人工神经网络原理与仿真实例第2版 教学 高隽 第6章 随机神经网络及模拟退火算法PPT课件
- 格式:ppt
- 大小:901.50 KB
- 文档页数:81
人工神经网络(ANN)又称神经网络,是在现代神经科学研究成果的基础上,对生物神经系统的结构和功能进行数学抽象、简化和模仿而逐步发展起来的一种新型信息处理和计算系统。
由于人工神经网络具有自学习、高容错、高度非线性描述能力等优点,现已广泛应用于经济、机器人和自动控制、军事、医疗、化学等领域[l ~ 3],并取得了许多成果。
本文简要介绍人工神经网络的原理和特点,论述人工神经网络在高分子科学与工程领域的应用。
橡胶配方是决定橡胶制品性能的关键因素,由于材料配方与制品性能之间存在很复杂的非线性关系,多数情况下无法建立完整精确的理论模型,只能借助于回归方法得到经验公式。
传统的回归方法存在以下局限性:(1)使用不同的回9j方法可获得不同的经验公式,导致经验公式的繁多和不一致;(2)当配方项目及性能指标项目较多时,采用回归公式无法完全再现实验数据;(3)当实验进一步完善,实验数据增多的时候.其他人员再进行回归时,如果无法找到原来的回归方法、程序和实验数据,原来的回归公式将不能被利用,造成一定的浪费。
随着计箅机的发展而出现的人工神经网络是人工智能方法.它不像回归方法那样,需预先给定基本函数,而是以实验数据为基础.经过有限次的迭代计算而获得的一个反映实验数据内在联系的数学模型,具有极强的非线性处理、自组织调整、自适应学习及容错抗噪能力,特别适用于研究像材料配方与制品性能之间关系的复杂非线性系统特性【¨】。
因此,人们开始将人工神经网络应用于橡胶配方设计”J。
随着橡胶制品在各领域应用的拓展,橡胶配方设计变得越来越重要。
人们进行橡胶配方设计主要有3个目的:提高制品的性能;改善加工工艺;降低生产成本。
传统的橡胶配方设计方法有全因素设计、正交试验设计n_3]、均匀设计[4‘60等,而这些配方设计试验数据的处理方法无外乎方差分析和回归分析口]。
由于材料的配方和性能之问存在非常复杂的非线性关系,回归分析只适合于单目标优化数据处理的模型,对于不同的性能,需要建立不同的模型,因此将其应用于配方设计有一定的局限性。
人工神经网络原理及仿真实例第二版课程设计简介人工神经网络(Artificial Neural Networks,ANN),亦称为神经网络(Neural Networks,NN),是一种模仿人脑神经系统结构和工作原理,进行信息处理的算法。
它是机器学习中一个重要的分支,利用统计学原理对模型进行学习,以便通过不断优化自己的参数,并在遇到新数据时自动适应。
人工神经网络已经十分普及,并且在人脸识别、语音识别、语音合成等方面得到了广泛的应用。
本课程设计主要介绍人工神经网络的原理、模型和优化算法,并以 Python 语言作为实现工具,介绍神经网络的实例模拟。
课程内容第一章:人工神经网络的基础知识首先,本章将介绍人工神经网络的基本概念和结构,帮助初学者了解神经网络的基本概念。
本章同时介绍如何使用 Python 实现简单的神经网络。
第二章:多层感知器其次,我们介绍神经网络的常见模型——多层感知器。
介绍多层感知器的基本结构和实现原理,并以手写数字识别为例,展示如何使用 Python 实现多层感知器模型。
第三章:卷积神经网络卷积神经网络(Convolutional Neural Network,CNN)是神经网络中的一种,专门处理具有层次性和局部性质的数据,例如图像、语音等。
本章将介绍卷积神经网络的基本原理和应用,并以手写数字识别为例,展示如何使用 Python 实现卷积神经网络的模型。
第四章:循环神经网络循环神经网络(Recurrent Neural Network,RNN)是神经网络中的一种,专门处理带有时序关系的数据,例如音频、文本等。
在本章中,我们将介绍循环神经网络的基本原理和应用,并以为例,展示如何使用 Python 实现循环神经网络模型。
第五章:深度学习优化算法神经网络被广泛应用的一个重要原因是其深度学习优化算法。
本章将介绍深度学习优化算法的基本概念和常见算法,例如梯度下降法、反向传播算法、Adam 算法等。
人工神经网络理论.设计及应用第二版课程设计一、前言人工神经网络是一种模拟生物神经网络结构和功能的计算模型,本质上是一个数学模型。
它是建立在现代信息科学、数学、电子工程等多学科交叉的基础上的,是一种群体智能的集成体现。
近年来,人工神经网络技术在模式识别、数据挖掘、机器学习等领域备受关注,被誉为第三次信息技术革命。
本课程设计将以人工神经网络理论、设计及应用为主线,结合数学基础、机器学习理论等多学科知识,从理论与实践两个方面介绍人工神经网络的基本原理、模型设计、参数调整及应用实例等内容。
本课程旨在使学生通过理论课程和课程设计学习到人工神经网络的基本原理和应用,提高学生的工程实践能力和应用创新能力。
二、课程设计方案2.1 课程设计目标1.掌握人工神经网络基本理论知识,包括神经元结构、神经网络结构、神经网络训练算法等;2.熟悉常见的神经网络模型,如感知器、反向传播神经网络、自适应神经网络等;3.掌握神经网络在分类、回归等领域的应用,能够完成简单的神经网络设计、实现和应用;4.培养工程实践能力,提高应用创新能力。
2.2 课程设计内容1.神经元模型及激活函数的选择2.前馈神经网络模型的设计3.反向传播神经网络模型的设计4.常见的神经网络模型介绍5.神经网络的训练算法6.神经网络在分类、回归、时间序列预测等领域的应用7.神经网络在数据挖掘、机器学习等领域的应用2.3 课程设计形式1.理论课程讲解:介绍人工神经网络的基本理论知识、常见神经网络模型、神经网络的训练算法等;2.课程设计实验:设计实现人工神经网络的分类、回归、时间序列预测等应用;3.课程报告撰写:撰写课程设计报告,内容包括课程设计目的、实验内容、实验结果及分析、所遇问题及解决方法等。
2.4 评分方式1.课程设计报告:60分;2.课程设计实验:30分;3.课堂表现:10分。
三、教学安排课程内容学时数讲解方式神经元模型及激活函数的选择 2 讲解前馈神经网络模型的设计 4 讲解+实践反向传播神经网络模型的设计 6 讲解+实践常见的神经网络模型介绍 2 讲解神经网络的训练算法 4 讲解+实践神经网络在分类、回归、时间序列预测等领域的应用6 讲解+实践神经网络在数据挖掘、机器学习等领域的应用 6 讲解+实践四、课程设计考核指标1.设计和实现神经网络的分类、回归、时间序列预测等应用;2.分析神经网络设计中所遇到的问题及解决方法;3.撰写清晰、规范的课程设计报告;4.具备一定的工程实践能力和应用创新能力。
人工神经网络大脑是由约100亿个高度互联的神经元组成的,这些神经元构成一个协同处理的复杂网络结构,即神经网络,成为认知的物质与生理基础。
人工神经网络是模拟大脑构建的计算模型,由大量模拟神经元的处理单元——人工神经元构成,形成一个大规模的非线性自适应系统,拥有学习、记忆、计算以及智能处理能力,可以在一定程度上模拟人脑的信息储存、检索和处理能力。
6.1 感知机6.1.1 感知机模型1957年康奈尔大学的Rosenblatt提出了感知机的概念。
感知机模拟生物神经元,接收一个或者多个输入,处理后输出一个结果。
图6-1是感知机的示意图。
图6-1 感知机示意图感知机可以有一到多个输入,每个输入带有一个权重w,用来表示该输入的i和b构成了感知机的参数集合。
感知机重要程度,每个感知机有一个偏置b,wi计算输入的线性组合(或者叫作预激活)并将其交予激活函数f(a)得到输出y。
激活函数用于模拟生物神经元的激活与非激活状态,通常采用阶梯函数、sigmoid函数和分段线性函数及其变体。
图6-2给出了几种激活函数的定义和图形。
图6-2 几种激活函数6.1.2 感知机学习策略依据训练样本的数据确定wi 和b(不区分的时候统一记为θi)值的过程就是感知机的学习过程,其学习算法基于误差驱动。
首先,将未经学习的θi设置为0或者很小的随机值,然后对训练集中的每个样本进行分类预测,并根据预测结果更新参数值。
参数更新依据式(6-1)进行。
其中是样本j的实际类别;yj (t)是样本j的本次预测类别;xji是样本j的第i个特征;η是控制学习速率的超参数,叫作学习率。
显然,如果预测正确-yj(t)=0,则参数不需要更新,否则更新参数,这种更新规则类似于梯度下降算法。
学习遍历训练集中的每个样本称为一个训练周期(Epoch)。
如果在一个训练周期内对所有样本都分类正确,则模型达到收敛状态,停止训练;否则,进入下一周期,直至模型收敛,或者达到最大训练周期数。