16相概念及分类解析
- 格式:ppt
- 大小:3.21 MB
- 文档页数:30
仪器分析实验员必会的100个概念及问题!(含气相、液相、质谱等)1 色谱分析法:色谱法是一种分别分析方法。
它利用样品中各组分与流淌相和固定相的作用力不同(吸附、安排、交换等性能上的差异),先将它们分别,后按肯定挨次检测各组分及其含量的方法。
2 色谱法的分别原理:当混合物随流淌相流经色谱柱时,就会与柱中固定相发生作用(溶解、吸附等),由于混合物中各组分物理化学性质和结构上的差异,与固定相发生作用的大小、强弱不同,在同一推动力作用下,各组分在固定相中的滞留时间不同,从而使混合物中各组分按肯定挨次从柱中流出。
这种利用各组分在两相中性能上的差异,使混合物中各组分分别的技术,称为色谱法。
3 流淌相:色谱分别过程中携带组分向前移动的物质。
4 固定相:色谱分别过程中不移动的具有吸附活性的固体或是涂渍在载体表面的液体。
5 色谱法的特点:(1)分别效率高,简单混合物,有机同系物、异构体。
(2)灵敏度高,可以检测出g.g-1(10-6)级甚至ng.g-1(10-9)级的物质量。
(3)分析速度快,一般在几分钟或几非常钟内可以完成一个试样的分析。
(4)应用范围广,气相色谱:沸点低于400℃的各种有机或无机试样的分析。
液相色谱:高沸点、热不稳定、生物试样的分别分析。
(5)高选择性:对性质极为相像的组分有很强的分别力量。
不足之处:被分别组分的定性较为困难。
6 色谱分析法的分类:按两相状态分类,按操作形式分类,按分别原理分类。
7 按两相状态分类:气相色谱(Gas Chromatography, GC),液相色谱(Liquid Chromatography, LC),超临界流体色谱 (Supercritical Fluid Chromatography, SFC)。
气相色谱:流淌相为气体(称为载气)。
常用的气相色谱流淌相有N2、H2、He等气体,按分别柱不同可分为:填充柱色谱和毛细管柱色谱;按固定相的不同又分为:气固色谱和气液色谱。
十二特相及32身份不过要辨识推动,正如刚才《清净道论》所说的要辨识全身。
例如:如果你辨识胸部,你的推动就不能够只是停留在胸部,要慢慢扩到全身。
如果你辨识腹部里的推动,辨识它的起伏,你不能够只是停留在这,必须得辨识到全身,就是慢慢由最明显的地方开始,再扩到全身。
在经行的时候,在平时行走的时候,我们也照样可以辨识推动,而且可能会更明显。
例如:我们现在把手伸起来,可不可以感觉到动呢?伸起来、放下,这个就是动。
或者说我们拿东西,伸手、收回来,也就是屈伸手臂,在经典里面,屈伸手臂,是属于推动。
也就是说假如没有风界的话,物体将是不能动的。
就像人的身体,假如风界不协调、风界增盛的话,身体将会变得僵硬,不能动弹,这是由于风界造成的。
如果我们身体里面的风界,已经很流畅,那么我们的动作也就发生得很轻巧,乃至我们说话、吃东西,嘴巴的动也是属于风界的动。
在走路的时候,在经行的时候,我们如果修四界的话,可以把心念放在脚上,然后去注意脚步的动,例如脚步的抬起、移动、放下、踏下,抬起、移动、放下。
但是在辨识动的时候,不要落于概念,就直接把心放在动的本身,动的本身就是风界的特相。
如果你又去念左、右、左、右,这变成是方位的概念了,你只是放在它的本质、本身就可以。
可以辨识到推动之后还要把辨识扩展到全身。
在这十二个特相当中,每一个特相都在我们的身体里面有明显的地方,有不明显的地方,我们可以从最明显的地方开始辨识起,然后扩到全身。
同时,在辨识所有的特相的时候不能夹杂想象,要如实地辨识。
也就是说,如果你现在坐在这里,想象着自己站起来,自己走动,这是想象。
但假如动作是真的已经发生了,这是不是如实的发生呢?如果是如实的发生,你就如实地去了知就可以了。
为什么呢?因为修四界和修定不同。
修四界的所缘是究竟法,观照究竟法,就是要如实地观,它是怎么样,我们就怎么样。
修习四界,是属于转入修观之门,如果修四界时都夹杂着想象,那么以后的观照都是属于想象的,想象的东西、推理的东西,是不能断烦恼的,甚至不能称为是观智。
等电子体与分子中的“大Π键”考点一等电子体原理【核心知识梳理】1.等电子体原理(1)等电子体:原子总数相同、价电子总数相同的粒子互称为等电子体。
(2)等电子原理:等电子体具有相似的化学键特征,它们的许多性质相近,此原理称为等电子原理,例如CO和N2的熔沸点、溶解性等都非常相近。
(3)等电子原理的应用利用等电子原理可以判断一些简单分子或离子的立体构型。
如SO2和O3的原子数目和价电子总数都相等,二者互为等电子体,中心原子都是sp2杂化,都是V形结构。
(4)常见的等电子体汇总2. 确定等电子体的方法变换过程中注意电荷变化,并伴有元素种类的改变【精准训练1】等电子体1.N2的结构可以表示为,CO的结构可以表示为,其中椭圆框表示π键,下列说法中不正确的是()A.N2分子与CO分子中都含有三键B.CO分子中有一个π键是配位键C.N2与CO互为等电子体D.N2与CO的化学性质相同2.下列粒子属于等电子体的是()A.C O32−和SO3B.NO和O2 C.NO2和O3D.HCl和H2O3.通常把原子总数和价电子总数相同的分子或离子称为等电子体。
人们发现等电子体的空间结构相同,则下列有关说法中正确的是()A.CH4和NH+4是等电子体,键角均为60°B.NO-3和CO2-3是等电子体,均为平面三角形结构C.H3O+和PCl3是等电子体,均为三角锥形结构D.B3N3H6和苯是等电子体,B3N3H6分子中不存在“肩并肩”式重叠的轨道4.已知CO2为直线形结构,SO3为平面正三角形结构,NF3为三角锥形结构,请推测COS、CO2-3、PCl3的空间结构:________、________、________。
考点二分子中“大π键”【核心知识梳理】1. 定域π键(1)概念:两个相邻原子的平行p 轨道“肩并肩”重叠形成,可描述为双轨道双电子π键。
(2)形成定域π键的条件:相邻两个原子提供一个或两个相互平行的未杂化p 轨道。
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第53讲事件的独立性、条件概率和全概率公式(精讲)题型目录一览①事件的相互独立性②条件概率③全概率公式④贝叶斯公式一、条件概率1.定义:一般地,设A ,B 为两个事件,且()0P A >,称()()()|P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率.注:(1)条件概率|()P B A 中“|”后面就是条件;(2)若()0P A =,表示条件A 不可能发生,此时用条件概率公式计算|()P B A 就没有意义了,所以条件概率计算必须在()0P A >的情况下进行.2.性质(1)条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即1|0()P B A ≤≤.(2)必然事件的条件概率为1,不可能事件的条件概率为0.(3)如果B 与C 互斥,则(||()(|))P B C A P B A P C A =+ .注:已知A 发生,在此条件下B 发生,相当于AB 发生,要求|()P B A ,相当于把A 看作新的基本事件空间计算AB 发生的概率,即()()()()()()()()|()n AB n AB n P AB P B A n A n A P A n Ω===Ω.二、相互独立与条件概率的关系1.相互独立事件的概念及性质(1)相互独立事件的概念对于两个事件A ,B ,如果)(|)(P B A P B =,则意味着事件A 的发生不影响事件B 发生的概率.设()0P A >,一、知识点梳理根据条件概率的计算公式,()()()()|P AB P B P B A P A ==,从而()()()P AB P A P B =.由此我们可得:设A ,B 为两个事件,若()()()P AB P A P B =,则称事件A 与事件B 相互独立.(2)概率的乘法公式由条件概率的定义,对于任意两个事件A 与B ,若()0P A >,则()|)()(P AB P A P B A =.我们称上式为概率的乘法公式.(3)相互独立事件的性质如果事件A ,B 互相独立,那么A 与B ,A 与B ,A 与B 也都相互独立.(4)两个事件的相互独立性的推广两个事件的相互独立性可以推广到(2)n n n >∈*N ,个事件的相互独立性,即若事件1A ,2A ,…,n A 相互独立,则这n 个事件同时发生的概率1212()()()()n n P A A A P A A P A = .2.事件的独立性(1)事件A 与B 相互独立的充要条件是()()()P AB P A P B =⋅.(2)当()0P B >时,A 与B 独立的充要条件是()()|P A B P A =.(3)如果()0P A >,A 与B 独立,则()()()()()()()|P AB P A P B P B A P B P A P A ⋅===成立.三、全概率公式1.全概率公式(1)|()()()()(|)P B P A P B A P A P B A =+;(2)定理1若样本空间Ω中的事件1A ,2A ,…,n A 满足:①任意两个事件均互斥,即i j A A =∅,12i j n = ,,,,,i j ≠;②12n A A A +++=Ω ;③()0i P A >,12i n = ,,,.则对Ω中的任意事件B ,都有12n B BA BA BA =+++ ,且11()()()()|nni i i i i P B P BA P A P B A ====∑∑.2.贝叶斯公式(1)一般地,当0()1P A <<且()0P B >时,有()()()()()()()()()()||||P A P B A P A P B A P A B P B P A P B A P A P B A ==+(2)定理2若样本空间Ω中的事件12n A A A ,,,满足:①任意两个事件均互斥,即i j A A =∅,12i j n = ,,,,,i j ≠;②12n A A A +++=Ω ;③()01i P A <<,12i n = ,,,.则对Ω中的任意概率非零的事件B ,都有12n B BA BA BA =+++ ,且1()()()()()()()()|||j j j j j niii P A P B A P A P B A P A B P B P A P B A ===∑注:贝叶斯公式体现了|()P A B ,()P A ,()P B ,|()P B A ,|()P B A ,()P AB 之间的关系,即()()()|P AB P A B P B =,()()()()()||P AB P A B P B P B A P A ==,|()()()()(|)P B P A P B A P A P B A =+.题型一事件的相互独立性1.判断事件是否相互独立的方法(1)定义法:事件(2)由事件本身的性质直接判定两个事件发生是否相互影响.二、题型分类精讲A.332B.【答案】D【题型训练】一、单选题,从乙口袋内摸出一个白球的概率是6【分析】根据题意,求得事件甲、乙、丙、丁的概率,结合相互独立事件的概念及判定方法,逐项判定,不相互独立,所以本序号说法不正确;二、多选题不能同时发生,但能同时不发生,所以不是对立事件,所以三、填空题四、解答题.一题多解是由多种途径获得同一数学问题的最终结论,一题多解不但达到了解题的目标要求,而且让情.某市举行了一场射击表演赛,规定如下:表演赛由甲、乙两位选手进行,每次只能有一位选手射击,题型二条件概率1.判断所求概率为条件概率的主要依据是题目中的知事件的发生影响了所求事件的概率,也认为是条件概率问题.运用条件概率的关键是求出【题型训练】一、单选题1.核酸检测是目前确认新型冠状病毒感染最可靠的依据.经大量病例调查发现,试剂盒的质量、抽取标本的部位和取得的标本数量,对检测结果的准确性有一定影响.已知国外某地新冠病毒感染率为d二、多选题、表示事件错误;三、填空题个红球,从中任意取出一球,已知它不是白题型三全概率公式全概率公式复杂的概率计算分解为一些较为容易的情况分别进行考虑.【题型训练】一、单选题小时的学生中任意调查一名学生,则(二、多选题,所以表示买到的口罩分别为甲品牌、乙品牌、其他品牌,,对;三、填空题记任选一人去桂林旅游的事件为B ,则123()0.4,()()0.3P A P A P A ===,123(|)0.1,(|)0.2,(|)0.15P B A P B A P B A ===,由全概率公式得112233()(|)()(|)()(5|)30.15014P P A P B A P A P B A P A P B B A =⨯⨯++==++⨯.故答案为:0.145四、解答题附:()2P K k≥0.150.100.05k 2.072 2.706 3.841 (2)将甲乙生产的产品各自进行包装,每来自甲生产的概率为3,来自乙生产的概率为(1)假设四人实力旗鼓相当,即各比赛每人的胜率均为①A获得季军的概率;②D成为亚军的概率;,其余三人实力旗鼓相当,求题型四贝叶斯公式1.利用贝叶斯公式求概率的步骤第一步:利用全概率公式计算【题型训练】一、单选题。
㊃1㊃本章的主要知识点可以概括为有理数的有关概念和有理数的运算两部分.有理数的有关概念包括有理数分类的原则和方法㊁相反数㊁数轴㊁绝对值的概念和特点.可以利用数轴来认识和理解有理数的有关概念.有理数的运算和运算律是本章的重点.运算包括有理数的加㊁减㊁乘㊁除㊁乘方及简单的混合运算;运算律包括加法交换律㊁加法结合律㊁乘法交换律㊁乘法结合律㊁乘法分配律等.科学计数法与乘方有关,近似数和有效数字在实际生活中有广泛意义.1.有理数是初中数学的基础内容,也是中考的重要考点之一,主要和其他知识联合考查.中考试题中分值约为3~6分,多以选择题㊁填空题㊁计算题的形式出现,属于简单题.近几年主要考查以下几个方面:(1)相反数,绝对值,倒数等相关概念;(2)负数的乘方,加减及混合运算.本章的重点是有理数概念的理解及有理数的运算和运算律.基本概念的考查频率很高,几乎每个地区的中考卷都会涉及.有理数运算和运算律一般融入其他运算一并考查,近似数和有效数字考试中涉及略少.例1 下面说法正确的是( ).A.0不是整数B .有理数包括正整数㊁负整数㊁正分数㊁负分数C .一个整数不是正整数,就是负整数D.整数和分数统称为有理数ʌ解析ɔ 此题必须明确有理数的意义和分类.整数包括正整数㊁0㊁负整数,因此选项A ㊁选项C 不正确.0是有理数,因此选项B 不正确.整数和分数统称为有理数,故选项D 正确.ʌ说明ɔ 有理数的分类方式有两种,可分为整数㊁分数;也可分为正数㊁0和负数.因此,有理数分类要按统一标准分类,做到既不重复,也不遗漏.另外,整数可以看作分母是1的分数.因此,有理数都可以化成分数,而能够化成分数的数就是有理数.π=3.1415926 是无限不循环小数,它不能化成分数,所以π不是有理数.练习1 下列说法中正确的有( ).①最小的自然数是1;②最小的正数是1;③最小的非负数是0;④0既不是奇数,也不是偶㊃2 ㊃数;⑤0表示没有海拔高度.A.1个B .2个C .3个 D.4个例2 在中央电视台 开心辞典 栏目中,主持人问嘉宾这样一道题目: 若数轴上的点A 和点B 表示互为相反数的两个数,并且它们到原点的距离之和是9.6,那么点A 和点B 表示两个什么样的数(A >B ) 你能帮嘉宾解决问题吗?ʌ解析ɔ 互为相反数的两个数,它们的绝对值相等,所以它们到原点的距离相等.两个数到原点的距离和是9.6,那么它们到原点的距离均为4.8,因此大数A 是4.8,小数B 是-4.8.ʌ说明ɔ 绝对值㊁相反数㊁数轴的概念难度不大,但极易混淆.有时也和定义新运算这类题目联系起来考查.数轴上任意两点间的距离是有关高中知识 空间距离 学习的基础.例如,表示数a的点A 与表示数b 的点B 之间的距离A B =a -b 或A B =|b -a |,与表示数m 的点的距离为a (a >0)的点有两个,分别是m +a 和m -a .练习2 数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上任意画一条长为2015厘米的线段,则该线段盖住的整点的个数是( ).A.2012或2013 B .2013或2014 C .2014或2015 D.2015或2016例3 计算-17+17ː(-1)11-53ˑ(-0.2)3.ʌ解析ɔ 原式=-17+17ː(-1)-125ˑ(-0.008)=-17+(-17)-(-1)=-17-17+1=-33.ʌ说明ɔ 有理数运算是初中数学运算的基础,熟练地进行有理数运算是初一数学的重点.有理数混合运算区别于小学混合运算的根本点是符号的处理.在运算中要强调符号优先的原则,任何一种运算都要遵循先定符号后算数的原则,同时还要注意不同种运算之间的相互转化.减法先变为加法,除法先变为乘法后再运算.加法法则可先确定和的符号,再做绝对值的运算.异号两数相加较易出错,应加以注意.有理数乘法的重点仍然是确定符号,先确定好符号,然后把绝对值相乘;带分数相乘时,要先把带分数化为假分数;分数与小数相乘时,要统一化成小数或分数.练习3 计算-1-(-3)3-3+0.4ˑ-112æèçöø÷éëêêùûúúː(-2){}.2.本章的难点是负数概念的建立㊁有理数有关概念的深入理解以及有理数运算法则的理解和运用.正数和负数是表示相反意义的量,正和负具有相对性.有理数的运算是一切运算的基础,也㊃3 ㊃是必考内容.考试中的难题往往把有理数有关概念与计算相结合.突破方法:(1)牢固掌握有理数有关的概念,如相反数,倒数,绝对值等,真正掌握数形结合的思想.(2)熟练掌握有理数的各种运算法则,特别是有负数的运算.在混合运算中须特别注意符号和运算顺序.例1 从前有座庙,庙里有个小和尚,每天早晨都清扫庙门前的台阶.庙的门前一共有9级台阶,当他一步只能上1级台阶或2级台阶时,走完1级台阶只有1种方法;走完2级台阶共有2种方法;走完3,4,5,6,7级台阶,共分别有3,5,8,13,21种方法.那么,当他走完这9级台阶,一共有多少种方法呢ʌ解析ɔ 这是一道找规律题,当台阶分别是1,2,3,4,5,6,7时ˌˌˌˌˌˌˌ所对应的方法有1,2,3,5,8,13,21种经观察发现,每一种方法数目都是前面两种方法数目的和,所以,走完8级台阶有13+21=34(种)方法,走完9级台阶有21+34=55(种)方法.ʌ说明ɔ 规律题也是本章的一大难点.近年来,经常出现一类由特殊到一般,由具体到抽象的规律探究中考题,它涉及有理数的运算特点.例如增加相同的加数或相同的倍数,后面的数是前面几个数的和或正负数交替出现,相应的数是序号数的平方等.这类问题思路别致,具有启发思维㊁引导创新的意义.练习4 观察下列数据的变化规律,写出第n (n ȡ1)个数-2,4,-6,8,-10 则第n 个数为.例2 如图11,数轴上的三点A ,B ,C 分别表示有理数a ,b ,c ,化简|a +b |+|a -c |-|c -b |.OBAC图11ʌ解析ɔ 由题意得a <b <0<c ,|b |<|c |<|a |,所以a +b <0,a -c <0,c -b >0.所以原式=-(a +b )+[-(a -c )]-(c -b )=-a -b -a +c -c +b=-2a .ʌ说明ɔ 首先要全面理解绝对值的定义.绝对值有两层含义.①代数定义:正数的绝对值是它的本身,0的绝对值是0,负数的绝对值是它的相反数;②几何定义:数a 的绝对值的几何意义是实数a 在数轴上所对应的点到原点的距离.其次,绝对值的化简要注意三个问题:①符号 || 是 非负数 的标志;②数a 的绝对值只有一个;③处理任何类型的题目,只要其中有 || 出现,其关键一步是去掉 || 符号.练习5 如图12,蚂蚁妈妈在数轴上的点A 处,已知数轴上点A 表示的数为6,B 是数轴上另一点,且A B =9.蚂蚁妈妈从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.㊃4 ㊃O BA 06图12(1)写出数轴上点B 表示的数,蚂蚁妈妈在运动过程中的某一点表示的数是(用含t 的代数式表示);(2)一只小蚂蚁从点B 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若两只蚂蚁同时出发,问蚂蚁妈妈运动到多少秒时追上小蚂蚁?例3 下列等式成立的是( ).A .100ː13ˑ(-3)=100ˑ3ˑ(-3) B .100ː13ˑ(-3)=100ˑ3ˑ3B .100ː13ˑ(-3)=-100ː13ˑ3æèçöø÷D .100ː13ˑ(-3)=100ˑ13ˑ3ʌ解析ɔ 选项B 丢了负号;选项C 搞乱了运算顺序,乘除法是同级运算,应该从左往右按顺序运算,不应该先算后面的.选项D 弄错除法法则和漏掉负号,除以一个分数等于乘以这个分数的倒数.故选A .ʌ说明ɔ 此题考查运算顺序,做有理数混合运算,必须注意运算顺序:先乘方,再乘除,最后加减;同级运算从左向右进行;如果有括号,先做括号内的运算,按小括号㊁中括号㊁大括号的顺序依次进行.在进行混合运算时,若能用运算律则用运算律,使运算简捷.练习6 计算-100ˑ18-0.125ˑ32.5+17.5ˑ(-12.5%).3.本章的易错点比较细小,也比较多.例如,符号问题㊁混合运算的顺序㊁乘方运算的意义㊁科学计数法理解不透㊁有效数字和近似数弄错等.最大的易错点就是符号,学生往往忽视了符号在运算中所起的作用.任何一种运算都要先考虑符号,尤其是乘方运算,更要在注意符号的前提下,避免底数的运算错误.例1 计算-12-34ˑ-32ˑ-23æèçöø÷2-2éëêêùûúúː(-1)2013.ʌ解析ɔ 原式=-1-34ˑ-9ˑ49-2æèçöø÷ː(-1)=-1-34ˑ(-4-2)ː(-1)=-1-34ˑ(-6)ː(-1)㊃5 ㊃=-1-92=-112.ʌ说明ɔ 有理数的乘方运算是利用有理数乘法运算进行的,根据有理数的乘法法则得出:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数;③0的任何次幂都是0.乘方运算经常在符号上出错,例如,-24=-16,(-2)4=16,前者 - 不发生4次方运算,因此结果仍然是负数,后者 - 发生了4次方运算,因此结果是正数,注意两者的区别.再者,解题一定要注意运算顺序的正确性,不可任意颠倒.练习7 计算-72+2ˑ(-2)2+(-6)ː-13æèçöø÷2.例2 一位知名企业家去看望幸福养老院的老人,带去了价值约1.35万元的日用品和价值约3.02ˑ105元的营养品.(1)请判断这两个近似数各精确到了哪一位?(2)它们各有几位有效数字?ʌ解析ɔ (1)题不要只看1.35,而忽略了单位 万 ,把1.35万还原为13500,再看数字5在哪个数位,因此答案是精确到百位.有3位有效数字.(2)题不要只看3.02,而忽略了 ˑ105 .把3.02ˑ105还原为302000,再看数字2在哪个数位,因此答案是精确到千位,有3位有效数字.ʌ说明ɔ 一般地,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位.近似数最末尾的数字在什么数位上,就表明精确到什么数位.有效数字的位数是从左边第一个不是0的数字起到最后一个数字为止.但是一个用科学计数法表示的数,即a ˑ10n,有效数字只算a 中的位数;精确度是a 中最末一位数字,数位必须是这个数字在还原后的数中的数位.练习8 嫦娥三号 已成功发射,在行进中的某一时刻,测得距离它最近的三个星球的距离分别是下面的数值.请你用四舍五入法对下列各数按要求取近似值,并用科学计数法表示结果.(1)523600千米(精确到千位);(2)668954000千米(精确到千万位);(3)95288000千米(精确到万位).例3 计算(1)213-312+11336æèçöø÷ː-116æèçöø÷;(2)-130æèçöø÷ː12+43-16æèçöø÷.ʌ解析ɔ (1)先把除法转化为乘法,再利用乘法分配律计算.原式=73-72+4936æèçöø÷ˑ-67æèçöø÷=73ˑ-67æèçöø÷-72ˑ-67æèçöø÷+4936ˑ-67æèçöø÷=-2+3-76=-16;(2)先计算括号里面的,然后再把除法转化为乘法计算.㊃6 ㊃原式=-130æèçöø÷ː106=-130æèçöø÷ˑ610=-150.ʌ说明ɔ 灵活适当地运用运算律可以简化运算,从而提高解题速度.但减法和除法没有运算律,要先把减法转化为加法,除法转化为乘法之后,才可以使用运算律.例如上面第(2)题的除法就不能使用分配律.因此,计算不能急于求成,不能在违反运算顺序的情况下强行 简便 运算.计算题算出结果后,还要认真检查,防止出错.练习9 阅读计算过程:313-22ː12æèçöø÷2-(-3+0.75)éëêêùûúúˑ5.解:原式=313-22ː14-3+34æèçöø÷ˑ5 ①=313+4ː(-2)ˑ5②=313+25③=31115.回答下列问题:(1)步骤①错在;(2)步骤①到步骤②错在;(3)步骤②到步骤③错在;(4)此题的正确结果是.4.在充分理解有理数有关概念,正确掌握有理数运算法则和运算顺序㊁运算律后,就具备了解决一些综合性题目的能力.我们可以根据某些题目的特点,将算式灵活变形,对不同的算式可以采取运算顺序重新组合㊁因数分解㊁拆项裂项等不同的方法,达到优化解题㊁简化计算的目的.例1 若一台机器人站在数轴的原点处,按照指令分别向左右两个方向移动,右边是正方向,左边是负方向.先向右移动1米,再向左移动2米;然后再向右移动3米,向左移动4米.依次移动下去,每次方向相反,距离增加1米.当移动完2014次时,它位于原点的哪一侧?距离原点多远?ʌ解析ɔ 向右记为正数,向左记为负数.那么有1+(-2)+3+(-4)+ +2011+(-2012)+2013+(-2014),将此式中的数两两相加,原式=(-1)+(-1)+ +(-1)=-1007.即移动完2014次时,它位于原点左侧,距离原点1007米远.ʌ说明ɔ 运用加法的交换律㊁结合律,把某些具有相同属性的数分别结合在一起相加,例如,正数和负数分别相加;同分母分数相加;带分数把整数和分数部分拆开分别相加;相反数相加等.㊃7 ㊃这样可以很大程度地简化运算.练习10 计算1+2+3+4+5+6+ +998+999+1000.例2 现定义两种运算 * ә ,对于任意两个整数a ,b ,有a *b =a b -2,a әb =a +b +1,求式子5ә[(2*3)*(3ә4)]的值.ʌ解析ɔ 原式=5ә[(2ˑ3-2)*(3+4+1)]=5ә(4*8)=5ә(4ˑ8-2)=5ә30=5+30+1=36.ʌ说明ɔ 定义新运算中的符号 代表的是一种特定的运算,它是一种融合了几种基本运算在内的综合运算程序.在不同的题目中分别有不同的代表性,具体到每一道题,它首先会标明 符号 所代表的运算程序,我们只要在正确运算的基础上按照其程序运算即可.练习11 已知a ,b 为有理数,如果规定一种新的运算 ,即a b =a b +a -b +1.例如,2 3=2ˑ3+2-3+1=6.请你根据的定义计算下列各题:(1)(-2) 5; (2)(4 2) (-1).例3 已知a 1,a 2,a 3, ,a 2014都是正整数,且P =(a 1+a 2+a 3+ +a 2013)ˑ(a 2+a 3+ +a 2013+a 2014),Q =(a 1+a 2+ +a 2013+a 2014)ˑ(a 2+a 3+ +a 2013).那么P ㊁Q 的大小关系是( ).A .P >QB .P <QC .P =QD .无法确定ʌ解析ɔ P =(a 1+a 2+a 3+ +a 2013)ˑ(a 2+a 3+ +a 2013+a 2014)=(a 1+a 2+a 3+ +a 2013)ˑ(a 2+a 3+ +a 2013)+(a 1+a 2+a 3+ +a 2013)ˑa 2014,Q =(a 1+a 2+ +a 2013+a 2014)ˑ(a 2+a 3+ +a 2013)=(a 1+a 2+a 3+ +a 2013)ˑ(a 2+a 3+ +a 2013)+a 2014ˑ(a 2+a 3+ +a 2013),因为(a 1+a 2+a 3+ +a 2013)ˑa 2014>a 2014ˑ(a 2+a 3+ +a 2013),所以P >Q ,故选A .ʌ说明ɔ 这种题目就要把着眼点放在问题的整体结构上,通过对题目的整体分析,把其中的(a 1+a 2+a 3+ +a 2013)ˑ(a 2+a 3+ +a 2013)当作一个整体,只把a 2014分离出来,这样就在两个不同的式子之间找到了共同点,也就找到了突破点,然后只比较不同的部分即可.练习12 已知a ,b ,c 为整数,且a +b =26,c -a =15.若a <b ,则a +b +c 的最大值是多少?㊃8 ㊃5.在本章的学习中,基本的学习要求是熟练地掌握相反数㊁绝对值㊁数轴等定义,更重要的是了解其中蕴含的数学思想方法.本章中最常用的数学思想方法有方程思想㊁整体思想㊁数形结合思想㊁化归思想㊁分类讨论思想等.学习数学要不断去探索㊁猜想㊁不断总结规律方法,才会有所发现㊁有所创新.这就是人们常说的 举一反三 .例1 在数轴上表示p ,0,1,q 四个数的点如图13所示,已知O 为P Q 的中点.求p +q +pq+p +1的值.OPp 10Qq 图13ʌ解析ɔ 此题充分利用数轴的直观形象,理解一对相反数到原点的距离相等,因此一对相反数的和是0,而一对相反数的商是-1,此问题便迎刃而解.因为O 为P Q 的中点,则p +q =0,p =-q ,所以p +q =0,pq=1,由数轴可知p <-1,则p +1=-p -1,所以原式=0+1-p -1=-p .ʌ说明ɔ 本题所体现的是数形结合的思想.数轴是数形结合的重要工具.本章中,我们一直用数轴来定义或描述有理数的概念㊁运算等,数轴成为理解有理数及其运算的重要工具.在解决没有给出具体数值的有理数问题时,常常把 数 的问题通过数轴转化为 形 来表示,从而直观简捷地解决问题.练习13 如果a ,b ,c ,d 为互不相等的有理数,且|a -c |=|b -c |=|d -b |=1,则|a -d |=.例2 为了增加陌生人之间的友爱和关怀,社会上很多年轻人成立了 抱抱团 .如果 抱抱团 的一名成员分别去热情拥抱两名陌生人,而每名被拥抱的人再去拥抱另外两名陌生人,照这样依次拥抱下去,那么,当拥抱完2013次之后,这条线上所有参加过拥抱的一共有多少人?ʌ解析ɔ 发起人1名,一次拥抱结束后增加2人,两次拥抱结束后增加22人,以此类推,2013次拥抱结束后增加22013人.所以总人数为1+2+22+23+ +22011+22012+22013(人).此题运算的数多,且幂指数大,无法直接计算,必须先将其变形,应用错位相减法,消掉一些项再进行计算.设S =1+2+22+23+ +22011+22012+22013,故 2S =2ˑ(1+2+22+23+ +22011+22012+22013)=2+22+23+ +22011+22012+22013+22014.所以S =2S -S=(2+22+23+ +22011+22012+22013+22014)-(1+2+22+23+ +22011+22012+22013)=22014-1.㊃9 ㊃即当拥抱完2013次之后,这条线上所有参加过拥抱的一共有22014-1人.ʌ说明ɔ 本题体现的是化归思想方法,就是将所要解决的复杂问题转化为简单问题来解决.具体地说,就是把 旧知识 转化为 新知识 ,把 未知 转化为 已知 ,把 复杂 问题转化为 简单 问题.对于算式规律性问题,我们要注意观察各部分算式的变化规律以及各算式之间的关系.根据其规律将算式变形,转化为简单的关系来解决.练习14 已知a b -2+a -2=0,求1a b +1(a +1)(b +1)+1(a +2)(b +2)+ +1(a +2012)(b +2012)的值.例3 比较|p |+|q |与|p +q|的大小.ʌ解析ɔ 我们根据绝对值的法则,要化简绝对值符号,必须先判断绝对值符号里面的式子的正负性.即根据 先定正负后去号 的原则.式子中字母的取值,要分三种情况讨论.①当p ,q 符号相同时,无论同正还是同负,都有|p |+|q |=|p +q |;②当p ,q 符号相反时,无论p ,q 哪一个为负,都有|p |+|q |>|p +q |;③当p ,q 至少一个为0时,则有|p |+|q |=|p +q |.ʌ说明ɔ 本题所用的是分类讨论思想.当研究的问题包含多种可能时,不能一概而论,必须按可能出现的所有情况来分别讨论,得出相应的结论.本章在研究相反数㊁绝对值㊁有理数乘方运算的符号法则时,都是把有理数分为正数㊁负数㊁零三类分别进行研究的.例如绝对值化简的0段分类法㊁倒数中的分段讨论大小都是分类讨论思想.分类讨论必须遵循两条原则:①每一次分类的标准相同;②不重复,不遗漏.练习15 设y =|k -1|+|k +1|则下面四个结论中正确的是( ).A .y 没有最小值B .只有一个k 使y 取最小值C .有限个k (不止一个)使y 取最小值D .有无穷多个k 使y取最小值一㊁填空题(每小题2分,共28分)1.在-1.5,197,0,π3,0.131313 ,-25中,有理数的个数是.2.王老师家的冰箱冷冻室的温度是-4ħ,调高2ħ后的温度是ħ.3.多多同学写错了一个算式-5+12=17,请你在不改变数字的情况下,直接在算式中添加 括号 绝对值符号 或 负号 (不限定个数)使等式成立:.4.实验表明,一个成年人血液的质量占人体质量的6%~7.5%,某人体重65千克,那么他的血液质量范围在千克.(结果保留两个有效数字)㊃10 ㊃5.若|a |=2,则a +3=;若a 的相反数是最小的质数,b 是最大的负整数,则a +|-b |=.6.有理数a 等于它的倒数,有理数b 等于它的相反数,则a 2013+b 2013=.7.一个数与-3的乘积是-156的倒数,则这个数是.8.已知x ㊁y ㊁z 是不为0的有理数,化简x x +y y+zz 的值可能是.9.2008年北京奥运会火炬传递路线全长约为13700公里,用科学计数法表示为;精确到千位是.10.已知|a |=5,|b |=3,且ab<0,则a +b =,a b =.11.某种活性细胞在培养过程中,每半小时就分裂一次,由一个分裂成两个,经过3小时,这种细胞可由一个分裂成个.12.下列有四个结论①若a =b ,则a 2=b 2,②如果a >b ,那么a 2>b 2,③若a 2=b 2,则a =b ,④如果a 2>b 2,那么a >b .其中正确的有个.13.绝对值不大于10000的所有整数的和是,积是.14.计算(-1)4-16ˑ[2-(-3)2]=.二㊁选择题(每小题3分,共18分)15.下列说法中正确的是( ).A .同号两数相乘,符号不变B .两个数相加,和大于任何一个加数C .任何数与0相乘仍得这个数D .一个数与-1相乘,积为该数的相反数16.下面说法中错误的是( ).A .近似数2千万和2ˑ103万精确度相同B .近似数2千万和2ˑ103万的有效数字相同C .近似数2.013和2.010有效数字位数相同D .近似数2.013和2.010精确度不同17.下列说法中正确的是( ).A .若a =-b ,则|a |=-|b |B .若|a |=|b |,则a =bC .如果|a |>|b |,那么a 2>b 2D .如果a >b ,那么|a |>|b |18.小花猫捡到了一块蛋糕,被狐狸看到了,狡猾的狐狸就一口吃掉了蛋糕的一半,再一口吃掉了剩下的一半,就这样连续吃了五口,那么,小花猫还剩下蛋糕的( ).A .18B .116C .110D .13219.若a =-2ˑ32,b =(-2ˑ3)2,c =-(2ˑ3)2,则下列大小关系正确的是( ).A .a >b >cB .b >c >aC .b >a >cD .c >a >b20.已知A =-2011ˑ20122013ˑ2014,B =-2011ˑ20132012ˑ2014,C =-2011ˑ20142012ˑ2013,那么,A ,B ,C 的大小关系是( ).A .A >B >CB .A <B <CC .B >A >CD .B >C >A三㊁解答题(共54分)21.(6分)用简便方法计算下面各题㊂(1)-15+12-112æèçöø÷ˑ(-60); (2)(-4)ˑ25ˑ(-0.25)ˑ54.22.(6分)很久以前,有位英俊的王子中了老巫婆的魔咒,变成了一只青蛙,被扔到一口水井里.水面比井口低3米,青蛙从水面沿着井壁向上往井口爬,第一次往上爬了0.5米后,往下滑了0.1米;第二次往上爬了0.42米,却又下滑了0.15米;第三次往上爬了0.7米,却下滑了0.15米;第四次往上爬了0.75米,却下滑了0.1米;第五次往上爬了0.55米,没有下滑;第六次青蛙又往上爬了0.59米,问青蛙能够爬出井口吗?23.(6分)有下列三行数,第一行:1,-4,9,-16,25,-36 ;第二行:-1,2,-3,4,-5,6 ;第三行:0,3,8,15,24,35 .这三行数的规律各是什么?请取每行的第100个数,并计算它们的和.24.(6分)已知三个有理数a ,b ,c 的和是正数,它们的积是负数,当m =a a +b b +c c时,求代数式m 3+m 2+m +1的值.25.(6分)计算112-256+3112-41920+5130-64142+7156-87172+9190.26.(8分)若a,b,c为整数,且|a-b|100+|c-a|100=1,试求代数式|c-a|+|a-b|+|b-c|的值.27.(8分)小华有三个有理数1,a+b,a,小毛也有三个有理数0,b,b a,丽丽说: 你们俩的数是一样的,我有一个和你们不一样的数x,它的绝对值是2㊂请你计算(a+b)2013+(a b)2014+(a+b-a b)2015+x2.28.(8分)已知|a1-1|+|a2-2|+ +|a2013-2013|+|a2014-2014|=0,求2a1-2a2-2a3- -2a2013+2a2014的值.本章的主要知识点可以概括为列式表示数量关系㊁整式的有关概念及整式的加减运算.列式表示数量关系是建立在用字母表示数的基础之上的.整式的概念主要介绍单项式㊁多项式㊁整式及其相关概念.单项式概念是多项式概念的基础,而整式又是单项式和多项式的总称.整式的加减运算是在学习了合并同类项和去括号的基础上,研究整式加减的运算法则.本章进一步学习如何用字母表示数及数量关系,深刻体会用字母表示数㊁用含字母的式子表示数量关系的意义.合并同类项和去括号是进行整式加减的基础,是本章的重点.1.本章的重点是整式加减的运算,主要是利用合并同类项法则㊁去括号法则对整式进行化简.熟练地合并同类项首先必须掌握同类项概念,其次要会准确辨别同类项,即要掌握两条判断同类项的标准:字母和字母指数.中考命题中,本章主要考查用含字母的式子表示实际问题中的数量关系;同类项的概念等.多以填空题㊁选择题的形式出现,分值一般为3~6分.而合并同类项㊁去(添)括号也是考试重点,但考查时往往与其他知识相结合.另外,用式子表示规律题是近几年中考的热点.例1已知m=3,n=2,则下列式子是同类项的是().A.m x3y2与n a3b2B.3x m y3与n x2y3C.n x2m-1y4与m x5y n+2D.5a2m b5n与3b2m a5nʌ解析ɔ当m=3,n=2时,选项A中两项为3x3y2与2a3b2,字母不同,不是同类项.选项B 中两项为3x3y3与2x2y3,字母x的指数不同,不是同类项.选项C中两项为2x5y4与3x5y4,符合同类项定义,是同类项.选项D中两项为5a6b10与3b6a10,相同字母的指数不同,不是同类项,故选C.ʌ说明ɔ判断两个单项式是否为同类项,要抓住三个方面:①同类项与项中所含字母及其指数有关,与系数无关;②同类项与项中字母排列的先后顺序无关;③所有常数项都是同类项.另外,同类项中的相同字母可以是一个多项式的整体,例如,2(x+y)3与3(x+y)3也是同类项.练习1下列各组中的两项是同类项的有()个.①3x y与3x y z; ②62与a2; ③2x与3x; ④13与3; ⑤2πa与-3a;⑥3(x-y)2与2(x-y)2.A.1B.2C.3D.4例2一个多项式减去-8x y2-2x2y-2y4得5x2y+11x y2+3y4,求这个多项式.ʌ解析ɔ设这个多项式为A,首先是利用 被减式=差+减式 正确列出计算式,即A=(5x2y+11x y2+3y4)+(-8x y2-2x2y-2y4)=5x2y+11x y2+3y4-8x y2-2x2y-2y4=(5x2y-2x2y)+(11x y2-8x y2)+(3y4-2y4)=3x2y+3x y2+y4.ʌ说明ɔ此题先要把每一个多项式看作一个整体,计算前把每个多项式用括号括起来,再按照去括号法则去掉括号,寻找同类项进行合并.合并同类项时,首先,可在同类项下用 等符号标记不同种类的项,注意要包括该项的符号;其次,只将同类项的系数相加,字母以及字母的指数不变.练习2若两个单项式的和是2x2+x y+3y2,一个加式是x2-x y,求另一个加式.例3已知A=a2+b2-c2,B=-4a2+2b2+3c2,且A+B+C=0.求:(1)多项式C;(2)若a=1,b=-1,c=3,求A+B的值.ʌ解析ɔ(1)因为A+B+C=0,所以C=0-A-B=0-(a2+b2-c2)-(-4a2+2b2+3c2)=0-a2-b2+c2+4a2-2b2-3c2=(-a2+4a2)+(-b2-2b2)+(c2-3c2)=3a2-3b2-2c2;(2)A+B=(a2+b2-c2)+(-4a2+2b2+3c2)=a2+b2-c2-4a2+2b2+3c2=-3a2+3b2+2c2.把a=1,b=-1,c=3代入上式得原式=-3ˑ1+3ˑ(-1)2+2ˑ32=18.ʌ说明ɔ去括号与合并同类项都是整式加减的基础,均为本章的重点,对后面的解方程㊁因式分解㊁分式运算等内容起着重要作用.去括号注意两种情况:①括号前是 + ,把括号和它前面的 + 去掉,括号里各项都不变号.②括号前是 - ,把括号和它前面的 - 去掉,括号里各项都变号.练习3先化简,再求值:3x2-[x2-2㊃(3x-x2)],其中x=-7.2.本章的难点有两方面,一是用字母表示数及数量关系;二是去括号时符号的处理.用字母简明地表示实际问题中的数量关系比用具体数字表示的算式更有一般性;整式中用字母表示数,会使得整式的运算与数的运算具有一致性;用字母表示规律性的式子更有难度,不仅要分析出规律,还要用字母准确表达.去括号最大的难点是符号的处理,确切地说就是 - 问题,牢记当把括号和它前面的 - 去掉后,括号里各项都要变号.例1 小美家的固定电话月租金为15元,每次市内通话费平均为0.3元,每次长途通话费平均为1.6元,若她家半年内打市内电话m 次,打长途电话n 次,则她家应付电话费( )元.A .0.3m +1.6n B .15m n C .15+0.3m +1.6n D .15ˑ6+0.3m +1.6n ʌ解析ɔ 因为半年内打市内电话m 次,每次平均为0.3元,所以半年的市内电话费为0.3m元.因为半年内打长途电话n 次,每次平均为1.6元,所以半年的长途电话费为1.6n 元.而固定电话月租金为15元,半年内的租金为15ˑ6(元),故选D .ʌ说明ɔ 字母可以表示任意的数㊁特定意义的公式㊁符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明地将数量关系表示出来.用字母表示数有助于揭示概念的本质特征,使数量之间的关系更加简明,更具有普遍意义.用字母表示数时,字母与字母相乘,乘号可以省略或用 ㊃ (点)表示;字母和数字相乘,省略乘号,并把数字放到字母前.例如,3ˑb =3㊃b =3b .练习4 上海市某文具厂今年9月产值为m 万元,10月比9月减少了110,11月比10月增加了15%,则11月产值是( ).A .m -110æèçöø÷(m +15%)万元B .1-110æèçöø÷㊃(1+15%)m 万元C .m -110+15%æèçöø÷万元D .1-110+15%æèçöø÷m 万元例2 如图21所示,①,②,③,④ ,是用围棋棋子按照某种规律摆成的一行 广 字,按照这种规律,第5个 广 字中的棋子枚数是,第n 个 广 字中的棋子枚数是.图21ʌ解析ɔ 通过分析图21的前4幅图发现:①的棋子有7枚,②的棋子有9枚,③的棋子有11枚,④的棋子有13枚,规律是依次增加2枚.那么第5个 广 字的棋子即为15枚.①的棋子枚数是在5枚的基础上增加2枚,②的棋子枚数是在5枚的基础上增加4枚,即在5枚的基础上增加2ˑ2(枚),③的棋子枚数是在5枚的基础上增加3ˑ2(枚),以此类推,那么第n 个 广 字中的。