析取范式与合取范式(课堂PPT)
- 格式:ppt
- 大小:585.00 KB
- 文档页数:41
析取范式与合取范式析取范式与合取范式合同协议书合同基本信息合同名称:析取范式与合取范式合同协议书合同编号:____________________________签署日期:____________________________合同生效日期:____________________________合同标的:析取范式与合取范式应用及其相关服务合同方信息合同方甲(服务提供方):名称:____________________________地址:____________________________联系电话:____________________________电子邮箱:____________________________合同方乙(服务接受方):姓名:____________________________地址:____________________________联系电话:____________________________电子邮箱:____________________________服务内容服务项目1:析取范式的理论讲解与应用服务项目2:合取范式的理论讲解与应用服务项目3:相关案例分析与实际应用服务项目4:提供相关资料及文献支持服务标准服务标准1:服务内容应涵盖析取范式与合取范式的基本概念、计算方法及应用实例。
服务标准2:提供的材料应为最新的研究成果及学术资料,确保准确性与前瞻性。
服务标准3:服务应包括理论讲解、问题解答及案例分析,确保服务效果。
服务时间与地点服务开始日期:____________________________服务结束日期:____________________________服务地点:____________________________服务时间安排:____________________________费用及支付方式服务费用总额:____________________________费用明细:明细1:____________________________明细2:____________________________支付方式:____________________________支付时间安排:____________________________第一次支付:____________________________第二次支付:____________________________双方责任合同方甲(服务提供方)负责按合同约定提供服务,确保服务质量,并在规定时间内完成服务内容。
2.2析取范式与合取范式一、析取范式与合取范式定义2.2 命题变项及其否定统称作文字。
仅由有限个文字构成的析取式称为简单析取式。
仅由有限个文字构成的合取式称为简单合取式。
例如,文字:p,┐q,r,q.简单析取式: p,q,p∨q,p∨┐p∨r,┐p∨q∨┐r.简单合取式: p,┐r,┐p∧r,┐p∧q∧r,p∧q∧┐q.定理2.1(1)一个简单析取式是重言式当且仅当它同时含某个命题变项及它的否定。
(2)一个简单合取式是矛盾式当且仅当它同时含某个命题变项及它的否定。
定义2.3(1)由有限个简单合取式构成的析取式称为析取范式。
(2)由有限个简单析取式构成的合取式称为合取范式。
(3)析取范式与合取范式统称为范式。
例如,析取范式:(p┐∧q)∨r, ┐p∧q∧r, p∨┐q∨r.合取范式:(p∨q∨r)∧(┐q∨r), ┐p∧q∧r, p∨┐q∨r.定理2.2(1)一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式。
(2)一个合取范式是重言式当且仅当它的每个简单析取式都是重言式。
范式的特点:(1)范式中不出现联结词→、↔,求范式时可消去:A→B⇔┐A∨BA↔B⇔(┐A∨B)∧(A∨┐B)(2)范式中不出现如下形式的公式:┐┐A, ┐(A∧B), ┐(A∨B)因为:┐┐A⇔A┐(A∧B)⇔┐A∨┐B┐(A∨B)⇔┐A∧┐B(3)在析取范式中不出现如下形式的公式:A∧(B∨C)在合取范式中不出现如下形式的公式:A∨(B∧C)因为:A∧(B∨C)⇔(A∧B)∨(A∧C)A∨(B∧C)⇔(A∨B)∧(A∨C)定理2.3 (范式存在定理)任一命题公式都存在着与之等值的析取范式与合取范式。
求范式的步骤:1.消去联结词→、↔;2.消去否定号┐;3.利用分配律。
命题公式的析取范式与合取范式都不是唯一的。
例2.7 求公式(p→q)↔r的析取范式与合取范式。
解: (1)合取范式:(p→q)↔r ⇔(┐p∨q)↔ r⇔((┐p∨q)→ r)∧(r→(┐p∨q))⇔(┐(┐p∨q)∨r)∧(┐r∨(┐p∨q))⇔ ((p∧┐q)∨r)∧(┐p∨q∨┐r)⇔ (p∨r)∧(┐q∨r)∧(┐p∨q∨┐r)(2) 析取范式(p→q)↔r ⇔ ((p∧┐q)∨r)∧(┐p∨q∨┐r)⇔ (p∧┐q∧┐p)∨(p∧┐q∧q)∨(p∧┐q∧┐r)∨(r∧┐p)∨(r∧q)∨(r∧┐r)⇔ (p∧┐q∧┐r)∨(┐p∧r)∨(q∧r)下面介绍命题公式的唯一规范化形式的范式:主析取范式与主合取范式。