人工神经网络理论基础.共61页文档
- 格式:ppt
- 大小:5.71 MB
- 文档页数:61
第九章人工神经网络基础人工神经网络(Artificial Neural Network, ANN)是在模拟人脑神经系统的基础上实现人工智能的途径,因此认识和理解人脑神经系统的结构和功能是实现人工神经网络的基础。
而人脑现有研究成果表明人脑是由大量生物神经元经过广泛互连而形成的,基于此,人们首先模拟生物神经元形成人工神经元,进而将人工神经元连接在一起形成人工神经网络。
因此这一研究途径也常被人工智能研究人员称为“连接主义”(connectionism)。
又因为人工神经网络开始于对人脑结构的模拟,试图从结构上的模拟达到功能上的模拟,这与首先关注人类智能的功能性,进而通过算法来实现的符号式人工智能正好相反,为了区分这两种相反的途径,我们将符号式人工智能称为“自上而下的实现方式”,而称人工神经网络称为“自下而上的实现方式”。
人工神经网络中存在两个基本问题。
第一个问题是人工神经网络的结构问题,即如何模拟人脑中的生物神经元以及生物神经元之间的互连方式的问题。
确定了人工神经元模型和人工神经元互连方式,就确定好了网络结构。
第二个问题是在所确定的结构上如何实现功能的问题,这一般是,甚至可以说必须是,通过对人工神经网络的学习来实现,因此主要是人工神经网络的学习问题。
具体地说,是如何利用学习手段从训练数据中自动确定神经网络中神经元之间的连接权值的问题。
这是人工神经网络中的核心问题,其智能程度更多的反映在学习算法上,人工神经网络的发展也主要体现在学习算法的进步上。
当然,学习算法与网络结构是紧密联系在一起的,网络结构在很大程度上影响着学习算法的确定。
本章首先阐述人脑神经系统,然后说明人工神经元模型,进而介绍人工神经网络的基本结构类型和学习方式。
9.1 人脑神经系统人工神经网络是在神经细胞水平上对人脑的简化和模拟,其核心是人工神经元。
人工神经元的形态来源于神经生理学中对生物神经元的研究。
因此,在叙述人工神经元之前,首先介绍目前人们对生物神经元的构成及其工作机理的认识。
人工神经网络1、基本特征(1)结构特征 并行处理(时间)、分布式存储(空间)与容错性(2)能力特征 自适应性(自学习和自组织)2、基本功能(1)联想记忆 自联想和异联想(2)非线性映射(3)分类与识别(4)优化计算(5)知识处理3、神经元建模:(1)每个神经元都是一个多输入单输出的信息处理单元;(2)神经元输入分兴奋性输入和抑制性输入两种类型;(3)神经元具有空间整合性和阈值特性;(4)神经元输入与输出间有固定的时滞,主要取决于突触延搁;(5)忽略时间整合作用和不应期;(6)神经元本身是非时变的,即其突触时延和突触强度均为常数。
4、人工神经元模型令)(t x i 表示t 时刻神经元j 接收的来自神经元i 的输入信息,)(t o j 表示t 时刻神经元j 的输出信息,则神经元j 的状态可表达为:})]({[)(1∑=--=ni j ij i ij j T t x w f t o τ其中,ij τ为输入输出间的突触时延,j T 为神经元j 的阈值,ij w 为神经元i 到j 的突触连接系数或称权重值,()∙f 为神经元转移函数。
取1=ij τ,则有:})]({[)1(1∑=-=+ni j i ij j T t x w f t o输入总和常称为神经元在t 时刻的净输入,用下式表示:∑=='ni i ij j t x w t t ne 1)()()(t t ne j '体现了神经元j 的空间整合性,而未考虑时间整合,当0)(>-'j j T t t ne 时,神经元才能被激活。
上式还可表示为权重向量j W 和输入向量X 的点积:X W t ne T j j ='其中j W 和X 均为列向量,定义为:T nj j j j w w w W ),,,(21 =T n x x x X ),,,(21 =如果令10-=x ,j j T w =0,则有j j w x T 00=-,因此净输入与阈值之差可表达为:∑====-'ni T j i ij j j j X W x w net T t ne 0综合以上各式,神经元模型可简化为:)()(X W f net f o T j j j ==5、神经元的转移函数(1)阈值型转移函数(M-P 模型) 处理离散信号单极性阈值型转移函数 单位阶跃函数双极性阈值型转移函数 sgn(x)(2)非线性转移函数(单极性/双极性Sigmoid 函数曲线)实数域R 到[0,1]闭集的非减性连续函数,代表了状态连续型神经元模型。
人工神经网络的原理及应用1. 介绍人工神经网络(Artificial Neural Network,ANN)是一种受到生物神经系统启发的计算模型,通过模拟神经元之间的相互连接和信息传递,实现了一种基于权重的非线性数据处理方法。
近年来,随着计算能力的提高和数据量的增加,人工神经网络在各个领域的应用越来越广泛,取得了很多重大的突破。
2. 原理人工神经网络由多个神经元组成,每个神经元通过输入和输出连接在一起,形成一个网络结构。
神经元之间的连接权重决定了信息传递的强度和方向,使得神经网络能够学习和记忆输入数据的特征。
2.1 神经元模型神经元是人工神经网络的基本组成单位,模拟了生物神经元的功能。
每个神经元接收来自其他神经元的输入,并将这些输入进行加权求和,然后通过一个激活函数进行非线性变换,最后输出给下一个神经元。
2.2 网络结构人工神经网络的网络结构通常包括输入层、隐藏层和输出层。
输入层接收外部输入的数据,隐藏层负责进行中间特征的抽取和数据处理,输出层将最终的结果输出给用户或其他系统。
不同的网络结构可以应用于不同的问题,如前馈神经网络、循环神经网络和卷积神经网络等。
2.3 权重更新神经网络的学习过程是通过不断调整连接权重来实现的。
常用的方法是通过反向传播算法进行训练,即根据网络的输出和真实值之间的差距来更新权重。
反向传播算法使用梯度下降的思想,寻找使得损失函数最小化的权重值。
3. 应用人工神经网络在各个领域都有着广泛的应用,可以解决许多复杂的问题。
3.1 图像识别卷积神经网络是图像识别领域最常用的神经网络模型之一。
它可以通过学习大量的图像数据,自动提取图像中的特征,实现图像分类、目标检测和人脸识别等任务。
3.2 自然语言处理循环神经网络在自然语言处理领域有着广泛的应用。
通过对大量的文本数据进行学习,循环神经网络可以实现语言模型的建立、机器翻译和情感分析等任务。
3.3 金融预测人工神经网络在金融领域的应用也很广泛。
人工神经网络人工神经网络(Artificial Neural Networks, ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。
(引自《环球科学》2007年第一期《神经语言:老鼠胡须下的秘密》)概念由大量处理单元互联组成的非线性、自适应信息处理系统。
它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。
人工神经网络具有四个基本特征:(1)非线性非线性关系是自然界的普遍特性。
大脑的智慧就是一种非线性现象。
人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。
具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。
(2)非局限性一个神经网络通常由多个神经元广泛连接而成。
一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。
通过单元之间的大量连接模拟大脑的非局限性。
联想记忆是非局限性的典型例子。
(3)非常定性人工神经网络具有自适应、自组织、自学习能力。
神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。
经常采用迭代过程描写动力系统的演化过程。
(4)非凸性一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。
例如能量函数,它的极值相应于系统比较稳定的状态。
非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。
人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。