PAC﹣S△ADC可得出结论;(3)分点P在y轴左侧与右侧两种情况进行讨论即可.【解答】解:(1)由题意得,,整理得2x2+5x﹣4a=0.∵△=25+32a>0,解得a>﹣.∵a≠0,∴a>﹣且a≠0.令x=0,得y=a,∴A(0,a).由y=﹣(x+1)2+1+a得,M(﹣1,1+a).(2)设直线MA的解析式为y=kx+b(k≠0),∵A(0,a),M(﹣1,1+a),∴,解得,∴直线MA的解析式为y=﹣x+a,联立得,,解得,∴N(,﹣).∵点P是点N关于y轴的对称点,∴P(﹣,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2+a+a,解得a=或a=0(舍去).∴A(0,),C(0,﹣),M(﹣1,),|AC|=,∴S△PCD=S△PAC﹣S△ADC=|AC|•|x p|﹣|AC|•|x0|=••(3﹣1)=;(3)①当点P在y轴左侧时,∵四边形APCN是平行四边形,∴AC与PN互相平分,N(,﹣),∴P(﹣,);代入y=﹣x2﹣2x+a得,=﹣a2+a+a,解得a=,∴P1(﹣,).②当点P在y轴右侧时,∵四边形ACPN是平行四边形,∴NP∥AC且NP=AC,∵N(,﹣),A(0,a),C(0,﹣a),∴P(,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2﹣a+a,解得a=,∴P2(,﹣).综上所述,当点P1(﹣,)和P2(,﹣)时,A、C、P、N能构成平行四边形.【点评】本题考查的是二次函数综合题,涉及到二次函数与一次函数的交点问题、二次函数图象上点的坐标特点、平行四边形的判定与性质等知识,难度较大.2016年6月17日。
2020-2021学年天津市河西区八年级第一学期期中数学试卷一、选择题(共10小题).1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)如图各图中,正确画出AC边上的高的是()A.B.C.D.3.(3分)由下列长度组成的各组线段中,能组成三角形的是()A.1cm,3cm,3cm B.2cm,5cm,7cmC.8cm,4cm,2cm D.14cm,7cm,7cm4.(3分)如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AM∥CN C.AB=CD D.AM=CN 5.(3分)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm 6.(3分)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA7.(3分)下列说法中,错误的是()A.三角形中至少有一个内角不小于60°B.三角形的角平分线、中线、高均在三角形的内部C.三角形两边之差小于第三边D.多边形的外角和等于360°8.(3分)如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.99.(3分)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点10.(3分)点(1,2m﹣1)关于直线x=m的对称点的坐标是()A.(2m﹣1,1)B.(﹣1,2m﹣1)C.(﹣1,1﹣2m)D.(2m﹣1,2m﹣1)二、填空题(共6小题).11.(3分)木工师傅在做完门框后为防止变形,常如图所示那样钉上两条斜拉的木板条,这样做的数学依据是.12.(3分)如图,AB=AC,要使△ABE≌△ACD,依据ASA,应添加的一个条件是.13.(3分)△ABC中,∠A:∠B:∠C=1:3:5,则∠C=.14.(3分)在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABC的周长是17cm,AC=5cm,△ABD的周长是cm.15.(3分)如图,在等边△ABC中,BD=CE,AD与BE相交于点F,则∠AFE=.16.(3分)如图,在△ABC中,∠A=64°,∠ABC与∠ACD的平分线交于点A1,则∠A1=;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A n﹣1BC与∠A nCD的平分线相交于点A n,要使∠A n的度数为整数,则n的值最大为.﹣1三、解答题(本大题共7小题,共52分,解答应写出文字说明、演算步骤或推理过程)17.(6分)已知:∠CAB.求作:∠CAB的角平分线AD.(尺规作图,保留作图痕迹,不写作法)18.(6分)已知:如图,已知△ABC中,其中A(0,﹣2),B(2,﹣4),C(4,﹣1).(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.19.(6分)如图所示,∠BAD=∠CAD,AB=AC.求证:BD=CD.20.(8分)已知AE、AD分别是△ABC的高和角平分线,且∠B=46°,∠C=60°,求∠DAE的度数.21.(8分)如图,已知平面直角坐标系中,△AOB是等腰直角三角形,点A坐标为(2,3),求点B的坐标.22.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.23.(10分)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP 也在直线l上,边EF与边AC重合,且EF=FP.(1)在图1中,请你写出AB与AP所满足的数量关系和位置关系并说明理由;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.参考答案一、选择题《(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填入下面的表格中)1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意.故选:B.2.(3分)如图各图中,正确画出AC边上的高的是()A.B.C.D.解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.3.(3分)由下列长度组成的各组线段中,能组成三角形的是()A.1cm,3cm,3cm B.2cm,5cm,7cmC.8cm,4cm,2cm D.14cm,7cm,7cm解:A、1+3>3,能组成三角形,故此选项符合题意;B、2+5=7,不能组成三角形,故此选项不符合题意;C、2+4<8,不能组成三角形,故此选项不符合题意;D、7+7=14,不能组成三角形,故此选项不符合题意;故选:A.4.(3分)如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AM∥CN C.AB=CD D.AM=CN解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.C、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;D、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;故选:D.5.(3分)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm 解:等腰三角形的两边长分别为4cm和8cm,当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故选:C.6.(3分)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:D.7.(3分)下列说法中,错误的是()A.三角形中至少有一个内角不小于60°B.三角形的角平分线、中线、高均在三角形的内部C.三角形两边之差小于第三边D.多边形的外角和等于360°解:三角形中至少有一个内角不小于60°,故A选项说法正确;三角形的角平分线、中线、均在三角形的内部,锐角三角形的高再三角形的内部,钝角三角形的高在三角形的外部,故B选项说法错误;三角形的任意两边之差小于第三边,故C选项说法正确;多边形的外角和等于360°,故D选项说法正确,故选:B.8.(3分)如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.9解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.9.(3分)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选:B.10.(3分)点(1,2m﹣1)关于直线x=m的对称点的坐标是()A.(2m﹣1,1)B.(﹣1,2m﹣1)C.(﹣1,1﹣2m)D.(2m﹣1,2m﹣1)解:点(1,2m﹣1)关于直线x=m的对称点的坐标为(2m﹣1,2m﹣1),故选:D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)木工师傅在做完门框后为防止变形,常如图所示那样钉上两条斜拉的木板条,这样做的数学依据是三角形具有稳定性.解:木工师傅在做完门框后为防止变形,常如图所示那样钉上两条斜拉的木板条,这样做的数学依据是三角形具有稳定性,故答案为:三角形具有稳定性.12.(3分)如图,AB=AC,要使△ABE≌△ACD,依据ASA,应添加的一个条件是∠C =∠B.解:添加∠C=∠B,在△ACD和△ABE中,,∴△ABE≌△ACD(ASA).故答案为:∠C=∠B.13.(3分)△ABC中,∠A:∠B:∠C=1:3:5,则∠C=100°.解:设∠C=x,∵∠A:∠B:∠C=1:3:5,∴∠B=3x,∠C=5x,∵∠A+∠B+∠C=180°,∴x+3x+5x=180°,解得x=20°,∴∠C=5x=5×20°=100°.故答案为:100°.14.(3分)在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABC的周长是17cm,AC=5cm,△ABD的周长是12cm.解:∵DE是AC的垂直平分线,∴AD=CD,∵△ABC的周长是17cm,AC=5cm,∴AB+BC=17﹣5=112(cm),∴△ABD的周长为:AB+BD+AD=AB+BD+CD=AB+BC=12cm.故答案为:12.15.(3分)如图,在等边△ABC中,BD=CE,AD与BE相交于点F,则∠AFE=60°.解:∵△ABC是等边三角形,∴∠ABD=∠C,AB=BC,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABF+∠BAF=∠AFE,∴∠ABF+∠CBE=∠AFE=60°.故答案为:60°.16.(3分)如图,在△ABC中,∠A=64°,∠ABC与∠ACD的平分线交于点A1,则∠A1=32°;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A n﹣1BC与∠A nCD的平分线相交于点A n,要使∠A n的度数为整数,则n的值最大为6.﹣1解:由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∴∠A1+∠A1BC=(∠A+∠ABC)=∠A+∠A1BC,∴∠A1=∠A=64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=∠A,同理可得∠A1=2∠A2,∴∠A2=∠A,∴∠A=2n∠A n,∴∠A n=()n∠A=,∵∠A n的度数为整数,∵n=6.故答案为:32°,6.三、解答题(本大题共7小题,共52分,解答应写出文字说明、演算步骤或推理过程)17.(6分)已知:∠CAB.求作:∠CAB的角平分线AD.(尺规作图,保留作图痕迹,不写作法)解:如图所示:AD即为所求.18.(6分)已知:如图,已知△ABC中,其中A(0,﹣2),B(2,﹣4),C(4,﹣1).(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.解:(1)所作图形如图所示;(2)A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);(3)S△ABC=3×4﹣×2×3﹣×4×1﹣×2×2=12﹣3﹣2﹣2=5.19.(6分)如图所示,∠BAD=∠CAD,AB=AC.求证:BD=CD.【解答】证明:在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),∴BD=CD.20.(8分)已知AE、AD分别是△ABC的高和角平分线,且∠B=46°,∠C=60°,求∠DAE的度数.解:在△ABC中,∠B=46°,∠C=60°∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣60°=74°∵AD是的角平分线∴∵AE是△ABC的高∴∠AEC=90°∴在△AEC中,∠EAC=180°﹣∠AEC﹣∠C=180°﹣90°﹣60°=30°∴∠DAE=∠DAC﹣∠EAC=37°﹣30°=7°.21.(8分)如图,已知平面直角坐标系中,△AOB是等腰直角三角形,点A坐标为(2,3),求点B的坐标.解:过A作AC⊥y轴于C,过B作BD⊥y轴于D,如图所示:则∠ACO=∠BDO=90°,∴∠CAO+∠AOC=90°,∵点A坐标为(2,3),∴AC=2,OC=3,∵△AOB是等腰直角三角形,∴OA=OB,∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=2,OC=BD=3,∴点B的坐标为(3,﹣2).22.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.解:CF⊥DE,CF平分DE,理由是:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE.23.(10分)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP 也在直线l上,边EF与边AC重合,且EF=FP.(1)在图1中,请你写出AB与AP所满足的数量关系和位置关系并说明理由;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.解:(1)AP=AB,AP⊥AB,∵AC⊥BC,且AC=BC,边EF与边AC重合,且EF=FP.∴△ABC与△EFP是全等的等腰直角三角形,∴∠BAC=∠CAP=45°,AB=AP,∴∠BAP=90°,∴AP=AB,AP⊥AB;(2)BQ与AP所满足的数量关系是AP=BQ,位置关系是AP⊥BQ,理由如下:延长BQ交AP于G,由(1)知,∠EPF=45°,∠ACP=90°,∴∠PQC=45°=∠QPC,∴CQ=CP,在△BCQ和△ACP中,,∴△BCQ≌△ACP(SAS),∴AP=BQ,∠CBQ=∠PAC,∵∠ACB=90°,∴∠CBQ+∠BQC=90°,∵∠CQB=∠AQG,∴∠AQG+∠PAC=90°,∴∠AGQ=180°﹣90°=90°,∴AP⊥BQ;(3)成立,理由如下:如图,∵∠EPF=45°,∴∠CPQ=45°,又∵AC⊥BC,∴∠CQP=∠CPQ=45°,∴CQ=CP,在Rt△BCQ和Rt△ACP中,,∴Rt△BCQ≌Rt△ACP(SAS),∴BQ=AP,如图3,延长QB交AP于点N,则∠PBN=∠CBQ,∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC,在Rt△BCQ中,∠BQC+∠CBQ=90°,∴∠APC+∠PBN=90°,∴∠PNB=90°,∴QB⊥AP.。
2020-2021学年天津市部分区八年级第一学期期中数学试卷一、选择题1.(3分)在美术字中,有的是轴对称图形.下面4个汉字可以看成是轴对称图形的是()A.B.C.D.2.(3分)一个三角形的两边长为12和7,第三边长为整数,则第三边长的最大值是()A.16B.17C.18D.193.(3分)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC4.(3分)等腰三角形的两边长分别为6和12,则这个三角形的周长为()A.18B.24C.30D.24或305.(3分)点P(﹣2,1)关于y轴对称的点的坐标为()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(﹣2,1)6.(3分)已知在含有30°角的直角三角形中,斜边长为8cm,则这个三角形的最短边长为()A.2cm B.4cm C.6cm D.8cm7.(3分)已知△ABC≌△DEF,且△DEF的面积为18,BC=6,则BC边上的高等于()A.13B.3C.4D.68.(3分)如图,已知AB=BC,AD=CD,若∠A=80°,∠ABD=35°,则∠BDC的度数是()A.35°B.55°C.65°D.75°9.(3分)如图,已知BA⊥AC,BE为△ABC的角平分线,作ED⊥BC于D,则下列结论①AE=DE;②∠BEA=∠BED;③AB=BD;④∠CED=∠BED,其中一定成立的有()A.1个B.2个C.3个D.4个10.(3分)如图,已知△ABC是等边三角形,且AD=BE=CF,则△DEF是()A.等边三角形B.不等边三角形C.等腰三角形但不是等边三角形D.直角三角形11.(3分)如图,在∠MON内有一点P,点P关于OM的对称点是点G,点P关于ON 的对称点是点H,连接GH分别交OM,ON于点A,B.若GH的长是12cm,则△PAB 的周长为()A.12B.13C.14D.1512.(3分)如图所示,∠E=∠F=90°,AE=AF,AB=AC,下列结论①∠FAN=∠EAM;②EM=FN;③CD=DN;④△ACN≌△ABM.其中下列结论中正确的个数是()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题3分,共18分.将答案直接填在题中横线上. 13.(3分)在△ABC中,已知∠B=3∠A,∠C=5∠A,则∠A=,∠B=,∠C=.14.(3分)一个多边形的内角和等于它的外角和,则它是边形.15.(3分)在△ABC中,已知∠A=∠B=60°,且△ABC的周长为24cm,则AB的长为cm.16.(3分)如图,已知BC=CD,只需补充一个条件,则有△ABC≌△ADC.17.(3分)如图,在△ABC中,已知AB=AC,D为BC的中点,若∠B=50°,则∠DAC的度数为.18.(3分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE、CD的中点.若BN=4cm,则BM的长为cm.三、解答题:本大题共8小题,其中19题6分,20~24题每题8分,25~26题每题10分,共66分.写出文字说明、演算步骤或证明过程.19.(6分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.作出△ABC关于y对称的△A1B1C1,并写出点△A1B1C1的坐标.20.(8分)若一个多边形的内角和是1260°,求这个多边形的边数.21.(8分)如图,在△ABC中,AD是BC边上的中线,AE是BC边上的高线,已知AE =4,△ABD的面积是6,求BC的长.22.(8分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM =AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.23.(8分)如图,在△ABC中,已知AB=AC=BD,∠BAD=70°,求△ABC中各角的度数.24.(8分)如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm.求△ABC的周长.25.(10分)如图所示,在△ABC中,∠B=60°,AB=AC,点D、E分别在BC、AB上,且BD=AE,AD与CE交于点F.(1)求证:△ABC是等边三角形;(2)求证:AD=CE;(3)求∠DFC的度数.26.(10分)如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AF⊥BE于点F.(1)求证:△ABD≌△ACE;(2)直接写出BE,CE,AF之间的数量关系.参考答案一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的.请将答案选项填在下表中1.(3分)在美术字中,有的是轴对称图形.下面4个汉字可以看成是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不合题;故选:C.2.(3分)一个三角形的两边长为12和7,第三边长为整数,则第三边长的最大值是()A.16B.17C.18D.19解:设第三边为a,根据三角形的三边关系,得:12﹣7<a<12+7,即5<a<19,∵a为整数,∴a的最大值为18.故选:C.3.(3分)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:C.4.(3分)等腰三角形的两边长分别为6和12,则这个三角形的周长为()A.18B.24C.30D.24或30解:(1)当三边是6,6,12时,6+6=12,不符合三角形的三边关系,应舍去;(2)当三边是6,12,12时,符合三角形的三边关系,此时周长是30;所以这个三角形的周长是30.故选:C.5.(3分)点P(﹣2,1)关于y轴对称的点的坐标为()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(﹣2,1)解:根据两点关于y轴对称的点的坐关系:横坐标互为相反数,纵坐标不变.∴点P(﹣2,1)关于y轴对称的点的坐标为(2,1).故选:B.6.(3分)已知在含有30°角的直角三角形中,斜边长为8cm,则这个三角形的最短边长为()A.2cm B.4cm C.6cm D.8cm解:在含有30°角的直角三角形中,斜边长为8cm,∴这个三角形的最短边长为×8=4(cm).故选:B.7.(3分)已知△ABC≌△DEF,且△DEF的面积为18,BC=6,则BC边上的高等于()A.13B.3C.4D.6解:设△ABC的面积为S,边BC上的高为h,∵△ABC≌△DEF,BC=6,△DEF的面积为18,∴两三角形的面积相等即S=18,又S=•BC•h=18,∴h=6,故选:D.8.(3分)如图,已知AB=BC,AD=CD,若∠A=80°,∠ABD=35°,则∠BDC的度数是()A.35°B.55°C.65°D.75°解:在△CBD和△ABD中,,∴△CBD≌△ABD(SSS),∴∠C=∠A=80°,∠CBD=∠ABD=35°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣80°﹣35°=65°,故选:C.9.(3分)如图,已知BA⊥AC,BE为△ABC的角平分线,作ED⊥BC于D,则下列结论①AE=DE;②∠BEA=∠BED;③AB=BD;④∠CED=∠BED,其中一定成立的有()A.1个B.2个C.3个D.4个解:∵BE为△ABC的角平分线,∴∠ABE=∠DBE,∵BA⊥AC,ED⊥BC,∴∠A=∠BDE=90°,在△ABE和△DBE中,,∴△ABE≌△DBE(AAS),∴AE=DE,∠BEA=∠BED,AB=BD,故①②③成立,∵ED⊥BC,∴∠CED+∠C=90°,∠BED+∠DBE=90°,当∠C=∠DBE时,∠CED=∠BED,故④不一定成立,一定成立的有3个,故选:C.10.(3分)如图,已知△ABC是等边三角形,且AD=BE=CF,则△DEF是()A.等边三角形B.不等边三角形C.等腰三角形但不是等边三角形D.直角三角形解:∵△ABC为等边三角形,∴AB=BC=CA,∠A=∠B=∠C=60°,∵AD=BE=CF,∴BD=CE=AF,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF为等边三角形,故选:A.11.(3分)如图,在∠MON内有一点P,点P关于OM的对称点是点G,点P关于ON 的对称点是点H,连接GH分别交OM,ON于点A,B.若GH的长是12cm,则△PAB 的周长为()A.12B.13C.14D.15解:∵点P关于OM的对称点是点G,点P关于ON的对称点是点H,∴PA=AG,PB=BH,∵GH=AG+AB+BH=PA+AB+PB=12cm,∴△PAB的周长为12cm.故选:A.12.(3分)如图所示,∠E=∠F=90°,AE=AF,AB=AC,下列结论①∠FAN=∠EAM;②EM=FN;③CD=DN;④△ACN≌△ABM.其中下列结论中正确的个数是()A.1个B.2个C.3个D.4个解:在Rt△AEB与Rt△AFC中,,∴Rt△AEB≌Rt△AFC(HL),∴∠FAM=∠EAN,∴∠EAN﹣∠MAN=∠FAM﹣∠MAN,即∠EAM=∠FAN.故①正确;又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN(ASA),∴EM=FN.故②正确;由△AEB≌△AFC知:∠B=∠C,又∵∠CAB=∠BAC,AC=AB,∴△ACN≌△ABM(ASA);故④正确.由于条件不足,无法证得③CD=DN;故正确的结论有:①②④;故选:C.二、填空题:本大题共6小题,每小题3分,共18分.将答案直接填在题中横线上. 13.(3分)在△ABC中,已知∠B=3∠A,∠C=5∠A,则∠A=20°,∠B=60°,∠C=100°.解:设∠A=x,则∠B=3x,∠C=5x,根据题意得x+3x+5x=180°,解得x=20°,则3x=60°,5x=100°,所以∠A=20°,∠B=60°,∠C=100°.故答案为:20°,60°,100°.14.(3分)一个多边形的内角和等于它的外角和,则它是四边形.解:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形.故答案为:四.15.(3分)在△ABC中,已知∠A=∠B=60°,且△ABC的周长为24cm,则AB的长为8cm.解:在△ABC中,∵∠A=∠B=60°,∴△ABC是等边三角形,∵△ABC的周长为24cm,∴AB=×24=8(cm),故答案为:8.16.(3分)如图,已知BC=CD,只需补充一个条件AB=AD,则有△ABC≌△ADC.解:∵BC=DC,AC=AC,∴若补充条件AB=AD,则△ABC≌△ADC(SSS),若补充条件∠ACB=∠ACD,则△ABC≌△ADC(SAS),故答案为:AB=AD.17.(3分)如图,在△ABC中,已知AB=AC,D为BC的中点,若∠B=50°,则∠DAC 的度数为40°.解:∵AB=AC,D是BC中点,∴AD是∠BAC的角平分线,∵∠B=50°,∴∠BAC=80°,∴∠DAC=40°.故答案为:40°.18.(3分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE、CD的中点.若BN=4cm,则BM的长为4cm.解:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴∠BAE=∠BDC,∴AE=CD,∵M、N分别是AE、CD的中点,∴AM=DN,在△ABM和△DBN中,,∴△ABM≌△DBN(SAS),∴BM=BN=4cm.故答案为:4.三、解答题:本大题共8小题,其中19题6分,20~24题每题8分,25~26题每题10分,共66分.写出文字说明、演算步骤或证明过程.19.(6分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.作出△ABC关于y对称的△A1B1C1,并写出点△A1B1C1的坐标.解:如图所示,由图可知,A1(﹣2,4),B1(﹣1,1),C1(﹣3,2).20.(8分)若一个多边形的内角和是1260°,求这个多边形的边数.解:设这个多边形的边数为n,由题意可得:(n﹣2)×180°=1260°,解得n=9,答:这个多边形的边数为9.21.(8分)如图,在△ABC中,AD是BC边上的中线,AE是BC边上的高线,已知AE =4,△ABD的面积是6,求BC的长.解:∵AD为△ABC的中线,∴S△ABC=2S△ABD=2×6=12,∴×AE•BC=12,即4•BC=12,∴BC=6.22.(8分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM =AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.【解答】证明:∵MD⊥AB,∴∠MDE=∠C=90°,∵ME∥BC,∴∠B=∠MED,在△ABC与△MED中,,∴△ABC≌△MED(AAS).23.(8分)如图,在△ABC中,已知AB=AC=BD,∠BAD=70°,求△ABC中各角的度数.解:∵AB=AD,∴∠ADB=∠BAD=70°,∴∠B=180°﹣70°﹣70°=40°,∵AB=AC,∴∠B=∠C=40°,∴∠BAC=180°﹣40°﹣40°=100°.24.(8分)如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm.求△ABC的周长.解:∵DE是AC的垂直平分线,∴DA=DC,∵△ABD的周长为13cm.∴AB+BD+AD=13cm,∵AE=3cm,∴AC=6cm,∴△ABC的周长=AB+BC+AC=AB+BD+AD+AC=19cm.25.(10分)如图所示,在△ABC中,∠B=60°,AB=AC,点D、E分别在BC、AB上,且BD=AE,AD与CE交于点F.(1)求证:△ABC是等边三角形;(2)求证:AD=CE;(3)求∠DFC的度数.【解答】证明:(1)∵∠B=60°,AB=AC,∴△ABC是等边三角形;(2)∵△ABC是等边三角形,∴∠B=∠CAE=∠ACB=60°,AC=AB,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE.(3)∵△ABD≌△CAE,∴∠BAD=∠ACE,∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=∠CAE=60°.26.(10分)如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AF⊥BE于点F.(1)求证:△ABD≌△ACE;(2)直接写出BE,CE,AF之间的数量关系.【解答】证明:(1)∵△ACB和△DAE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∠ADE=∠AED=45°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),(2)BE=CE+2AF,理由如下:∵△ABD≌△ACE,∴BD=CE,∠ADB=∠AEC,∵点A,D,E在同一直线上,∴∠ADB=180°﹣45°=135°,∴∠AEC=135°,∴∠BEC=∠AEC﹣∠AED=135°﹣45°=90°;∵∠DAE=90°,AD=AE,AF⊥DE,∴AF=DF=EF,∴DE=DF+EF=2AF,∴BE=BD+DE=CE+2AF.。
2020- -2021 学年度第一学期期中质量检测(普通校二)九年级数学本试卷共五大题.26小题,满分150分。
考试时间120分钟。
一.选择题(本题共10小题,每小题3分,共30分11.(2018 名校阶段检利期中真题)下列图形是中心对称图形的是 ( )2.(2018学习之星期中真题)点A(-2.1)关于原点的对称点的坐标为( ) A.(2,1) B.(-2.-1) C.(2.-1) D.(1,- 2)3.(2018学习之星期中真期)一元二次方程y 2-y -43=0配方后可化为( ) A. 1212=⎪⎭⎫ ⎝⎛+y B.121-2=⎪⎭⎫ ⎝⎛y C.43212=⎪⎭⎫ ⎝⎛+y D.4321-2=⎪⎭⎫⎝⎛y4.(2018名校阶段检测期中真题)二次函数y=ax 2 +bx +c 的图象如图所示,则顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限5.(2018金普新区期中真题)若△ABC ~△A’B’C’。
相似比为1:2,则△ABC 与△A'B'C'的面积的比为( )A.1:2B.2:1C.1:4D.4:16.(2018名校阶段检制期中真题)若关于x 的一元二次方程x 2-2x+k -1=0有两个不相等的实数根,则实数k 的取值范围是A.k≤2B.k≤0C.k<2D.k<07.(2018金普新区期中真题)如图.在△ABC 中,D.E 两点分别在AB.AC 边上,DE//BC.如果23=BD AD ,AC= 10,那么EC 的长为( ) A.3 B.2 C.6 D.48.(2018 名校阶段检测期中真题)若(- l ,y 1).(2,y 2).(3,y 3)是抛物线y=-x 2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A.y 3>y 2>y 1B.y 1>y 3>y 2C.y 3>y 1>y 2D.y 1>y 2>y 39.(2019名校阶段检测期中真题}如图.,利用标杆BE 测量建筑物的高度。
2020-2021学年天津市河西区八年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为()A.7.8×10﹣7B.7.8×10﹣8C.0.78×10﹣7D.78×10﹣82.(3分)下列运算正确的()A.a3﹣a2=a B.a2•a3=a6C.(a3)2=a6D.(3a)3=9a3 3.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.4.(3分)若a=1,则的值为()A.2B.﹣2C.D.5.(3分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.(3分)若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.107.(3分)如果把分式中的x和y的值都扩大为原来的3倍,那么分式的值()A.扩大为原来的3倍B.扩大为原来的6倍C.缩小为原来的3倍D.不变8.(3分)某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()A.B.C.D.9.(3分)已知a﹣b=3,则a2﹣b2﹣6b的值为()A.9B.6C.3D.﹣310.(3分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是()(用含a,b的代数式表示).A.ab B.2ab C.a2﹣ab D.b2+ab二、填空题:(本大题共6小题,每小题3分,共18分.务必将答案涂写在“答题卡”上,答案答在试卷上无效.)11.(3分)分解因式:2ax2﹣12axy+18ay2=.12.(3分)已知等腰三角形的一个内角为50°,则顶角为度.13.(3分)一个多边形的内角和是它外角和的2倍,则它的边数是.14.(3分)如图,OP平分∠AOB,∠AOP=15°,PC∥OB,PD⊥OB于点D,PD=4,则PC等于.15.(3分)已知﹣=3,则分式的值为.16.(3分)如图,在四边形ABCD中,∠DAB=130°,∠D=∠B=90°,点M,N分别是CD,BC上两个动点,当△AMN的周长最小时,∠AMN+∠ANM的度数为.三、解答题:(本大题共7小题,共52分.解答应写出文字说明、演算步骤或证明过程.务必将答案填写在“答题卡”上,答案答在试卷上无效.)17.(6分)计算:(Ⅰ)(2a﹣3b)2;化简:(Ⅱ)(a+1﹣).18.(6分)解方程﹣3=.19.(8分)如图,在△ABC中,点D是BC上的中点,DE⊥AB于E,DF⊥AC于F,BE =CF.求证:∠BAD=∠CAD.20.(8分)如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得P A+PB的值最小,画出图形并证明.21.(8分)天津市奥林匹克中心体育场﹣﹣“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车同学速度的2倍,求骑车同学的速度.(Ⅰ)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表(要求:填上适当的代数式,完成表格)速度(千米/时)所用时间(时)所走路程(千米)骑自行车x10乘汽车10(Ⅱ)列出方程(组),并求出问题的解.22.(8分)如图,△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你证明:DA﹣DB=DC.23.(8分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.2020-2021学年天津市河西区八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为()A.7.8×10﹣7B.7.8×10﹣8C.0.78×10﹣7D.78×10﹣8【分析】绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数0.00000078用科学记数法表示为7.8×10﹣7.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.(3分)下列运算正确的()A.a3﹣a2=a B.a2•a3=a6C.(a3)2=a6D.(3a)3=9a3【分析】根据同底数幂的乘法、幂的乘方与积的乘方法则,分别进行各选项的判断即可.【解答】解:A、a3与a2不是同类项,不能直接合并,故本选项错误;B、a2•a3=a5,原式计算错误,故本选项错误;C、(a3)2=a6,计算正确,故本选项正确;D、(3a)3=27a3,原式计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘法、幂的乘方与积的乘方,解答本题的关键是掌握各部分的运算法则.3.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称的定义结合选项所给的特点即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.(3分)若a=1,则的值为()A.2B.﹣2C.D.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算即可.【解答】解:原式===a﹣3,当a=1时,原式=1﹣3=﹣2,故选:B.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.5.(3分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【分析】依据全等三角形的判定定理解答即可.【解答】解:A、依据SSS可知△ABD≌△ACD,故A不符合要求;B、依据SAS可知△ABD≌△ACD,故B不符合要求;C、依据AAS可知△ABD≌△ACD,故C不符合要求;D、依据SSA可知△ABD≌△ACD,故D符合要求.故选:D.【点评】本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.6.(3分)若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.10【分析】根据同底数幂的除法,底数不变,指数相减,可得答案.【解答】解:3x﹣y=3x÷3y=15÷5=3,故选:B.【点评】本题考查了同底数幂的除法,底数不变,指数相减.7.(3分)如果把分式中的x和y的值都扩大为原来的3倍,那么分式的值()A.扩大为原来的3倍B.扩大为原来的6倍C.缩小为原来的3倍D.不变【分析】根据分式的基本性质,可得答案.【解答】解:把分式中的x和y的值都扩大为原来的3倍,得==3×,故选:A.【点评】本题考查了分式的基本性质,能够正确利用分式的基本性质变形是解题的关键.8.(3分)某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()A.B.C.D.【分析】要求的未知量是工作效率,有工作总量,一定是根据时间来列等量关系的.关键描述语是:“提前5天交货”;等量关系为:原来所用的时间﹣实际所用的时间=5.【解答】解:原来所用的时间为:,实际所用的时间为:,所列方程为:﹣=5.故选:D.【点评】本题考查了由实际问题抽象出分式方程,关键是时间做为等量关系,根据每天多做x套,结果提前5天加工完成,可列出方程求解.9.(3分)已知a﹣b=3,则a2﹣b2﹣6b的值为()A.9B.6C.3D.﹣3【分析】由已知得a=b+3,代入所求代数式,利用完全平方公式计算.【解答】解:∵a﹣b=3,∴a=b+3,∴a2﹣b2﹣6b=(b+3)2﹣b2﹣6b=b2+6b+9﹣b2﹣6b=9.故选:A.【点评】本题考查了完全平方公式的运用,关键是利用换元法消去所求代数式中的a.10.(3分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是()(用含a,b的代数式表示).A.ab B.2ab C.a2﹣ab D.b2+ab【分析】设小正方形边长为x,表示出大正方形的边长,由大正方形面积减去四个小正方形面积表示出阴影部分面积即可.【解答】解:设小正方形的边长为x,则大正方形的边长为a﹣2x=2x+b,可得x=,大正方形边长为a﹣==,则阴影部分面积为()2﹣4()2=﹣==ab,故选:A.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题:(本大题共6小题,每小题3分,共18分.务必将答案涂写在“答题卡”上,答案答在试卷上无效.)11.(3分)分解因式:2ax2﹣12axy+18ay2=2a(x﹣3y)2.【分析】先提公因式2a,然后利用公式法分解因式.【解答】解:原式=2a(x2﹣6xy+9y2)=2a(x﹣3y)2.故答案为2a(x﹣3y)2.【点评】本题考查了提公因式法与公式法的综合运用,提取公因式后还能运用完全平方公式继续分解因式.12.(3分)已知等腰三角形的一个内角为50°,则顶角为50或80度.【分析】有两种情况(顶角是50°和底角是50°时),用三角形的内角和定理即可求出顶角的度数.【解答】解:如图所示,△ABC中,AB=AC.有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,∴这个等腰三角形的顶角为50°和80°.故答案为50或80【点评】本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论是解答此题的关键.13.(3分)一个多边形的内角和是它外角和的2倍,则它的边数是6.【分析】根据多边形的内角和公式(n﹣2)•180°以及外角和定理列出方程,然后求解即可.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.故答案为:6.【点评】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.14.(3分)如图,OP平分∠AOB,∠AOP=15°,PC∥OB,PD⊥OB于点D,PD=4,则PC等于8.【分析】作PE⊥OA于E,根据角平分线的性质求出PE,根据直角三角形的性质和平行线的性质解答即可.【解答】解:作PE⊥OA于E,∵OP平分∠AOB,PD⊥OB,PE⊥OA,∴PE=PD=4,∵OP平分∠AOB,∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ECP=∠AOB=30°,∴PC=2PE=8,故答案为:8.【点评】本题考查的是角平分线的性质、直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.(3分)已知﹣=3,则分式的值为.【分析】由已知条件可知xy≠0,根据分式的基本性质,先将分式的分子、分母同时除以xy,再把﹣=3代入即可.【解答】解:∵﹣=3,∴x≠0,y≠0,∴xy≠0.∴=====.故答案为:.【点评】本题主要考查了分式的基本性质及求分式的值的方法,把﹣=3作为一个整体代入,可使运算简便.16.(3分)如图,在四边形ABCD中,∠DAB=130°,∠D=∠B=90°,点M,N分别是CD,BC上两个动点,当△AMN的周长最小时,∠AMN+∠ANM的度数为100°.【分析】作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解.【解答】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点N、M,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°﹣∠130°=50°,由轴对称的性质得:∠A′=∠A′AN,∠A″=∠A″AM,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°【点评】本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M、N的位置是解题的关键,要注意整体思想的利用.三、解答题:(本大题共7小题,共52分.解答应写出文字说明、演算步骤或证明过程.务必将答案填写在“答题卡”上,答案答在试卷上无效.)17.(6分)计算:(Ⅰ)(2a﹣3b)2;化简:(Ⅱ)(a+1﹣).【分析】(Ⅰ)原式利用完全平方公式计算即可求出值;(Ⅱ)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(Ⅰ)原式=4a2﹣12ab+9b2;(Ⅱ)原式=•=•=2(a﹣2)=2a﹣4.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握公式及运算法则是解本题的关键.18.(6分)解方程﹣3=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;【解答】解:去分母得:x﹣1﹣3x+6=1,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及分式的混合运算,熟练掌握运算法则是解本题的关键.19.(8分)如图,在△ABC中,点D是BC上的中点,DE⊥AB于E,DF⊥AC于F,BE =CF.求证:∠BAD=∠CAD.【分析】由于D是BC的中点,那么BD=CD,而BE=CF,DE⊥AB,DF⊥AC,利用HL易证Rt△BDE≌Rt△CDF,得DE=DF,利用角平分线的判定定理可知点D在∠BAC 的平分线上,即AD平分∠BAC.【解答】证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∴点D在∠BAC的平分线上,∴AD平分∠BAC,∴∠BAD=∠CAD.【点评】本题考查了角平分线的判定定理、全等三角形的判定和性质.解题的关键是证明Rt△BDE≌Rt△CDF.20.(8分)如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得P A+PB的值最小,画出图形并证明.【分析】作点B关于直线l的对称点B',连接AB',交直线l于点P,连接BP,则点P 即为所求.【解答】解:如图所示,作点B关于直线l的对称点B',连接AB',交直线l于点P,连接BP,则BP=B'P,∴AP+BP=AP+B'P=AB',∴P A+PB的值最小等于线段AB'的长,【点评】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.21.(8分)天津市奥林匹克中心体育场﹣﹣“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车同学速度的2倍,求骑车同学的速度.(Ⅰ)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表(要求:填上适当的代数式,完成表格)速度(千米/时)所用时间(时)所走路程(千米)骑自行车x10乘汽车10(Ⅱ)列出方程(组),并求出问题的解.【分析】(1)时间=路程÷速度;速度=路程÷时间.(2)等量关系为:骑自行车同学所用时间=坐汽车同学所用时间+.【解答】解:(Ⅰ)速度(千米/时)所用时间(时)所走路程(千米)骑自行车x10乘汽车2x10(Ⅱ)∵骑自行车先走20分钟,即=小时,∴=+,解得:x=15,经检验,x=15是原方程的根.答:骑车同学的速度为每小时15千米.【点评】本题考查分式方程的应用,注意找好等量关系方可列出方程.求解后要注意检验,要满足两个方面:①要满足方程②要满足实际问题.22.(8分)如图,△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你证明:DA﹣DB=DC.【分析】根据等边三角形的性质,可得AB与BC的关系,BD、BE、DE的关系,根据三角形全等的判定,可得△ABE与△CBD的关系,根据全等三角形的性质,可得对应边相等,根据线段的和差,等量代换,可得证明结果.【解答】证明:△ABC和△BDE都是等边三角形,∴AB=BC,BE=BD=DE(等边三角形的边相等),∠ABC=∠EBD=60°(等边三角形的角是60°).∴∠ABC﹣∠EBC=∠EBD﹣∠EBC∠ABE=CBD(等式的性质),在△ABE和△CBD中,,∴△ABE≌△CBD(SAS)∴AE=DC(全等三角形的对应边相等).∵AD﹣DE=AE(线段的和差)∴AD﹣BD=DC(等量代换).【点评】本题考查了全等三角形的判定与性质,先证明三角形全等,再证明全等三角形的对应边相等,最后等量代换.23.(8分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【分析】(1)先判断出∠QPC是直角,再利用含30°的直角三角形的性质得出QC=2PC,建立方程求解决即可;(2)先作出PF∥BC得出∠PF A=∠FP A=∠A=60°,进而判断出△DQB≌△DPF得出DQ=DP即可得出结论;(3)利用等边三角形的性质得出EF=AF,借助DF=DB,即可得出DF=BF,最后用等量代换即可.【解答】(1)解:设AP=x,则BQ=x,∵∠BQD=30°,∠C=60°,∴∠QPC=90°,∴QC=2PC,即x+6=2(6﹣x),解得x=2,即AP=2.(2)证明:如图,过P点作PF∥BC,交AB于F,∵PF∥BC,∴∠PF A=∠FP A=∠A=60°,∴PF=AP=AF,∴PF=BQ,又∵∠BDQ=∠PDF,∠DBQ=∠DFP,∴△DQB≌△DPF,∴DQ=DP即D为PQ中点,(3)运动过程中线段ED的长不发生变化,是定值为3,理由:∵PF=AP=AF,PE⊥AF,∴,又∵△DQB≌△DPF,∴,∴.【点评】此题是三角形综合题,主要考查了含30°的直角三角形的性质,等边三角形的性质,全等三角形的判定和性质,判断出△DQB≌△DPF是解本题的关键,作出辅助线是解本题的难点,是一道比较简单的中考常考题.。
2020-2021学年天津市和平区高二(上)期末数学试卷一、选择题:本卷共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆心为(1,﹣1),半径为2的圆的方程为()A.(x+1)2+(y﹣1)2=4B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y+1)2=4D.(x+1)2+(y﹣1)2=22.(4分)已知数列{a n},满足a n+1=,若a1=,则a10=()A.B.2C.1D.﹣13.(4分)已知双曲线的一个焦点在直线x+2y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 4.(4分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0平行,则a=()A.2B.1C.D.5.(4分)已知等差数列{a n}、{b n}的前n项和分别为S n、T n,且有,则=()A.B.C.D.6.(4分)等比数列{a n}中,若a2、a4是方程2x2﹣11x+8=0的两根,则a3的值为()A.2B.±2C.D.±7.(4分)抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.2B.3C.4D.58.(4分)已知圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0)的公共弦长为2,则实数a的值为()A.B.C.D.9.(4分)设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.B.C.D.二、填空题:本大题共5小题.每小题4分,共20分.10.(4分)抛物线y2=﹣8x的焦点坐标是.11.(4分)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,若l1⊥l2,则实数m =.12.(4分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为.13.(4分)已知数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),则a n=.14.(4分)若直线y=x+b与曲线y=3﹣有公共点,则b的取值范围是.三、解答题:本大题共4题,共44分,要求写出文字说明,解答过程或演算步骤.15.(10分)已知等差数列{a n}满足:a4=7,a10=19,其前n项和为S n.(1)求数列{a n}的通项公式a n及S n;(2)若b n=,求数列{b n}的前n项和为T n.16.(10分)如图,四棱锥P﹣ABCD中,ABCD为正方形,PD⊥平面ABCD,PD=DC=2,E是PC的中点.(1)证明:P A∥平面BDE;(2)求平面BDE与平面DEC的夹角的余弦值.17.(12分)已知椭圆C:+=1(a>b>0)的离心率为e=,过点(2,0).(Ⅰ)求椭圆C的标准方程;(Ⅱ)设左、右焦点分别为F1,F2,经过右焦点F2的直线l与椭圆C相交于A、B两点,若⊥,求直线l方程.18.(12分)已知数列{a n}的前n项和S n=1﹣a n(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n,并证明:T n<2.2020-2021学年天津市和平区高二(上)期末数学试卷参考答案与试题解析一、选择题:本卷共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆心为(1,﹣1),半径为2的圆的方程为()A.(x+1)2+(y﹣1)2=4B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y+1)2=4D.(x+1)2+(y﹣1)2=2【解答】解:圆心为(1,﹣1),半径为2的圆的标准方程是:(x﹣1)2+(y+1)2=4.故选:C.2.(4分)已知数列{a n},满足a n+1=,若a1=,则a10=()A.B.2C.1D.﹣1【解答】解:数列{a n},满足a n+1=,当a1=时,解得a2=2,当n=2,解得,当n=3时,解得,所以数列的周期为3.故.故选:A.3.(4分)已知双曲线的一个焦点在直线x+2y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 【解答】解:根据题意,双曲线的焦点在x轴上,而直线x+2y=5与x轴交点为(5,0),则c=5,进而有9+a2=25,解可得a2=16,则双曲线的方程为:,其渐近线方程为:y=±x;故选:A.4.(4分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0平行,则a=()A.2B.1C.D.【解答】解:已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,将点P(2,2)代入圆(x﹣1)2+y2=5恒成立,则点P在圆上.即过点P(2,2)的直线与圆(x﹣1)2+y2=5相切的切线只有一条,令过点P(2,2)的切线的方程为y﹣2=k(x﹣2),即kx﹣y﹣2k+2=0,由此切线与ax﹣y+1=0平行,两直线的斜率相等且y轴截距不等,可得k=a且﹣2k+2≠1;由圆心到切线的距离等于圆的半径,可得圆的半径r==,k=﹣,即a=﹣;故选:C.5.(4分)已知等差数列{a n}、{b n}的前n项和分别为S n、T n,且有,则=()A.B.C.D.【解答】解:由等差数列的性质可得:====.故选:C.6.(4分)等比数列{a n}中,若a2、a4是方程2x2﹣11x+8=0的两根,则a3的值为()A.2B.±2C.D.±【解答】解:由题意a2、a4是方程2x2﹣11x+8=0的两根,故有a2a4=4又{a n}为等比数列∴a2a4=a32,∴a3=±2.故选:B.7.(4分)抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.2B.3C.4D.5【解答】解:依题意可知抛物线的准线方程为y=﹣1,∴点A到准线的距离为4+1=5,根据抛物线的定义可知点A与抛物线焦点的距离就是点A与抛物线准线的距离,∴点A与抛物线焦点的距离为5,故选:D.8.(4分)已知圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0)的公共弦长为2,则实数a的值为()A.B.C.D.【解答】解:根据题意,圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0),则有,联立可得:y=,即两圆公共弦所在直线的方程为y=,圆C1:x2+y2=4,其圆心为(0,0),半径r=2,若公共弦的弦长为2,则圆C1的圆心C1到公共弦的距离d==,又由a>0,则有=,解可得a=,故选:A.9.(4分)设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.B.C.D.【解答】解:设点P在x轴上方,坐标为,∵△F1PF2为等腰直角三角形∴|PF2|=|F1F2|,即,即故椭圆的离心率e=故选:D.二、填空题:本大题共5小题.每小题4分,共20分.10.(4分)抛物线y2=﹣8x的焦点坐标是(﹣2,0).【解答】解:∵抛物线方程y2=﹣8x,∴焦点在x轴,p=4,∴焦点坐标为(﹣2,0)故答案为(﹣2,0).11.(4分)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,若l1⊥l2,则实数m=.【解答】解:直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,由l1⊥l2,得3m+(m﹣2)=0,即4m=2,解得m=.故答案为:.12.(4分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为.【解答】解:∵在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,以D为原点,建立空间直角坐标系,如图∴B(1,2,0),C(0,2,0)E(1,1,0),D1(0,0,1),=(0,1,0),=(﹣1,1,0),=(﹣1,﹣1,1),设平面D1EC的法向量=(x,y,z),则,取x=1,得=(1,1,2),∴点B到平面D1EC的距离:d===.故答案为:.13.(4分)已知数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),则a n=2n﹣1.【解答】解:数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),所以,,…,,所以=,所以.故答案为:2n﹣1.14.(4分)若直线y=x+b与曲线y=3﹣有公共点,则b的取值范围是[1﹣,3].【解答】解:如图所示:曲线y=3﹣,即y﹣3=﹣,平方可得(x﹣2)2+(y﹣3)2=4(1≤y≤3,0≤x≤4),表示以A(2,3)为圆心,以2为半径的一个半圆.由圆心到直线y=x+b的距离等于半径2,可得=2,∴b=1+,或b=1﹣.结合图象可得1﹣≤b≤3,故答案为:[1﹣,3].三、解答题:本大题共4题,共44分,要求写出文字说明,解答过程或演算步骤.15.(10分)已知等差数列{a n}满足:a4=7,a10=19,其前n项和为S n.(1)求数列{a n}的通项公式a n及S n;(2)若b n=,求数列{b n}的前n项和为T n.【解答】解:(1)设等差数列{a n}的公差为d,则,解得:a1=1,d=2,∴a n=1+2(n﹣1)=2n﹣1,S n==n2.(2)b n===,∴数列{b n}的前n项和为T n=+…+==.16.(10分)如图,四棱锥P﹣ABCD中,ABCD为正方形,PD⊥平面ABCD,PD=DC=2,E是PC的中点.(1)证明:P A∥平面BDE;(2)求平面BDE与平面DEC的夹角的余弦值.【解答】解:(1)证明:连接AC,交BD于点O,连接OE,∵ABCD为正方形,∴O是AC的中点,∵E是PC的中点,∴OE∥P A,∵P A⊄平面BDE,OE⊂平面BDE,∴P A∥平面BDE.(2)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,则B(2,2,0),D(0,0,0),E(0,1,1),C(0,2,0),=(2,2,0),=(0,1,1),设平面BDE的法向量=(x,y,z),则,设x=1,则=(1,﹣1,1),平面DEC的法向量=(1,0,0),设平面BDE与平面DEC的夹角为θ,则cosθ===,∴平面BDE与平面DEC的夹角的余弦值为.17.(12分)已知椭圆C:+=1(a>b>0)的离心率为e=,过点(2,0).(Ⅰ)求椭圆C的标准方程;(Ⅱ)设左、右焦点分别为F1,F2,经过右焦点F2的直线l与椭圆C相交于A、B两点,若⊥,求直线l方程.【解答】解:(Ⅰ)由e==,且a=2,则c=1,b==,故椭圆C的方程为+=1;(Ⅱ)F1(﹣1,0),F2(1,0),设经过右焦点F2的直线l的方程为x=my+1,与椭圆方程3x2+4y2=12联立,可得(4+3m2)y2+6my﹣9=0,设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=﹣,由⊥,即AF1⊥BF1,k•k=•=﹣1,即有(x1+1)(x2+1)+y1y2=(my1+2)(my2+2)+y1y2=(1+m2)y1y2+2m(y1+y2)+4=(1+m2)•(﹣)+2m•(﹣)+4=0,解得m=±,则直线l的方程为x=±y+1,即为y=±(x﹣1).18.(12分)已知数列{a n}的前n项和S n=1﹣a n(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n,并证明:T n<2.【解答】解:(1)数列{a n}的前n项和S n=1﹣a n①.所以当n=1时,.当n≥2时,S n﹣1=1﹣a n﹣1②,①﹣②得:a n=S n﹣S n﹣1=a n﹣1﹣a n,整理得2a n=a n﹣1,故(常数),所以数列{a n}是以为首项,为公比的等比数列;所以,首项符合通项,所以.证明:(2)设,所以①,②,①﹣②得:=,所以.。
2020-2021学年度第一学期期中试题八年级数学一、选择题(每小题3分,共30分) 1.81 的平方根是多少( )A. ±9B. 9C. ±3D. 3 2.当1<a<2时,代数式2)2( a +┃a-1┃的值是( )A. 1.B. -1C. 2a-3D.3-2a 3.下列各个数中,是无理数的是( )√2 √10003, π, -3.1416, √9, 13, 0.030 030 003……, 0.57143. √−13A.0个B.1个C.2个D.3个 4.在直角ΔABC 中,∠ACB=90°,如果AB=4,AC=3,那么BC 的长是( )A. 2B. 5C.√7D.5或√7 5.以下列各组数为边长的三角形中,不能构成直角三角形的是( )A. 6. 8, 10B. 3, 4. 5C. 8, 12,15D. 5. 12, 13 6.如果点P 在第二象限内,点P 到x 轴的距离是5,到y 轴的距离是2,那么点P 的坐标为( ) A. (-5,2) B. ( -5. -2) C. (-2,5) D. ( -2, -5) 7.如图,Rt ΔMBC 中,∠MCB=90°,点M 在数轴-1处,点C 在数轴1处,MA=MB,BC=1,则数轴上点A 对应的数是( ) A.5+1 B. -5+1 C. -5-1 D.5-1第7题 第9题8. 若|a|=-a,则实数a 在数轴上的对应点一定在( )A. 原点左侧B. 原点或原点左侧C. 原点右侧D. 原点或原点右侧 9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1、S 2,则S 1+S 2的值为( )A. 16B. 17C. 18D. 1910.若函数y=(m+1)x+㎡2-1是关于x 的正比例函数,则m 的值( ) A. m=-1 B. m=1 C. m=±1 D. m=2 二、填空题(每小题3分,共30分) 11.-5的相反数为 ,2-1的绝对值是12.若ΔABC 的三边a 、b 、c,其中b=1,且(a-1)2+|c-2|=0,则ΔABC 的形状为 . 13. 估算:46≈ (结果精确到1).14.Rt ΔABC 中,斜边BC=2,则AB 2+AC 2+BC 2的值为 15.如图,矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在 点D'处,则重叠部分ΔAFC 的面积为16.在平面直角坐标系中,已知点P 1(a-1,6)和P 2(3,b-1)关于x 轴对称,则(a+b)2020的值为17.已知实数a,b 互为相反数,且|a+2b|=1,b<0,则b=18.某下岗职工购进一批苹果到农贸市场零售.已知卖出的苹果数量x(kg)与收入y(元)的关系如下表:数量x(kg) 1 2 3 4 5 … 收入y(元)2+0.14+0.26+0.38+0.410+0.5…19.若x=2-3,则代数式x 2+6x+9的值是 20. 已知实数3的整数部分是m,小数部分是n,则 3n m= 三、解答题(共8小题,共60分) 21.(16分)计算 (1)20-8÷221+45 (2)(3+2)(3-2)+(23-1)2(3)(2)2-(31)-1-(3+1)0; (4)3127+232-24)x2322.(4分)已知2a-1的算术平方根是3,a-b+2的立方根是2,求a-4b的平方根23.(4分)(1)如图,OB是边长为1的正方形的对角线,且OA=OB,数轴上A点对应的数是:(2)请仿照(1)的做法,在数轴上描出表示5的点.24.(8分)如图,一个放置在地面上的长方体,长为15cm,宽为10cm,高为20cm,点B与点C的距离为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?25.(6分)已知:如图,把ΔABC向上平移3个单位长度,再向右平移2个单位长度,得到ΔA'B'C'.(1)写出A'、B',C'的坐标;(2)点P在y轴上,且ΔBCP与ΔABC的面积相等,求点P的坐标.26.(6分)已知x 、y 为实数,y=319922-+-+-x x x ,求5x+6y 的值27.(6分)一辆汽车油箱内有油48升,从某地出发,每行1km,耗油0.6升,如果设剩油量为y (升),行驶路程为x(千米)。