矩阵的运算
- 格式:ppt
- 大小:4.68 MB
- 文档页数:31
§2 矩阵的运算一、矩阵的相等、加、减、数乘、乘法、转置与共轭(A +B )=A +B (kA )=kA (k 为任意复数) (AB )τ=BA (反序定律)(A 1A 2...A s )=τττ12...A A A s(A k )=(A )k (k 为整数)二、 矩阵的初等变换与初等矩阵设I =⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡10101,称为单位矩阵.用数k(0)乘矩阵的第i 列(或行)初等变换具有性质:1° 任何矩阵(a ij )都可经过有限次初等变换化为对角矩阵(a ij )⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡0001012° 初等变换不改变矩阵的秩.三、 矩阵的微积分假设矩阵A 的元素a ij 都是参数t 的函数,那末1° 矩阵A 的导数定义为⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡==t a t a ta t a t a tat a t a t a A tA mn m m n n d d ...d d d d ............d d ...d d d d d d ...d d d d d d 212222111211同样可定义矩阵的高阶导数. 2° 矩阵A 的积分定义为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰t a t a ta t at at a t a t a ta t A mn m m n nd ...d d ............d ...d d d ...d d d 212222111211同样可定义矩阵的多重积分.四、 特殊矩阵[零矩阵与零因子] 元素a ij 全为零的矩阵称为零矩阵,记作O =(0)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0...00............0 (00)0 (00)零矩阵具有性质:O +A =A +O =A OA =AO =OA +(-A )=O ,-A 称为A 的负矩阵若A ,B 为非零矩阵,即A ≠O ,B ≠O ,而AB =O ,则称矩阵A 为矩阵B 的左零因子,矩阵B 为矩阵A 的右零因子,例如A =⎥⎦⎤⎢⎣⎡--1111,B =⎥⎦⎤⎢⎣⎡--1111 AB =⎥⎦⎤⎢⎣⎡--1111⎥⎦⎤⎢⎣⎡--1111=⎥⎦⎤⎢⎣⎡0000=O[对角矩阵] 主对角线以外的元素都是零(d ij =0,i ≠j )的方阵称为对角矩阵,记作D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0...021=diag(d 1,d 2,...,d n )=[ d 1 d 2 ... d n ] 对角矩阵具有性质: 1° 左乘BDB =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b .....................212222111211=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n n n n b d b d b d b d b d b d b d b d b d ............... (2)12222221211121111 =)(ij i b d 2° 右乘BBD =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b (2)12112111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n n n n b d bd b d b d b d bd b d b d b d (2211222)22111122111 3° 两个对角矩阵的和、差、积仍为对角矩阵.[数量矩阵] d i =d (i =1,2,...,n )的对角矩阵称为数量矩阵,记作D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡d d d00 =[d d... d ]显然DB =BD =dB .[单位矩阵] d =1的数量矩阵称为单位矩阵,记作 I =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10101 =「1 1 ... 1」显然IB =BI =B .[对称矩阵] 满足条件a ij =a ji (i ,j =1,2,...,n )的方阵A =(a ij )称为对称矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--423261315 是对称矩阵.对称矩阵具有性质: 若A ,B 都是对称矩阵,则A A=τ,且A -1(使A -1=A -1A =I 的矩阵.详见本节,六),A m (m 为正整数),A +B 仍是对称矩阵.[实对称矩阵]实对称矩阵按其特征值(本节,七)可分为正定矩阵,半正定矩阵、负定矩阵、半负定矩阵和不定矩阵,它们的定义与充分必要条件如下[反对称矩阵] 满足条件⎩⎨⎧-=jiij a a 0 )()(j i j i ≠= (i ,j =1,2,...,n )的方阵A =(a ij )称为反对称矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---023201310 是反对称矩阵.反对称矩阵具有性质:1° 若A ,B 都是反对称矩阵,则A τ=-A ,且A -1, A +B 仍是反对称矩阵,A m 为⎩⎨⎧反对称矩阵对称矩阵)()(为奇数为偶数m m2° 任意方阵A 都可分解为一个对称矩阵B =(b ij )与一个反对称矩阵C =(c ij )之和,即A =B +C只需取b ij =21 (a ij +a ji ),c ij =21(a ij -a ji )(i ,j =1,2,...n )[埃尔米特矩阵] 满足条件A τ=A的方阵A 称为埃尔米特矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++-4232231212215i i i i i i 是埃尔米特矩阵.埃尔米特矩阵具有性质:若A ,B 都是埃尔米特矩阵,则1-A ,A +B 仍是埃尔米特矩阵.若A 又是实方阵(即a ij 全为实数),则A 就是对称矩阵.[反埃尔米特矩阵] 满足条件A τ=A -的方阵A 称为反埃尔米特矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+-05250212210i i i i i i 是反埃尔米特矩阵.反埃尔米特矩阵具有性质: 若A ,B 都是反埃尔米特矩阵,则1-A , A +B 仍是反埃尔米特矩阵.若A 又是实方阵,则A 就是反对称矩阵.[正交矩阵] 满足条件A τ=1-A的方阵A 称为正交矩阵.例如 A =⎥⎦⎤⎢⎣⎡-θθθθcos sin sin cos 是正交矩阵.正交矩阵具有性质:若A =(a ij )和B 都是正交矩阵,则 1° 1-A , AB 仍是正交矩阵. 2° det A =±1.3° ⎩⎨⎧=∑=011n k jk ik a a )()(j i j i ≠=⎩⎨⎧=∑=011n k kj ki a a )()(j i j i ≠=[酉(U )矩阵] 满足条件1-=A A τ的方阵A 称为酉(U )矩阵.例如:A =⎥⎦⎤⎢⎣⎡00i i 是酉矩阵.酉矩阵具有性质:若A =(a ij )和B 都是酉矩阵,则 1° A -1,AB 仍是酉矩阵. 2° det A ∙det A =1.3° 若A 又是实方阵,则A 是正交矩阵.[带型矩阵] 满足条件a ij =0 )(m j i >-的方阵A =(a ij )称为带型矩阵.2m +1称为带宽.一般形式为A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--++++nn mn n n m n n n n m a a a a a a a,,1,11,11,11100[三角矩阵] 满足条件a ij =0 (i >j )的方阵A =(a ij )称为上三角形矩阵,一般形式为A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n a a a a a a 022211211 满足条件()j i b ij <=0的方阵()ij b B =称为下三角形矩阵,一般形式为B =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n b b b b b b 212221110 三角形矩阵具有性质:1° 任何秩为r 的方阵C 的前r 个顺序的主子式不为0时,C 可表为一个上三角形矩阵A与一个下三角形矩阵B 的乘积,即C =AB2° 上(或下)三角形矩阵的和、差、积及数乘仍是上(或下)三角形矩阵.[分块矩阵] 用水平和垂直虚线将矩阵A 中的元素的阵列分成小块(称为子阵),A 就成为分块矩阵.例如A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a =⎥⎦⎤⎢⎣⎡22211211B B B B 式中B 11=⎥⎦⎤⎢⎣⎡22211211a a a a,B 12=⎥⎦⎤⎢⎣⎡2313a a B 21=[]3231a a , B 22=[]33a 它们都是A 的子阵. 进行分块矩阵的运算时,可将子阵当作通常矩阵的元素看待.这些运算指加、减、乘法、数乘、转置与共轭等.[分块对角矩阵] 主对角线上的子阵都是方阵,其余子阵都是零矩阵的分块矩阵称为分块对角矩阵.一般形式为A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡kkB O B O O O B 2211 分块对角矩阵A 的逆矩阵A -1和A 的行列式可以用下面简单公式求出A -1=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---1122111KK B OB O Bdet A =det B 11·det B 22·...·det B kk注意,一般分块矩阵的行列式不能用把子阵当作通常矩阵的元素的方法来计算,例如把四阶方阵化为分块矩阵A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡44434241343332312423222114131211...........................a a a a a a a a a a a a a a a a =⎥⎦⎤⎢⎣⎡22211211B B B B 一般det A =det B 11·det B 22-det B 21·det B 12不成立(参见§1,二,3中的四阶行列式).五、 相似变换[相似变换] 如果有一非奇异矩阵X (即det X ≠0)使得B =1-X AX那末称矩阵A 与矩阵B 相似,也称A 经相似变换化为B ,记作A ~B .它具有下列性质: 1° A ~A ,AA .2° 若A ~B ,则BA .3° 若A ~C ,B ~C ,则A ~B .4° 1-X (A 1+ A 2+...+ A m )X =1-X A 1X + 1-X A 2X + ...+ 1-X A m X 5° 1-X (A 1 A 2 ...A m )X =1-X A 1 X ·1-X A 2 X ·... ·1-X A m X 6° 1-X A m X =( 1-X AX )m7° 若)(A f 为矩阵A 的多项式,则1-X )(A f X =)(1AX X f -8° 若A ~B ,则A 与B 的秩相同,即rank A =rank B . A 与B 的行列式相同,即det A =det B .A 与B 的迹(定义见本节,七)相同,即tr A =tr B . A 与B 具有相同的特征多项式和特征值(本节,七).[正交变换] 若Q 为正交矩阵(即1-Q =Q τ),则称Q τAQ 为矩阵A 的正交变换,其性质与相似变换类似.特别还有性质: 对称矩阵A 经正交变换后仍是对称矩阵.[旋转变换] 取正交矩阵U 为)(p)(qU pq =(u ij )=)()(11cos sin 11sin cos 11q p ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡θθ-θθ 即u pp =u qq =θcosu pq =-u qp =θsin u ii =1 (i ≠p,q )u ij =0 (i,j ≠p,q;i ≠j ) 这时称B =pq pq AU U τ为A 的旋转变换,称为旋转角,如果A 是对称矩阵,那末B 的元素b ij 与A 的元素a ij 有 如下对应关系:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=θ+θ=θ-θ=θ-θ+θθ-==θ+θθ+θ=θ+θθ-θ=ijijqj pj qj qj pj pj pq qq pp qp pqqq pq pp qq qq pq pp pp a b a a b a a b a a a b b a a a b a a a b cos sin sin cos )sin (cos cos sin )(cos cos sin 2sin sin cos sin 2cos 222222)其他元素(),(),(q p j q p j ≠≠同时有性质:∑=nj i ija1,2=∑=nj i ij b 1,2∑=ni iia 12∑=≤ni ii b 12 若取旋转角pqpp qq a a a 2cot arc 21-=θ则旋转变换使0==qp pq b b六、 逆矩阵[逆矩阵及其性质] 若方阵A ,B 满足等式AB=BA=I (I 为单位矩阵)则称A 为B 的逆矩阵,或称B 为A 的逆矩阵,记作A=1-B 或B=1-A这时A,B 都称为可逆矩阵(或非奇异矩阵,或满秩矩阵).否则称为不可逆矩阵(或奇异矩阵,或降秩矩阵).可逆矩阵具有性质:1° 若A,B 为可逆矩阵,则AB 仍为可逆矩阵,且111)(---=A B AB (反序定律)一般地,若A 1 ,A 2 ,…,A s 为可逆矩阵,则=-121)(s A A A 11121---A A A s2° 矩阵A 可逆的充分必要条件是:det A ≠0.3° 若矩阵A 可逆,则det 1-A ≠0 且 det 1-A =(det 1)-A11)(--A =A , 111)(---=A a aA (a ≠0)1)(-τA =(1-A )τ,()()11--=A A4° 矩阵A 可逆的充分必要条件是:矩阵A 的特征值全不为零.[伴随矩阵与逆矩阵表达式] 设A ij 为矩阵A =(a ij )的第i 行第j 列元素a ij 的代数余子式,则矩阵A *=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (2122212)12111称为矩阵A 的伴随矩阵.若A 为非奇异矩阵,即det A ≠0,则A 的逆矩阵表达式为AA A det *1=-注意,A *的第i 行第j 列元素是A 的第j 行第i 列元素的代数余子式.[对角矩阵的逆矩阵] 对角矩阵D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0...021, d i ≠0 (i =1,2,...,n )的逆矩阵为D -1=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---112110...0n d d d 显然对角矩阵的逆矩阵仍是对角矩阵.[三角形矩阵的逆矩阵] 三角形矩阵L =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n l l l l l l ...............0...0...21222111, 00=≠ij ii l l )(),...,2,1(i j n i >= 的逆矩阵为1-L =P =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n p p p p pp ...............0...0 (02)1222111 式中iiii l p 1=(i =1,2,...,n )∑-=-=11i jk kj ikiiij p ll p⎪⎪⎭⎫ ⎝⎛+=-=n j i n j ,...,11,...,2,1 0=ij p)(i j >显然非奇异下(上)三角形矩阵的逆矩阵仍是下(上)三角形矩阵.[正定矩阵的逆矩阵] 1° 高斯—若当法正定矩阵A =(a ij )的逆A -1=(b ij )可由下列递推公式求出:)1(11)(1-=k k nnaa, )1(11)1(1)(1,----=k k jk j n aa a, )1(11)1(1)(,1---=k k i k ni a a a)1(11)1(1)1(1)1()(1,1-------=k k jk i k ij k j i aa a a a )2,...,1,,(-=n n j i ij n ij a a =)((k=1,2,...,n )最后得到)(n ijij a b = 式中n 为该正定矩阵A 的阶. 2° 三角阵法 其步骤如下:(1) 把正定矩阵A =(a ij )表示为A =ΛD Λτ式中D 为实的非奇异对角矩阵D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021为实的非奇异下三角矩阵.Λ=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡λλλλ-1111,2121n n n n是的转置矩阵.d i (i =1,2,...,n )与λij (i =2,...,n;j=1,…,n )由下面递推公式算出:0=ij λ)(i j > 1=λii ),...,2,1(n i =∑-=-=11j k jk ik ij ij x a x λ)1,...,2,1;,...,2(-==i j n ijij ij d x =λ)1,...,2,1;,...,2(-==i j n i∑-=-=11i k ik ik ii i x a d λ),...,2,1(n i =(2)求出D 的逆矩阵1-D =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡n d d d 11121(3)求出Λ的逆矩阵1-Λ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1112121 n n ρρρ 式中⎪⎩⎪⎨⎧=-=∑-=11ii i jk kjik ij ρρλρ ),...,2,1(),...,2,1;1,...,2,1(n i n j j i n j =++=-=(4)求出A 的逆矩阵1-A =(ΛD 1)-τΛ=(1-Λ)τ1-D 1-Λ =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n βββββββββ212222112111式中∑==nik kkjki ij d ρρβ ),,2,1;,,2,1(n i i j ==注意,这种方法的好处是避免了求平方根的运算.[分块矩阵的逆矩阵] 设非奇异矩阵A 的分块矩阵为A =⎥⎦⎤⎢⎣⎡22211211B B B B 式中B 11,B 22为方子阵,那末A 的逆矩阵A -1=⎥⎦⎤⎢⎣⎡22211211C C C C由下面公式求出111211211111111212221221211112112111212222)(-------=-=-=-=B B C B C B B C C C B B C B B B B C[初等变换法求逆矩阵] 设1-A =1212222111211...........................-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b 212222111211=B 对矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100010001212222111211 nn n n n n a a a a a a a a a 作一系列行的初等变换,使虚线左边一块矩阵化为单位矩阵,而右边一块单位矩阵就变为A 的逆矩阵B =A -1,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b212222111211100010001[逆矩阵的近似求法] 设10-A 为矩阵A 的初始近似逆矩阵,可由下列迭代公式求出更精确的逆矩阵:)2(1111---+-=n n n AA I A A (n=0,1,2,...)式中I 为与A 同阶的单位矩阵.[计算机求逆程序的检验矩阵] 用下列n 阶非奇异矩阵及其逆矩阵,来检验大矩阵求逆的计算程序.A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡++-+------+-++222210221211210002112100002112122100021222n n n n n n1-A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------n n n n n n n n n n n n n13211432341223111221七、 特征值与特征矢量[特征值与特征矢量] 对n 阶方阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211 和n 维非零列矢量α=(a 1,a 2,...,a n )τ如果有一个数λ,使得A α=λα则称λ为矩阵A 的特征值(特征根),α为矩阵A 的特征值λ所对应的特征矢量. 矩阵A 的所有特征值中绝对值最大的一个称为A 的第一特征值.[特征矩阵特征多项式特征方程] n 阶方阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211 的特征矩阵定义为=-I A λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---λλλnn n n n n a a a a a aa a a212222111211 式中I 为n 阶单位矩阵.行列式|A -λI |称为矩阵A 的特征多项式,记作()=|-A λI |方程()=0称为矩阵A 的特征方程.[矩阵的迹与谱] n 阶方阵A 的主对角线上各元素之和称为A 的迹,记作∑==ni ii a A 1tr特征方程()=0的n 个根1,2,...,n 就是矩阵A 的n 个特征值.集合{1,2,...,n }称为矩阵A 的谱,记作ch A .线性齐次方程组0)(=-αλI A i的非零解便是矩阵A 的特征值i 所对应的特征矢量.[特征值与特征矢量的性质]1° 设1,2,...,n 为n 阶方阵A 的n 个特征值,则A k 的特征值为k n k k λλλ,,,21 (k 为正整数). A 的逆矩阵A -1的特征值为11211,,,---n λλλ .A 的伴随矩阵A *的特征值为A A A n 11211,,,---λλλ .2° n 阶方阵A 的n 个特征值之和等于A 的迹,矩阵A 的n 个特征值之积等于A 的行列式,即1+2+...+n =a 11+a 22+...+a nn12...n =A由此可以推出矩阵可逆的另一充分必要条件是:A 的所有特征值都不为零. 3° 若i 是特征方程的k 重根,则对应于i 的线性无关的特征矢量的个数不大于k .当i 为单根时,对应于i 的线性无关特征矢量只有一个.4° 矩阵A 的不同特征值所对应的特征矢量线性无关.若n 阶方阵A 对应于特征值1,2,...,s 的线性无关的特征矢量分别有k 1,k 2,...,k s个,则这∑=s i i k 1个特征矢量线性无关,且n k si i ≤∑=1.5° 实对称矩阵的特征值都是实数,并且有 n 个线性无关(而且是正交)的特征矢量. 6° 矩阵的特征值在相似变换下保持不变,特别,A τ与A 具有相同的特征值.[求第一特征值的迭代法] 在实际问题中,往往不要求算出矩阵A 的全部特征值,只需算出第一特征值,用迭代法计算如下:⎩⎨⎧=λ=α++b αα)0()1()1(1)(k k k A )2,1,0( =k 假定当ε<-+)1()(m m αα时,可以认为(k ) ≈(m +1),那末迭代到m k =即可.这时)1(1+m λ为矩阵A 的第一特征值的近似值,(m +1)为所对应的特征矢量.[求实对称矩阵的雅可比法] 设n 阶实对称矩阵A =(a ij )的特征值是1,2,...,n ,则必存在一正交矩阵Q ,使得Q τAQ =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡λλλn 0021为对角矩阵.正交矩阵Q 可用一系列旋转矩阵的积来逼近:Q =∏pq U式中)()(11cos sin 11sin cos 11)()()(q p u U q p ij pq⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-==θθθθ取pqpp qq a a a 2cot arc 21-=θ因为在这种旋转变换下,消去了矩阵中位于第p 行第q 列(p ≠q )交点上的元素(见本节,五),而矩阵所有元素的平方和保持不变,而且对角线上的元素的平方和增大,因而非对角线元素的平方和随之减小,因此,当旋转次数足够大时,可使非对角线元素的绝对值足够小.对于预先给定的精度>0,如果|a ij |<(i ≠j ),则可认为a ij ≈0.于是得到求矩阵A 的特征值与特征矢量的具体迭代方法.1° 按以下递推公式求特征值1,2,...,n :⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧+=θ=⎪⎪⎩⎪⎪⎨⎧<+->-+=θ=⎪⎩⎪⎨⎧<ςς++ς-≥ςς++ς=θ=-=θ=ς--2221212)()()(1sin )0(11)0(112tan )0()1()0()1(tan 22cot k k k k k k k k k kk k k k k k k k pq k pp k qq k t t s t t t t t t v t a a a⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===≠≠=≠-+=≠+-=+=-=+++++),2,1(),,2,1,(),,,()()()()()1()1()()()()1()()()()1()()()1()()()1( k n j i a a q p j q p i a a q j a a s a a p j a a s a a a t a a a t a a ij ij kijk ijk qj k k pj k k qj k qj k pj k k qj k k pj k pj k pqk k qq k qq k pqk k pp k pp υυ假定当)()(j i a m ij ≠<ε时,可以认为0)(≈m ij a ,则迭代到1-=m k 即可.而取)(m iia 作为i的近似值:),,2,1(n i a miii =≈λ2° 求特征矢量 从1°有m m m m U U AU U U U 1111-- τττ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ0021记P m =U 1…U m-1U m则AP m = P m ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ0021所以P m 为特征矢量矩阵.P m 由下列递推公式算出:)1,,2,1(),,2,1,(),,2,1(),()()()1()()1()()()()1()()()()1(-=⎪⎪⎪⎩⎪⎪⎪⎨⎧===≠=-+=+-=+++m k n j i u u n i q p j u u u u s u u u u s u u ijij k ijk ij k iq k k ip k k iq k iq k ip k k iq k k ip k ip υυ最后得到 )()(m ij m u P =即 τ),,,()()(2)(1)(m ni m i m i m i u u u u =为对应于特征值i 的特征矢量的近似值.[求对称三对角矩阵特征值的方法]1° 相似变换法 设A 为n 阶对称三对角矩阵:A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--n n n d e e d e e d e e d 113222111(1)经过相似变换1211211)(U U U I t A U U U A n k k n k --+-=τττ式中I 为单位矩阵,t k 为适当选定的常数,U i 为雅可比旋转矩阵:)1()(1111)1()(+⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-=+i i c s s c U i i ii i iiτi U 为U i 的转置矩阵.又A 1=A ,A k +1与k k t A -I 相似,且A m 与∑-=-111m j j I t A 相似.因此,若A m 的特征值为),,2,1()(n i m i =λ,则A 1的特征值i (i=1,2,...,n )为∑-=+=11)(m j j m ii t λλ(i =1,2,…,n )假定当),,2,1()(n i e m i =<ε时,可认为0)(≈m i e ,那末可适当选择s i ,c i ,使得当m 充分大时,A m 在该精度下化为对角线矩阵;其特征值),,2,1()()(n i d m i m i =≈λ.)(m i d (i=1,2,...,n )可由下列递推公式算出:()())1,,2,1;1,2,,2,1(,)]([)(//g ])()[(0,,)(1)(1)1(1)(1)(1)1(1)(1)(1)1(1)()()(1)()()(1)1(1)(1)()()()()(1)()()(1)(1)()(1)(1(k)1)()(1(k)1212)(2)(1)(1)()(-=--=⎪⎩⎪⎨⎧===-++=--=====+==-=+++++++++++++++++++++m k n n i q s e q c d r s e t d s g c s h d g s t d c q r e s r q c q c h e c c q rs c t d q k k k k k k k i k i k i k k i k i k i k i k i k i k i k i k i k k i k i k i k i k i k i k i k i k i k i k i i k i k i i k ik i k i k nk n k k n k nt k 的选择对收敛速度影响较大,取t k 为二阶矩阵⎥⎦⎤⎢⎣⎡)(2)(1)(1)(1k k k k d e e d 的接近于)(1k d 的那个特征值,即t k =⎪⎩⎪⎨⎧≥ββ++β-<ββ+-β-)0()1/()0()1/(2)(1)(12)(1)(1k k k k e d e d式中 )(1)(1)(22k k k e d d -=β 2° 二分法 设A 为n 阶对称三对角矩阵(如(1)式),对任意,设序列q 1()=d 1-q i ()=),,2()()(121n i q e d i i i =----λλ中q i ()<0的个数为N ()(在这些关系式中,对于某些i ,如果q i -1()=0,则只需用适当小的数代替即可),则N ()等于矩阵A 的小于的特征值的个数.假定矩阵A 的第k 个特征值k (1≤2≤… ≤k ≤…≤n )在区间[u ,υ]中,令21υ+=u r ,当N (r 1)≥k 时,则k ∈[u , r 1];当N (r 1)<k 时,则k ∈[ r 1,v ];…依此类推,m步之后,k 包含在宽度为mu2-υ的区间中.m 充分大时,便可得到所求的特征值.八、 矩阵多项式与最小多项式[矩阵多项式] 设i a (i=1,2,...,n )为某一数域(实数域或复数域)中的数,A 为这个数域上的n 阶方阵,则表示式f (A )=a 0I+a 1A+...+a n A n称为矩阵A 的多项式,式中I 为n 阶单位矩阵.如果矩阵A 使得f (A )=O那末称A为多项式f(λ)=a0λ+ a1λ+ ...+a nλn的根.[哈密顿-凯莱定理] 任一方阵都是它的特征多项式的根.[最小多项式及其性质] 以矩阵A为根的非零多项式f(λ)中,存在首项系数为1次数最低的多项式(λ),它就称为矩阵A的最小多项式.最小多项式具有性质:1°任一方阵仅有一个最小多项式;2°任一以A为根的多项式f(λ)都可被A的最小多项式(λ)所整除.特别,任一方阵的最小多项式可整除其特征多项式;3°方阵A的特征多项式的根都是A的最小多项式的根:4°相似矩阵具有相同的特征多项式和最小多项式.。
矩阵的运算知识点总结一、矩阵的定义在开始讨论矩阵的运算知识点之前,首先需要了解矩阵的定义。
矩阵是由数个数按矩形排列组成的数组。
一般地,我们定义一个m×n矩阵A为一个m行n列的数组,其中每个元素aij(i行j列的元素)都是一个实数。
数学上通常用大写字母A、B、C、...表示矩阵。
例如,一个3×2矩阵可以表示为:A = [a11 a12a21 a22a31 a32]其中,a11、a12、a21、a22、a31、a32是矩阵的元素。
二、矩阵的基本运算1. 矩阵的加法当两个矩阵具有相同的行数和列数时,它们可以相加。
矩阵相加是将对应位置的元素相加得到新的矩阵。
例如,对于矩阵A和矩阵B相加,结果矩阵C的第i行第j列元素为:cij = aij + bij。
2. 矩阵的减法矩阵的减法定义与加法类似,对应位置的元素相减得到新的矩阵。
例如,对于矩阵A和矩阵B相减,结果矩阵C的第i行第j列元素为:cij = aij - bij。
3. 矩阵的数量乘法矩阵与一个实数相乘,是将矩阵的每个元素都乘以该实数。
例如,对于矩阵A和实数k相乘,结果矩阵B的元素为:bij = k * aij。
4. 矩阵的转置矩阵的转置是将矩阵的行列互换得到新的矩阵。
例如,对于矩阵A的转置矩阵AT,有AT 的第i行第j列元素为A的第j行第i列元素。
5. 矩阵的乘法矩阵的乘法是矩阵运算中最重要的部分。
两个矩阵的乘法只有在满足第一个矩阵的列数等于第二个矩阵的行数时才能进行。
如果A是一个m×p的矩阵,B是一个p×n的矩阵,它们的乘积为一个m×n的矩阵C。
矩阵的乘法运算过程中,结果矩阵C的第i行第j列元素为:cij = a(i,1)b(1,j) + a(i,2)b(2,j) + ... + a(i,p)b(p,j)。
以上就是矩阵的基本运算,矩阵运算的内容很广泛,包括了基本运算,特殊矩阵运算和矩阵运算的性质定理等。
矩阵运算的基本方法矩阵是线性代数中重要的概念之一,被广泛应用于科学、工程、计算机等领域。
矩阵的运算是矩阵在各种应用中的基础,下面将阐述矩阵的基本运算方法。
一、矩阵的定义矩阵是一个由m行n列元素组成的数表,常用大写字母加方括号表示:A=[a_ij]_(m×n),(i=1,2,...,m;j=1,2,...,n)其中a_ij是第i行第j列的元素,称为矩阵A的(i,j)元素。
二、矩阵的基本运算1. 矩阵加法设有两个m×n的矩阵A=[a_ij]和B=[b_ij],则它们的和C=A+B=[c_ij]也是一个m×n的矩阵,其中:c_ij=a_ij+b_ij(i=1,2,...,m;j=1,2,...,n)两个矩阵相加时,要求它们的行数和列数相同。
2. 矩阵数乘设有一个m×n的矩阵A=[a_ij]和一个常数k,则它们的积kA=[ka_ij]也是一个m×n的矩阵,其中:ka_ij=k×a_ij(i=1,2,...,m;j=1,2,...,n)3. 矩阵乘法设有一个m×n的矩阵A=[a_ij]和一个n×p的矩阵B=[b_ij],则它们的积C=A×B=[c_ij]是一个m×p的矩阵,其中:c_ij=∑(k=1)(n)a_ik×b_kj(i=1,2,...,m;j=1,2,...,p)两个矩阵相乘时,要求前一个矩阵的列数等于后一个矩阵的行数,才能进行乘法运算。
4. 矩阵转置设有一个m×n的矩阵A=[a_ij],则它的转置矩阵AT=[a_ji]是一个n×m的矩阵,其中AT的(i,j)元素是A的(j,i)元素。
三、矩阵运算的性质1. 矩阵加法和数乘具有交换律和结合律。
2. 矩阵乘法不满足交换律,但满足结合律。
3. 对于任意矩阵A和B,下列运算都是成立的:a. (A+B)T=AT+BTb. (kA)T=kATc. (AB)T=BTAT四、应用举例1. 矩阵求逆矩阵求逆是线性代数中的重要问题之一,可以用于解线性方程组等应用中。
矩阵运算公式大全一、矩阵基本概念和性质1.矩阵的定义:一个m×n的矩阵A是由m行n列的数排成的一个矩形阵列,其中每个数称为矩阵的一个元素。
2. 矩阵元素的表示:A=[a_ij]_{m×n},其中a_ij表示矩阵A的第i行第j列的元素。
3. 矩阵的加法和减法:给定两个相同阶的矩阵A=[a_ij]_{m×n}和B=[b_ij]_{m×n},则它们的和A+B=[a_ij+b_ij]_{m×n}和差A-B=[a_ij-b_ij]_{m×n}定义为对应元素相加或相减得到的结果。
4. 矩阵的数乘:给定一个矩阵A=[a_ij]_{m×n}和一个实数k,则kA=[ka_ij]_{m×n}定义为矩阵A的每个元素乘以实数k得到的结果。
5. 矩阵的乘法:给定一个m×n的矩阵A和一个n×p的矩阵B,它们的乘积AB=[c_ij]_{m×p}定义为矩阵A的第i行与矩阵B的第j列的对应元素乘积之和。
二、矩阵的转置和逆1. 矩阵的转置:给定一个m×n的矩阵A=[a_ij]_{m×n},它的转置记作A^T,其中A^T=[a_ji]_{n×m},即将矩阵A的行变为列,列变为行。
2.矩阵的逆:给定一个n×n的矩阵A,如果存在一个n×n的矩阵B,使得AB=BA=I,其中I是n阶单位矩阵,则称矩阵A是可逆的,矩阵B称为矩阵A的逆矩阵,记作A^{-1}。
三、矩阵的特殊类型1.零矩阵:所有元素都为0的矩阵,记作0。
2.单位矩阵:对角线上的元素都为1,其余元素都为0的矩阵,记作I。
3.对角矩阵:非对角线上的元素都为0的矩阵。
4.上三角矩阵:下三角元素都为0的矩阵。
5.下三角矩阵:上三角元素都为0的矩阵。
6. 对称矩阵:对于任意元素a_ij,有a_ij=a_ji的矩阵,记作A^T=A。
7. 反对称矩阵:对于任意元素a_ij,有a_ij=-a_ji的矩阵,记作A^T=-A。
矩阵的运算的所有公式矩阵是数学中一个重要的概念,研究矩阵的运算公式对于理解线性代数和计算机图形学等领域都至关重要。
以下是矩阵的运算公式的详细介绍:1.矩阵的加法:对于两个相同大小的矩阵A和B,它们的加法定义为:C=A+B,其中C的元素等于A和B对应元素的和。
2.矩阵的减法:对于两个相同大小的矩阵A和B,它们的减法定义为:C=A-B,其中C的元素等于A和B对应元素的差。
3.矩阵的数乘:对于一个矩阵A和一个标量k,它们的数乘定义为:B=k*A,其中B的元素等于A的对应元素乘以k。
4.矩阵的乘法:对于两个矩阵A和B,它们的乘法定义为:C=A*B,其中C的元素等于A的行向量与B的列向量的内积。
5.矩阵的转置:对于一个矩阵A,它的转置定义为:B=A^T,其中B的行等于A的列,B的列等于A的行,且B的元素和A的对应元素相同。
6.矩阵的逆:对于一个可逆矩阵A,它的逆定义为:A^{-1},使得A*A^{-1}=I,其中I是单位矩阵。
7.矩阵的行列式:对于一个方阵A,它的行列式定义为:,A,是A的元素的代数余子式之和。
8.矩阵的迹:对于一个方阵A,它的迹定义为:tr(A),是A的主对角线上元素之和。
9.矩阵的转置乘法:对于两个矩阵A和B,它们的转置乘法定义为:C=A^T*B,其中C的元素等于A的列向量与B的列向量的内积。
10.矩阵的伴随矩阵:对于一个方阵A,它的伴随矩阵定义为:adj(A),是A的代数余子式构成的矩阵的转置。
11.矩阵的秩:对于一个矩阵A,它的秩定义为:rank(A),是A的线性无关的行或列的最大数量。
12.矩阵的特征值和特征向量:对于一个方阵A,它的特征值是满足方程det(A - λI) = 0的λ值,特征向量是对应于特征值的非零向量。
13.矩阵的奇异值分解(SVD):对于一个矩阵A,它的奇异值分解定义为:A=U*Σ*V^T,其中U和V 是正交矩阵,Σ是一个对角线上元素非负的矩阵。
14.矩阵的广义逆矩阵:对于一个矩阵A,它的广义逆矩阵定义为:A^+,使得A*A^+*A=A,其中A*A^+和A^+*A均为投影矩阵。
矩阵的运算公式总结矩阵是线性代数中的重要概念,它在各个领域的数学和科学中被广泛应用。
矩阵之间的运算是矩阵代数的基础,它们包括矩阵的加法、减法、乘法等操作。
本文将总结矩阵的运算公式,以期提供一个全面、生动、有指导意义的参考。
第一部分是矩阵的加法和减法。
两个相同尺寸的矩阵可以进行加法和减法运算。
具体来说,需要分别对应位置上的元素相加或相减。
例如,对于两个3x3的矩阵A和B,它们的加法运算公式为:A +B = [a11+b11, a12+b12, a13+b13; a21+b21, a22+b22,a23+b23; a31+b31, a32+b32, a33+b33]同样,减法运算则是对应位置上的元素做差。
即:A -B = [a11-b11, a12-b12, a13-b13; a21-b21, a22-b22,a23-b23; a31-b31, a32-b32, a33-b33]第二部分是矩阵的数乘。
数乘是将矩阵的每个元素与一个数相乘。
具体来说,对于一个m x n的矩阵A和一个常数k,数乘运算的公式为:kA = [ka11, ka12, ka13; ka21, ka22, ka23; ka31, ka32,ka33]其中,ka11表示第一行第一列的元素乘以k。
第三部分是矩阵的乘法。
矩阵乘法是指将两个矩阵相乘并得到一个新的矩阵。
具体来说,如果矩阵A是一个m x n的矩阵,矩阵B是一个n x p的矩阵,那么它们的乘法运算公式为:C = AB其中,C是一个m x p的矩阵,其元素cij可以通过以下公式计算得到:cij = a1i * b1j + a2i * b2j + ... + ani * bnj计算cij的过程是将A的第i行与B的第j列进行对应元素相乘,然后将它们的乘积相加。
需要注意的是,矩阵乘法不满足交换律,即AB不一定等于BA。
在进行矩阵乘法时,需要确保两个矩阵的维度满足乘法运算的要求。
综上所述,矩阵的运算包括加法、减法、数乘和乘法四种基本操作。
矩阵的运算第三节矩阵的基本运算§ 3.1加和减§ 3.2矩阵乘法§ 3.2.1矩阵的普通乘法§ 3.2.2 矩阵的Kronecker乘法§ 3.3矩阵除法§ 3.4矩阵乘方§ 3.5矩阵的超越函数§ 3.6数组运算§ 3.6.1数组的加和减§ 3.6.2数组的乘和除§ 3.6.3数组乘方§ 3.7矩阵函数§ 3.7.1三角分解§ 3.7.2正交变换§ 3.7.3奇异值分解§ 3.7.4特征值分解§ 3.7.5 秩§ 3.1加和减如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差•如果矩阵A和B的维数不匹配,Matlab 会给出相应的错误提示信息•如:A= B=1 2 3 1 4 74 5 6 2 5 87 8 0 3 6 0C =A+B返回: C =2 6 106 10 1410 14 0如果运算对象是个标量(即1X 1矩阵),可和其它矩阵进行加减运算.例如:x= -1 y=x-1= -20 -12 1 「書二§ 3.2矩阵乘法Matlab中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker乘法,以下分别介绍.mo § 3.2.1矩阵的普通乘法矩阵乘法用“ * ”符号表示,当A矩阵列数与B 矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同.如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B ,结果为1 2 5 6 1 5 2 7 1 6 2 8 19 22C= 3 4x7 8 = 3 5 4 7 3 6 4 8 = 43 50 即Matlab 返C =19 2243 50如果A 或B 是标量,则A*B 返回标量A (或 B )乘上矩阵B (或A )的每一个元素所得的矩 阵. 「二口 \§ 322矩阵的Kronecker 乘法对n X m 阶矩阵A 和p X q 阶矩阵B , A 和B 的Kronecher 乘法运算可定义为:a 〔[B a^B .・・ a ^m Ba21B a 22B... a 2m BCABan1B an2B... a nm B由上面的式子可以看出,Kronecker 乘积 A B 表示矩阵A 的所有元素与B 之间的乘积组 合而成的较大的矩阵,B A 则完全类似.A B 和B A 均为叩X mq 矩阵,但一般情况下 ABBA.和普通矩阵的乘法不同,Kronecker 乘法并不要求两个被乘矩阵满足任何维数匹配 方面的要求.Kronecker 乘法的 Matlab 命令为C=kron (A,B ),例如给定两个矩阵A 和B :1 2 1 3 2积C :A=[12;34];B=[1 3 2; 24 6]; C=kro n(A,B)C =13 2 2 6 424 6 4 8 123 9 64 12 86 1218816242 4 6A 和B 的 Kronecker 乘A= B=则由以下命令可以求出作为比较,可以计算 B 和 A 的Kronecker 乘积D,可以看出C、D是不同的:A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; D=kro n(B,A)D =1 2 3 6 2 43 4 9 12 6 82 4 4 8 6 126 8 12 16 18 24§ 3.3矩阵除法在Matlab中有两种矩阵除法符号:"\"即左除和“/”即右除•如果A矩阵是非奇异方阵,贝V A\B 是A的逆矩阵乘B,即inv(A)*B ;而B/A是B乘A的逆矩阵,即B*inv(A) •具体计算时可不用逆矩阵而直接计算.通常:x=A\B就是A*x=B的解;x=B/A就是x*A=B的解.当B与A矩阵行数相等可进行左除•如果 A 是方阵,用高斯消元法分解因数.解方程:A*x(:, j)=B(:, j),式中的(:,j)表示B矩阵的第j列,返回的结果x 具有与B矩阵相同的阶数,如果 A 是奇异矩阵将给出警告信息.如果A矩阵不是方阵,可由以列为基准的Householder正交分解法分解,这种分解法可以解决在最小二乘法中的欠定方程或超定方程,结果是m x n的x矩阵.m是A矩阵的列数,n是B矩阵的列数.每个矩阵的列向量最多有k个非零元素,k 是A的有效秩.右除B/A可由B/A=(A'\B')'左除来实现•二^§ 3.4矩阵乘方A A P意思是A的P次方.如果A是一个方阵,P是一个大于1的整数,则A A P表示A的P次幂,即A自乘P次•如果P不是整数,计算涉及到特征值和特征向量的问题,如已经求得:[V,D]=eig(A),则:A A P=V*D.A P/V (注:这里的八表示数组乘方,或点乘方,参见后面的有关介绍)如果B是方阵,a是标量,aAB就是一个按特征值与特征向量的升幂排列的B次方程§ 3.5矩阵的超越函数在Matlab中解释exp(A)和sqrt(A)时曾涉及到级数运算,此运算定义在A的单个元素上.Matlab可以计算矩阵的超越函数,如矩阵指数、矩阵对数等. 一个超越函数可以作为矩阵函数来解释,例如将“ m ”加在函数名的后边而成expm(A)和sqrtm(A),当Matlab运行时,有下列三种函数定义:expm logm sqrtm 矩阵指数矩阵对数矩阵开方阵.如果a和B都是矩阵,则「以凹、aAB是错误所列各项可以加在多种m文件中或使用funm •请见应用库中sqrtm.m , logm.m, f unm.m 文件和命令手册.§ 3.6数组运算数组运算由线性代数的矩阵运算符“ * ”、“/”、”、“八”前加一点来表示,即为“.* ”、“./”、”、“八”・注意没有“ .+ ”、“.-”运算・§ 3.6.1数组的加和减对于数组的加和减运算与矩阵运算相同,所以“+ ”、“ - ”既可被矩阵接受又可被数组接§ 3.6.2数组的乘和除数组的乘用符号.*表示,如果A与B矩阵具有相同阶数,则A.*B表示A和B单个元素之间的对应相乘•例如x=[1 2 3]; y=[ 4 5 6];计算z=x.*y结果z=4 10 18数组的左除()与数组的右除(./),由读者自行举例加以体会.§ 3.6.3数组乘方数组乘方用符号八表示.例如:键入:x=[ 1 2 3]y=[ 4 5 6]贝V z=x.A y=[1A4 2八5 3A6]=[1 32 729]⑴如指数是个标量,例如x.A2 , x同上,则:z=x.A2=[1A2 22 3八2]=[ 1 4 9](2)如底是标量,例如2 .A[x y] , x、y同上,则:z=2 .A[x y]=[2A1 2A2 2A3 2八4 2八5 2八6]=[2 4 816 32 64]从此例可以看出Matlab算法的微妙特性,虽然看上去与其它乘方没什么不同,但在2和“・” 之间的空格很重要,如果不这样做,解释程序会把“・”看成是2的小数点.Matlab看到符号“ A”时,就会当做矩阵的幂来运算,这种情况就会出错,因为指数矩阵不是方阵. 二二§ 3.7矩阵函数Matlab的数学能力大部分是从它的矩阵函数派生出来的,其中一部分装入Matlab本身处理中,它从外部的Matlab建立的M文件库中得到,还有一些由个别的用户为其自己的特殊的用途加进去的.其它功能函数在求助程序或命令手册中都可找到.手册中备有为Matlab提供数学基础的LINPACK和EISPACK软件包,提供了下面四种情况的分解函数或变换函数:(1)三角分解;(2)正交变换;(3)特征值变换;(4)奇异值分解.§ 3.7.1三角分解最基本的分解为“ LU ”分解,矩阵分解为两个基本三角矩阵形成的方阵,三角矩阵有上三角矩阵和下三角矩阵•计算算法用高斯变量消去法.从lu函数中可以得到分解出的上三角与下三角矩阵,函数inv得到矩阵的逆矩阵,det得到矩阵的行列式•解线性方程组的结果由方阵的“ ”和“/”矩阵除法来得到.例如:A=[ 1 2 34 5 67 8 0]LU分解,用Matlab的多重赋值语句[L,U]=lu(A) 得出0.1429 1.0000 00.5714 0.5000 1.00001.0000 0 07.0000 8.0000 00 0.8571 3.00000 0 4.5000注:L是下三角矩阵的置换,U是上三角矩阵的正交变换,分解作如下运算,检测计算结果只需计算L*U即可.求逆由下式给出:x=i nv(A)x =从LU分解得到的行列式的值是精确的,d=det(U)*det(L)的值可由下式给出:d=det(A)d =27直接由三角分解计算行列式:d=det(L)*det(U) d =27.0000为什么两种d的显示格式不一样呢?当Matlab做det(A)运算时,所有A的元素都是整数,所以结果为整数.但是用LU分解计算d时,L、U的元素是实数,所以Matlab产生的d也是实数.例如:线性联立方程取b=[ 135]解Ax=b方程,用Matlab矩阵除得到x=A\b结果x=0.3333 0.3333 0.0000由于A=L*U ,所以x 也可以有以下两个式子 计算:y=L\b ,x=U\y .得到相同的x 值,中间值 y 为:y = 5.0000 0.2857 0.0000Matlab 中与此相关的函数还有 rcond 、chol 和rref .其基本算法与LU 分解密切相关.chol 函数对正定矩阵进行Cholesky 分解,产生一个 上三角矩阵,以使R'*R=X .rref 用具有部分主 元的高斯一约当消去法产生矩阵 A 的化简梯形 形式.虽然计算量很少,但它是很有趣的理论线 性代数.为了教学的要求,也包括在 Matlab 中.C J ZED§ 3.7.2正交变换“QR ”分解用于矩阵的正交一三角分解.它 将矩阵分解为实正交矩阵或复酉矩阵与上三角 矩阵的积,对方阵和长方阵都很有用. 例如A=[ 4 7 10是一个降秩矩阵,中间列是其它二列的平均,1 5 8 112 36 9我们对它进行QR分解:QR]=qr(A)Q =R =-12.8841 -14.5916 -16.29920 -1.0413 -2.08260 0 0.00000 0 0可以验证Q*R就是原来的A矩阵.由R的下三角都给出0,并且R(3,3)=0.0000,说明矩阵R 与原来矩阵A 都不是满秩的.下面尝试利用QR分解来求超定和降秩的线性方程组的解.例如:b=[ 1357]讨论线性方程组Ax=b,我们可以知道方程组是超定的,采用最小二乘法的最好结果是计算x=A\b . 结果为:Warning: Rank deficient, rank = 2 tol=1.4594e-014x =0.5000 00.1667我们得到了缺秩的警告.用QR分解法计算此方程组分二个步骤:y=Q'*b x=R\y求出的y值为y 二—-9.1586-0.34710.00000.0000x的结果为Warning: Rank deficient, rank = 2 tol=1.4594e-014x =0.50000.1667用A*x来验证计算结果,我们会发现在允许的误差范围内结果等于b •这告诉我们虽然联立方程Ax=b是超定和降秩的,但两种求解方法的结果是一致的•显然x向量的解有无穷多个,而“ QR ”分解仅仅找出了其中之一. =§ 3.7.3奇异值分解在Matlab中三重赋值语句[U,S,V]=svd(A)在奇异值分解中产生三个因数:A=U*S*V 'U矩阵和V矩阵是正交矩阵,S矩阵是对角矩阵,svd(A)函数恰好返回S的对角元素,而且就是A 的奇异值(其定义为:矩阵A'*A的特征值的算术平方根)•注意到A矩阵可以不是方的矩阵.奇异值分解可被其它几种函数使用,包括广义逆矩阵pinv(A)、秩rank(A)、欧几里德矩阵范数norm(A,2)和条件数cond(A) • •§ 3.7.4特征值分解如果A是n X n矩阵,若满足Ax= x,则称为A的特征值,x为相应的特征向量.函数eig(A)返回特征值列向量,如果A是实对称的,特征值为实数•特征值也可能为复数,例如:A=[ 0 1-1 0]eig(A)产生结果ans =0 + I.OOOOi0 -I.OOOOi如果还要求求出特征向量,则可以用eig(A)函数的第二个返回值得到:[x,D]=eig(A)D的对角元素是特征值.x的列是相应的特征向量,以使A*x=x*D .计算特征值的中间结果有两种形式:Hessenberg 形式为hess(A), Schur 形式为schur(A). schur形式用来计算矩阵的超越函数,诸如sqrtm(A)和logm(A).如果A和B是方阵,函数eig(A,B)返回一个包含一般特征值的向量来解方程Ax= Bx双赋值获得特征向量[X,D]=eig(A,B)产生特征值为对角矩阵D •满秩矩阵X的列相应于特征向量,使A*X=B*X*D ,中间结果由qz(A,B)提供. 「以凹一】§ 3.7.5 秩Matlab计算矩阵A的秩的函数为rank(A),与秩的计算相关的函数还有:rref(A)、orth(A)、null(A)和广义逆矩阵pinv(A)等.利用rref(A) , A的秩为非0行的个数.rref 方法是几个定秩算法中最快的一个,但结果上并不可靠和完善.pinv(A)是基于奇异值的算法.该算法消耗时间多,但比较可靠.其它函数的详细用法可利用Help求助.上一页回目录下一页。
矩阵的定义及其运算规则矩阵是数学中的一种重要工具,用于表示数字和符号的矩形阵列。
矩阵由m行n列的数字或符号排列组成,每个数字或符号称为矩阵的元素。
矩阵通常用大写字母表示,例如A,B,C等。
矩阵的大小由它的行数和列数决定,并用m×n表示。
矩阵的运算规则包括加法、减法、数乘和乘法四种运算。
1.加法:对应位置上的元素相加对于相同大小的两个矩阵A和B,它们的加法定义如下:A+B=C其中C的元素由对应位置上的两个矩阵元素相加得到。
2.减法:对应位置上的元素相减对于相同大小的两个矩阵A和B,它们的减法定义如下:A-B=D其中D的元素由对应位置上的两个矩阵元素相减得到。
3.数乘:矩阵的每个元素与一个标量相乘对于一个矩阵A和一个实数k,它们的数乘定义如下:kA=E其中E的元素由矩阵A的每个元素与k相乘得到。
4.乘法:矩阵的行与列的对应元素相乘后求和对于两个矩阵A(m×n)和B(n×p),它们的乘法定义如下:AB=F其中F是一个m×p的矩阵,F的每个元素由矩阵A的其中一行与矩阵B的对应列的元素相乘后求和得到。
矩阵的运算满足以下一些基本性质:1.加法的交换律:A+B=B+A2.加法的结合律:(A+B)+C=A+(B+C)3.加法的零元素:存在一个零矩阵O,满足A+O=A4.减法的定义:A-B=A+(-B)5.数乘的结合律:(k1k2)A=k1(k2A)6.数乘的分配律:(k1+k2)A=k1A+k2A7.数乘的分配律:k(A+B)=kA+kB8.乘法的结合律:(AB)C=A(BC)9.乘法的分配律:A(B+C)=AB+AC和(A+B)C=AC+BC10.乘法的分配律:k(AB)=(kA)B=A(kB)矩阵的运算在应用中具有广泛的应用,包括线性代数、计算机图形学、优化、概率论等。
通过矩阵的运算规则,可以对线性方程组进行求解、描述线性变换、优化问题、图像处理等。
矩阵的运算规则是学习线性代数和其他数学领域的重要基础知识。