信息隐藏实验报告LSB隐写分析
- 格式:docx
- 大小:29.78 KB
- 文档页数:5
实验三:LSB图像信息隐藏一、实验目的了解信息隐藏中最常用的LSB算法的特点,掌握LSB算法原理,设计并实现一种基于图像的LSB隐藏算法;了解如何通过峰值信噪比来对图像进行客观评价,并计算峰值信噪比值。
二、实验环境(1)Windows 7操作系统;(2)MATLAB R2012b版本软件;(3)BMP格式灰度图像文件。
三、原理简介任何多媒体信息在数字化时都会产生物理随机噪声,而人的感官系统对这些随机噪声并不敏感。
替换技术就是利用这个原理,通过使用秘密信息比特替换随机噪声,从而实现信息隐藏目的。
在BMP灰度图像的位平面中,每个像素值为8比特二进制,表示该点亮度。
图像高位平面对图像感官质量起主要作用,去除图像最低几个位平面并不会造成画面质量的明显下降。
利用这个原理可用秘密信息(或称水印信息)替代载体图像低位平面以实现信息嵌入。
本算法选用最低位平面来嵌入秘密信息。
最低位平面对图像的视觉效果影响最轻微,但很容易受噪声影响和攻击,可采用冗余嵌入的方式来增强稳健性加以解决,即在一个区域(多个像素)中嵌入相同的信息,提取时根据该区域中的所有像素判断。
四、实验步骤1. 隐藏提取及测试算法分为三个部分实现:(1)隐藏算法;(2)提取算法;(3)测试脚本。
1)隐藏算法源代码hide_lis.m如下:function o = hide_lsb(block,data,I)%function o = hide_lsb(block,data,I)%隐藏提取及测试%block:隐藏的最小分块大小%data:秘密信息%I:原始载体si = size(I);lend = length(data);N = floor(si(2)/block(2));%将图像划分为M*N个小块M = min(floor(si(1)/block(1)),ceil(lend/N));o = I;for i = 0 : M-1 %计算每小块隐藏的秘密信息rst = i*block(1) + 1;red = (i+1)*block(1);for j = 0 : N-1 %计算每小块隐藏的秘密信息的序号idx = i*N + j + 1;if idx > lendbreak;end%取每小块隐藏的秘密信息bit = data(idx);%计算每小块水平方向起止位置cst = j*block(2) + 1;ced = (j+1)*block(2);%将每小块最低位平面替换为秘密信息o(rst:red,cst:ced) = bitset(o(rst:red,cst:ced),1,bit);endend2)提取算法源代码dh_lsb.m如下:function out = dh_lsb(block,I)%function out = dh_lsb(block,I)%源代码dh_lsb.m如下:%block:隐藏的最小分块大小%I:携密载体si = size(I);%将图像划分为M*N个小块N = floor(si(2)/block(2));M = floor(si(1)/block(2));out = [];%计算比特1判决阀值:每小块半数以上元素隐藏是比特1时,判决该小块嵌入信息为1thr = ceil((block(1)*block(2) + 1)/2);idx = 0;for i = 0 : M-1%计算每小块垂直方向起止位置rst = i*block(1) + 1;red = (i+1)*block(1);for j = 0 : N-1%计算每小块将要数据的秘密信息的序号idx = i*N + j + 1;%计算每小块水平方向起止位置cst = j*block(2) + 1;ced = (j + 1)*block(2);%提取小块最低位平面,统计1比特个数,判决输出秘密信息 tmp = sum(sum(bitget(I(rst : red,cst : ced),1)));if (tmp >= thr)out(idx) = 1;elseout(idx) = 0;endendend3)测试脚本源代码test.m如下:fid = 1;len = 10;%随机生成要隐藏的秘密信息d = randsrc(1,len,[0 1]);block = [3,3];[fn,pn] = uigetfile({'* .bmp','bmp file(* .bmp)';},'选择载体');s = imread(strcat(pn,fn));ss = size(s);if (length(ss) >= 3)I = rgb2gray(s);elseI = s;endsi = size(I);sN = floor(si(1)/block(1))*floor(si(2)/block(2));tN = length(d);%如果载体图像尺寸不足以隐藏秘密信息,则在垂直方向上复制填充图像if sN < tNmultiple = ceil(tN/sN);tmp = [];for i = 1 : multipletmp = [tmp;I];endI = tmp;end%调用隐藏算法,把携密载体写至硬盘stegoed = hide_lsb(block,d,I);imwrite(stegoed,'hide.bmp','bmp');[fn,pn] = uigetfile({'*.bmp','bmp file(*.bmp)';},'选择隐蔽载体');y = imread(strcat(pn,fn));sy = size(y);if (length(sy) > 3)I = rgb2gray(y);elseI=y;end%调用提取算法,获得秘密信息out = dh_lsb(block,I);%计算误码率len = min(length(d),length(out));rate = sum(abs(out(1:len)-d(1:len)))/len;y = 1 - rate;fprintf(fid,'LSB:len:% d\t error rate:% f\t error num:% d\n',len,rate,len*rate);2. 计算峰值信噪比(1)峰值信噪比定义:2,2,,,,max ()x y x y x y x yx y p PSNR XY p p =-∑(2)峰值信噪比函数。
LSB算法的信息隐藏实验单位:三系一队姓名:马波学号:3222008030LSB信息隐藏实验一、实验目的1.掌握LSB算法原理2.熟悉信息隐藏与提取的流程3.锻炼算法的程序实现能力二、实验原理1.信息隐藏用秘密信息比特替换载体中的最不重要部分,可以达到对信息隐藏的目的。
在数字图像中,每个字节的最低位对图像信息的影响最小,因此将数字图像的最低位用信息比特替换可以实现信息隐藏。
由于载体图像的每个字节只隐藏一个秘密信息比特,所以只有当载体图像的大小是秘密信息大小的8倍以上时才能完整的将秘密信息隐藏。
提取信息位并隐藏的示意图:2.信息提取在隐藏了秘密信息的数字图像中,每个字节的最低位就是秘密信息比特位,只需将这些信息比特提取出来并组合,就可以恢复出原来的秘密信息。
提取信息示意图:三、实验内容A.将秘密信息隐藏在载体的最低位,检验算法的鲁棒性(1)读入秘密信息(此实验中秘密信息为二值图像)(2)把秘密信息的比特位放入载体的最低位(3)给隐藏了秘密信息的图像加入大小为1的噪声加入噪声大小为1时:加入噪声为2时:B.将秘密信息隐藏在载体的最高位,检验算法的鲁棒性(1)读入秘密信息(此实验中秘密信息为二值图像)(2)把秘密信息的比特位隐藏在载体的最高位(3)分别给隐藏了秘密信息的图像加入大小为1和2的噪声C.将秘密信息隐藏在载体的第三位,检验算法的鲁棒性(1)同A中的(1)(2)把秘密信息比特位隐藏在载体的第三位(3)分别给隐藏了秘密信息的图片加入大小为1、2和3的噪声五、实验总结1.当秘密信息隐藏在最低位时,对载体的改变小,载体质量较高。
但鲁棒性较差,有噪声干扰时很容易发生信息丢失从而无法恢复出秘密信息2.当秘密信息隐藏在最高位时,图像的鲁棒性增强,受到较大噪声干扰时仍能恢复出秘密信息,但对图像的改变较大,隐藏的位数越高图像的质量越低。
3.当隐藏的信息位介于最低位和最高位时,选择合适的位置,既可以提高信息隐藏的鲁棒性,又对图像的质量影响不大,所以,进行信息隐藏时可以考虑LSB的改进。
信息隐藏实验二LSB隐写分析姓名:周伟康学号:班级:一:实验要求1、针对自己实现的隐写算法(嵌入、提取),计算隐蔽载体的PSNR值,通过PSNR值来评估隐写对图像质量的影响,并与主观感受做对比。
2、实现一种隐写分析方法,对隐蔽载体进行检测(卡方、RS……)二:实验步骤1、编写随机选点函数,完善顺序和随机两种LSB信息嵌入和提取。
%随机间隔选点函数%[row, col] = randinterval(test, 60, 1983);function [row, col] = randinterval(matrix, count, key)[m, n] = size(matrix);interval1 = floor(m * n / count) + 1;interval2 = interval1 - 2;if interval2 == 0error('载体太小,不能将秘密消息隐藏其内!');endrand('seed', key);a = rand(1, count);%initializerow = zeros([1 count]);col = zeros([1 count]);r = 1; c = 1;row(1,1) = r;col(1,1) = c;for i = 2 : countif a(i) >= 0.5c = c + interval1;elsec = c + interval2;endif c > nr = r + 1;if r > merror('载体太小,不能将秘密消息隐藏其内!');endc = mod(c, n);if c==0c = 1;endendrow(1, i) = r;col(1, i) = c;end选取8*8的矩阵测试2、对比原始图像和隐藏信息后图像,计算隐蔽载体的均方差(MSE)进而计算峰值信噪比(PSNR),评估隐写对图像质量的影响。
学号:姓名:专业年级班级:实验室:组别:实验日期:课程名称保密技术实验实验课时实验项目名称和序号1.LSB图像信息隐藏实验同组者姓名实验目的1. 掌握对图像的基本操作。
2. 能够用 LSB 算法对图像进行信息隐藏3. 能够用 LSB 提取算法提取隐藏进图像的信息4. 能够反映 jpeg 压缩率与误码率之间的关系实验环境Windows+matlab实验内容和原理1.用 MATLAB 函数实现 LSB 信息隐藏和提取2.分析了 LSB 算法的抗攻击能力3.能随机选择嵌入位(考虑安全性因素)实验步骤方法关键代码实验算法 1:LSB 嵌入1.读取一副 256*256 大小的图片,判断是否为 RGB 图像。
若为 RGB 图像,则读取图像的一层信息(如 R 层)。
通过读取图像的尺寸大小来判断是否为RGB图像。
RGB图像是三维多彩图,size有3个参数,最小参数是3,只要判断读取到的图像大小大于2,就确定读入的是RBG图像2.以二进制形式读取要嵌入到图片里的消息。
并读取消息的长度(嵌入消息的长度不能超过图像位数)。
3.产生与消息长度一致的一串随机数(不能相同)。
自定义一个randinterval函数来实现伪随机数的生成产生的伪随机数是代表消息要隐藏的像素位置(行和列的信息)随机数代码:function [row,col]=randinterval(matrix,count,key)%randinterval.m%参数说明%matrix是载体矩阵,即要隐藏信息的图层%cout为要嵌入信息的像素数量%key为自定义秘钥,随机种子[m,n] = size(matrix);interval1 = floor(m * n/(count+eps)) + 1;interval2 = interval1 - 2;if interval2 == 0error('载体太小不能把秘密信息隐藏进去');endrand('seed',key);a = rand(1, count);row = zeros([1 count]);col = zeros([1 count]);r = 1;c = 1;row(1,1) = r;col(1,1) = c;for i =2:countif a(i) >= 0.5c = c + interval1;elsec = c + interval2;endif c > nr = r + 1;if r > merror('载体太小不能把秘密信息隐藏进去');endc = mod(c, n);if c == 0c = 1;endendrow(1, i) = r;col(1, i) = c;end4.按照产生的随机数的序列依次将图片层的最后一位改为消息的信息。
信息隐藏实验十LSB信息隐藏的卡方分析信息隐藏是一种将秘密信息嵌入到载体数据中的技术。
嵌入信息的最广泛应用之一是最低有效位(LSB)信息隐藏。
在LSB信息隐藏中,秘密信息位嵌入到像素的最低有效位中,而保持其他位不受影响。
该技术在数字音频、图像和视频领域得到广泛应用。
卡方分析是一种统计方法,用于衡量统计数据的拟合程度。
在LSB信息隐藏中,卡方分析可以用于分析嵌入数据的随机性。
通过计算嵌入数据和原始数据之间的差异,可以评估嵌入信息与载体数据的一致性。
LSB信息隐藏的实验中,首先需要得到原始的载体数据。
这可以是一幅图像、一段音频或一段视频。
然后,选择一个合适的秘密信息进行嵌入。
秘密信息可以是一串文本、一张图像或一个视频片段。
接下来,将秘密信息的二进制表示按位进行嵌入到载体数据的最低有效位中。
此时,嵌入数据已准备好。
进行卡方分析的下一步是计算频数。
对于每个像素,统计其最低有效位(被嵌入数据所占据的位)出现1和0的频数。
同时,计算原始数据中最低有效位出现1和0的频数。
比较两组频数可以得到嵌入数据和原始数据之间的差异。
卡方分析可以用来评估嵌入数据的随机性。
根据卡方分布表,可以计算卡方值。
通过比较卡方值和临界值,可以判断嵌入数据的随机性是否达到了预期。
如果卡方值小于临界值,则表明嵌入数据的分布与原始数据的分布存在显著差异,嵌入数据不具备较好的随机性。
LSB信息隐藏的卡方分析还可以用于评估嵌入数据的容量。
通过计算嵌入数据和原始数据之间的差异,可以推断嵌入数据的容量。
如果嵌入数据的容量越大,则嵌入数据与原始数据的差异越大。
卡方分析可以帮助评估嵌入数据的最大容量,以便在实际应用中选择合适的嵌入容量。
LSB信息隐藏的卡方分析还可以用于检测嵌入数据的存在。
通过比较卡方值和临界值,可以判断嵌入数据是否存在于载体数据中。
如果卡方值大于临界值,则可以得出嵌入数据的存在性。
这在数字取证和数字水印领域具有重要意义。
LSB信息隐藏的卡方分析是一种有力的工具,用于评估嵌入数据的随机性、容量和存在性。
信息隐藏实验报告一实验名称:图像的位平面,LSB 和MSB一、实验目的图像的位平面,LSB 和MSBLSB(Least Significant Bits):最不重要位(或最低有效位) MSB(Most Significant Bits):最重要位。
二、实验内容⑴用“按位与”运算清image 的第2、3、4、5、6、7位,结果分别保存在图像矩阵data02、 data03、 data04、 data05、 data06、 data07中,并显示所得结果;⑵用“按位与”运算取image 的第2、3、4、5、6、7位,结果分别保存在图像矩阵data12、 data13、 data14、 data15、 data16、 data17中,并显示所得结果;⑶用“按位与”运算清image 的第1-2、1-3、1-4、1-5、1-6、1-7位,结果分别保存在图像矩阵data02、 data03、 data04、 data05、 data06、 data07中,并显示所得结果; ⑷用“按位与”运算取image 的第3-8、4-8、5-8、6-8、7-8位,结果分别保存在图像矩阵data13、 data14、 data15、 data16、 data17中,并显示所得结果;⑸将彩色图像dsc.jpg 读入图像矩阵image ,重做上面的⑴-⑷项要求;⑹取彩色图像矩阵image 的某个分量(R 、G 、B 均可),重做上面的⑴-⑷项要求;三、实验环境matlab7.0四、基本原理(算法思想)时域是对应于变换域而言的,即不对信号做任何频率变换而得到的信号域就是时域。
对于图像载体,其信号空间也就是像素的取值空间。
我们选择了RGB 颜色空间下的像素作为分析对象。
在RGB 颜色空间中,每一个像素都有三个分量,即红(Red)、绿(Green)、蓝(Blue)分量。
五、实验结果与结论(主要的程序代码、运行结果)⑴用“按位与”运算清image 的第2、3、4、5、6、7位,结果分别保存在图像矩阵data02、 data03、 data04、 data05、 data06、 data07中,并显示所得结果;教师签名2007.11实验时间成绩评 定信息隐藏 课程名称同组人姓 名 05软件工程班 级 计算机科学与技术系别⑵用“按位与”运算取image的第2、3、4、5、6、7位,结果分别保存在图像矩阵data12、data13、 data14、 data15、 data16、 data17中,并显示所得结果;⑶用“按位与”运算清image的第1-2、1-3、1-4、1-5、1-6、1-7位,结果分别保存在图像矩阵data02、 data03、 data04、 data05、 data06、 data07中,并显示所得结果;⑷用“按位与”运算取image的第3-8、4-8、5-8、6-8、7-8位,结果分别保存在图像矩阵data13、 data14、 data15、 data16、 data17中,并显示所得结果;⑸将彩色图像dsc.jpg读入图像矩阵image,重做上面的⑴-⑷项要求;代码略清image的第2、3、4、5、6、7位取image的第2、3、4、5、6、7位清image的第1-2、1-3、1-4、1-5、1-6、1-7位⑹取彩色图像矩阵image的某个分量(R、G、B均可),重做上面的⑴-⑷项要求;代码image=imread('dsc.jpg');%将彩色图像读入图像矩阵image A=image(:,:,1);下略清image的第2、3、4、5、6、7位取image的第2、3、4、5、6、7位清image的第1-2、1-3、1-4、1-5、1-6、1-7位六、实验总结通过这次实验使我对图像的位平面有了一定的认识。
本科生课程考试答题本考生姓名__________考生学号_______专业班级________指导老师__________考试科目_________考试日期__年__月__日目录一、实验任务和要求 (2)1.1实验任务 (2)1.2实验要求 (2)二、实验算法LSB原理 (2)三、实验环境和采用的工具 (3)四、具体实现步骤 (3)4.1 LSB算法水印嵌入 (3)4.2 LSB算法水印提取 (4)4.3 LSB算法实验测试 (5)五、源码分析 (5)5.1 LSB算法水印嵌入 (5)5.2 LSB算法水提取 (9)5.3 计算PSNR值 (12)六、实验测试 (13)6.1 LSB水印的嵌入 (13)6.2 水印的提取 (14)6.3 对水印进行鲁棒性测试 (14)6.4 对水印进行有效性测试 (14)6.5 对水印计算PSNR值 (14)6.6 对水印容量进行分析 (15)七、结论 (15)一、实验任务和要求1.1实验任务•信息载体:每个人自己的一张外景照片;•水印信息:每个人将学号、姓名按上下两列写在白纸上,然后手机拍摄,转化为黑白图片,作为水印信息;•信息隐藏方法:LSB算法(空域或频域)。
1.2实验要求实验可采用matlab6.5以上版本(C++、Java等),程序分为嵌入与检测两部分,最好有友好的操作方式;程序代码需要注释,编码简洁可靠明了,易检查。
实验测试要求有:•需对信息处理进行鲁棒性测试;•对水印嵌入的有效性进行测试;•计算嵌入前后的PSNR值;•对水印容量进行分析。
二、实验算法LSB原理LSB是L.F.Turner和R.G.van Schyndel等人提出的一种典型的空间域信息隐藏算法。
LSB 最低有效位法(Least Significant Bit;LSB)是运用人类视觉系统无法觉察细微变化之掩蔽效果,将秘密信息隐藏在图像像素的最低位,具有计算速度快且容易秘密信息隐藏在图像像素的最低位,具有计算速度快且容易实现有点。
信息隐藏实验报告实验题目【一】实现空域图像水印方法中的LSB算法:原始图像选取大小为512*512的elain图像或者goldhill图像,选择一个LSB水印算法以及适当的水印序列;利用选定的水印嵌入算法将水印信息嵌入到原始图像中。
在嵌入水印之后的图像中提取水印,是否可以判定图像中含有水印,同时计算含水印图像的峰值信噪比。
将含有水印的图像缩小为256*256之后,再放大为512*512,这时再提取水印,是否可以判定图像中含有水印。
实验结果缩略图:lsb.fig实验程序% LSB 算法:clear;A=imread('elain.bmp');B=A;message='www`s homework';m=length(message);n=size(A);k=1;for i=1:n(1)for j=1:n(2)if k<=m %如果消息输入完成则为0h=bitget(double(message(k)),8:-1:1);elseh=[0,0,0,0,0,0,0,0];endc=bitget(A(i,j),8:-1:1);if mod(j,8) == 0p=8;elsep=mod(j,8);endv=0;for q=1:7v=xor(v,c(q));endv=xor(v, h(p) );B(i,j)=bitset(A(i,j),1,v);if mod(j,8) == 0k=k+1;endendend% 提取信息out=char;tmp=0 ;t=1;for i=1:n(1)for j=1:n(2)c=bitget(B(i,j),8:-1:1);v=0;for q=1:8v=xor(v,c(q));endif mod(j,8)==0p=1;elsep=9-mod(j,8);endtmp=bitset(tmp,p,v);if mod(j,8)==0out(t)=char(tmp);t=t+1;tmp=0;endendend%显示图像figure;subplot(1,2,1);image(A);axis('square');title('原始图像');subplot(1,2,2);imshow(B);axis('square');title('加入水印后图像');out实验题目【二】实现基于扩频的图像水印算法:原始图像选取大小为512*512的elain图像或者goldhill图像,水印图像选取为以XXX印或者XX之印(XXX为自己的名字)为图案的、适当大小的二值黑白图像,再选取一个基于扩频的图像水印算法;利用选定的水印嵌入算法将水印信息嵌入到原始图像中。
《信息隐藏技术》实验报告实验3:LSB信息隐藏攻击实验杭州电子科技大学网络空间安全学院一、实验目的1.主要内容对实验1中信息隐藏后的图像进行隐写分析。
2.基本要求要求学生能够将没有嵌入信息的图像和隐藏信息的图像区分开来。
二、实验内容及实现过程步骤1.可视攻击针对LSB 算法,通过可视攻击进行视觉比较,观察含隐藏信息与不含隐藏信息图像的不同。
原图嵌入LSB 水印2.概率分布分析方法(χ2分析)统计LSB 信息隐藏后,图像的像素灰度值的直方图,结合χ2分布密度函数计算载体含有秘密信息的概率值。
提取最低有效位 提取最低有效位部分分块概率为1,不确定含有秘密信息大部分分块的概率为1,可以确定含有秘密信息部分分块概率为1,不确定含有秘密信息大部分分块的概率为1,可以确定含有秘密信息三、实验结果分析计算隐秘分析算法判断结果的错误率:FP (false positive):没有嵌入隐藏信息的图像错误地判断为嵌入了隐藏信息FN (false negative):嵌入隐藏信息的图像错误地判断为没有嵌入隐藏信息判断标准:超过半数的分块概率为1,判别为加密少于半数的分块概率为1,判别为原始图像FP:4/9FN:0/9误判原因分析,图像像素值较低四、实验小结(包括小组分工,组员各自的贡献点;通过实验得出的结论;对隐写分析加深的理解)设计算法:邢征宇(卡方分析)刘煜程(可视攻击)结果分析:单志晗(FP)梁经纬(FN)总结:1. 能够真正理解两种方法的思想和每一个处理步骤的作用,才能真正写出matlab 程序并进行结果分析;2. 8 位的像素值从0 开始到255,但是数组的下标从1 开始到256,所以像素值的2i 对应数组下标2i-1,像素值的2i+1 对应数组下标2i,像素值只存在2i->2i+1 的变换,对应于只存在2i-1->2i 的下标值变换,在编写代码时需注意此类细节,否则实验结果将大打折扣;3. 当实验结果与预期的有偏差,不仅仅是检查理解实验有偏差、程序是否正确,而且需要改变不同的实现方法、不同的参数以及利用不同的图像来进行测试和比较,这样才可能更快判断出问题出在哪里,并找到解决办法,而且有的时候不一定是代码有误的问题。
信息隐藏实验报告L S B
隐写分析
Company number:【0089WT-8898YT-W8CCB-BUUT-202108】
《信息隐藏技术》实验报告
实验3:LSB信息隐藏攻击实验杭州电子科技大学
网络空间安全学院
一、实验目的
1.主要内容
对实验1中信息隐藏后的图像进行隐写分析。
2.基本要求
要求学生能够将没有嵌入信息的图像和隐藏信息的图像区分开来。
二、实验内容及实现过程步骤
1.可视攻击
针对LSB 算法,通过可视攻击进行视觉比较,观察含隐藏信息与不含隐藏信息图像的不同。
原图
嵌入LSB 水印
2.概率分布分析方法(χ2分析)
统计LSB 信息隐藏后,图像的像素灰度值的直方图,结合χ2分布密度函数计算载体含有秘密信息的概率值。
部分分块概率为1,不确定含有秘密信息
大部分分块的概率为1,可以确定含有秘密信息 部分分块概率为1,不确定含有秘密信息 大部分分块的概率为1,可以确定含有秘密信息
三、实验结果分析
计算隐秘分析算法判断结果的错误率:
FP (false positive):没有嵌入隐藏信息的图像错误地判断为嵌入了隐藏信息
FN (false negative):嵌入隐藏信息的图像错误地判断为没有嵌入隐藏信息
判断标准:超过半数的分块概率为1,判别为加密
少于半数的分块概率为1,判别为原始图像
FP :4/9
FN :0/9
误判原因分析,图像像素值较低
四、实验小结
(包括小组分工,组员各自的贡献点;通过实验得出的结论;对隐写分析加深的理解) 设计算法:邢征宇(卡方分析)
刘煜程(可视攻击) 结果分析:单志晗(FP )
梁经纬(FN ) 总结: 提取最低有效提取最低有效
1. 能够真正理解两种方法的思想和每一个处理步骤的作用,才能真正写出 matlab 程序并进行结果分析;
2. 8 位的像素值从 0 开始到 255,但是数组的下标从 1 开始到 256,所以像素值的 2i 对应数组下标 2i-1,像素值的 2i+1 对应数组下标 2i,像素值只存在 2i->2i+1 的变换,对应于只存在 2i-1->2i 的下标值变换,在编写代码时需注意此类细节,否则实验结果将大打折扣;
3. 当实验结果与预期的有偏差,不仅仅是检查理解实验有偏差、程序是否正确,而且需要改变不同的实现方法、不同的参数以及利用不同的图像来进行测试和比较,这样才可能更快判断出问题出在哪里,并找到解决办法,而且有的时候不一定是代码有误的问题。
五、代码附录
可视攻击代码略
卡方分析代码:
clear;
im1=imread('');
N=4; %分为4X4块;
K=128; %128X128像素;
BLOCK = zeros(K,K);%存放当前块
r=0;
a=1;
hx=zeros(1,128);
pr=zeros(1,16);
pc=zeros(1,16);
for p=1:N %从1到4循环
for q=1:N %从1到4循环
x=(p-1)*K+1;
y=(q-1)*K+1;
BLOCK=im1(x:x+K-1,y:y+K-1);%取相应元素保存到BLOCK中
[h,x]=imhist(BLOCK); %取当前分块的灰度直方图
for i=1:128
hx(i)=(h(2*i-1)+h(2*i))/2;
if hx(i)~=0
r=r+(h(2*i-1)-hx(i))^2 / hx(i);
end
end
pr(a)=r;
pc(a)=1-chi2pdf(r,127);
a=a+1;
r=0;
end
end
subplot(2,1,1)
plot(pr);
title('r=sum(h2i-h2i*)^2/h2i*');
subplot(2,1,2)
plot(pc);
title('p=1-chi2pdf(r,127)');。