世纪之交的三大发现
- 格式:ppt
- 大小:1.11 MB
- 文档页数:40
现代物理学现代物理学通常是指二十世纪初开始发展起来的物理学,包括相对论,量子力学,原子和原子核物理学,粒子物理学等,是物理学的一个重要组成部分。
它彻底改变了人们以往的时空观,使人们对这个世界有了新的认识,也大大地改变了人们的生活方式。
在21世纪,物理学将进一步获得迅速发展,物理学仍将是整个自然科学的基础,物理学的进展仍是推动整个自然科学发展的一个最重要的动力。
十九世纪末二十世纪初,经典物理学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。
由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。
物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。
然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。
首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。
其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。
这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。
由此引起了物理学的一场伟大的革命。
爱因斯坦创立了相对论;海森堡、薛定谔等一群科学家创立了量子力学。
现代物理学诞生了!按研究的物质运动形态和具体研究对象,通常把物理学分为力学,热学,声学,光学,电磁学,原子分子物理学,原子物理学等。
随着人们对物理现象认识的不断深入,一些在经典物理学中属于物理学的分支学科发展成为独立的学科,如天文学,气象学,力学等。
19世纪末期物理学的三大发现及其意义19世纪末,以牛顿力学、热力学、麦克维斯电磁学理论和原子论为基础的经典物理学理论体系已相当完善。
正当物理学界陶醉于成功的喜悦中时,一些有远见的科学家却与意识到,在物理学晴朗的天空中出现了乌云。
1900年4月27日,一向以保守著称的英国皇家学会主席、著名物理学家达尔文发表长篇演说,指出:经典物理学本来十分晴朗的天空上出现了两朵“乌云”。
一是“紫外灾难”——热辐射在位于短波的紫外线部分的实验结果与经典统计力学、电磁学理论相背;二是“以太危机”——当时的实验结果表明:麦克维斯电磁学理论中光、电、磁传播所需要的介质——“以太”可能根本就不存在。
经典物理学正在发生危机,这预示着即将发生一场革命。
其实从1895年开始,连续三年的三大发现,x射线,放射性和电子的发现已经成为揭开物理学革命序幕的三声春雷。
1895年伦琴发现了X射线,1896年法国的贝克勒尔发现了铀盐的放射性,1897年英国的J·J汤姆逊发现了电子。
这些新发现猛烈的冲击着经典物理学理论,打破了物理学界沉闷的空气,被誉为“世纪之交的三大发现”,是现代物理学发轫的标志。
早在19世纪三四十年代,人们就发现,真空管内的金属电极在通电时其阴极会发出某种射线,这种射线受磁场影响,具有能量,被称为阴极射线。
而对阴极射线性质的深入研究导致了X射线的发现。
1895年德国物理学家伦琴在赫兹和勒纳德发表了论阴极射线的穿透力的论文后,准备对这一问题做进一步研究。
他重复了勒纳德的实验,发现阴极射线确实能穿透铝箔在空气中行进几厘米,使涂有铂氰化钡的荧光屏上产生荧光。
在多次实验后,他意外地发现了一种新的射线,但因为不了解其本性,伦琴且称它为X射线,又被人们称之为“伦琴射线”。
由于X射线可以穿透皮肉透视骨骼,所以在医疗上作用很大,如今我们到医院拍张X光片已是很平常的事情,然而在19世纪末X射线刚发现时,却被视为世界科技革命的一声号角。
1901年诺贝尔物理学奖——X 射线的发现 伦琴1901年,首届诺贝尔物理学奖授予德国物理学家伦琴(Willhelm Konrad Ro tgen, 1845---1923), 以表彰他在1895年发现的X 射线。
1895年,物理学已经有了相当的发展,它的几个主要部门--牛顿力学、热 力学和分子运动论、电磁学和光学,都已经建立了完整的理论,在应用上也取得 了巨大成果。
这时物理学家普遍认为,物理学已经发展到顶了,以后的任务无非 是在细节上作些补充和修正而已,没有太多的事情好做了。
正是由于X 射线的发现唤醒了沉睡的物理学界。
它像一声春雷,引发了一系列重 大的发现,把人们的注意力引向更深入、更广阔的天地,从而揭开了现代物理学 的序幕。
1902年诺贝尔物理学奖——塞曼效应的发现和研究洛伦兹 塞曼1902年诺贝尔物理学奖授予荷兰莱顿大学的洛伦兹(Hendrik Antoon Lorentz, 1853 ---1928)和荷兰阿姆斯特丹大学塞曼(Pieter Zeeman , 1865---1943),以表彰他们在研究磁性对辐射现象的影响所作的特殊贡献。
磁性对辐射现象的影响也叫塞曼效应,是塞曼在1896年发现的。
它是继法拉第效应和克尔效应之后又一项反映光的电磁特性的效应。
塞曼效应更进一步涉及了光的辐射机理,因此人们把它看成是继X 射线之后物理学最重要的发现之一。
洛伦兹是荷兰物理学家,他的主要贡献是创立了经典电子论,这一理论能解释物质中一系列的电磁现象,以及物质在电磁场中运动的一些效应。
由于塞曼效应发现时及时地从洛伦兹理论得到了解释,由此所确定的电子荷质比与J.J.汤姆孙用阴极射线所得数量级相同,相互间得到验证,因此1902年洛伦兹与塞曼共享诺贝尔物理学奖。
塞曼也是荷兰人,1885年进入莱顿大学后,与洛伦兹多年共事,并当过洛伦兹的助教。
塞曼对洛伦兹的电磁理论很熟悉,实验技术也很精湛,1892年曾因仔细测量克尔效应而获金质奖章,并于1893年获博士学位。
绪论单元测试1.初期的原子学说有哪些()。
A:电的原子学说B:量子原子学说C:热的原子学说D:物质的原子学说答案:ACD2.世纪之交的三大发现()。
A:X射线的发现B:质子的发现C:电子的发现D:放射性的发现答案:ACD3.原子物理学的发展经过那三个阶段()。
A:原子物理新篇章B:量子力学建立C:早期原子论D:初期的原子学说答案:ACD4.1900年,哪位科学家建立了能量子概念()。
A:汤姆逊B:卢瑟福C:普朗克D:玻尔答案:C5.1895年,以下哪位科学家发现了X射线()。
A:卢瑟福B:亨利贝克勒尔C:伦琴D:居里夫妇答案:C第一章测试1.在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于50的范围内。
若金箔的厚度增加到4倍,那么被散射的α粒子会有多少?A:4B:16C:2D:8答案:B2.进行卢瑟福理论实验验证时发现小角散射与实验不符这说明()。
A:小角散射时一次散射理论不成立B:卢瑟福理论是错误的C:原子不一定存在核式结构D:散射物太厚答案:A3.在同一粒子源和散射靶的条件下观察到粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为( )A:1:8B:1:4C:4:1答案:B4.如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍?( )A:1B:1/2C:4D:2答案:A5.1911年卢瑟福提出了原子的核式结构模型,根据该模型能够知道( )。
A:入射粒子的散射方向与靶物质种类无关B:原子半径在10-10m量级C:原子核由中子和质子构成D:原子核的质量远大于电子质量答案:D6.汤姆逊的原子模型是正确的,并且被α粒子散射实验所证实。
()A:错B:对答案:A7.卢瑟福的核式结构模型解释了粒子散射实验出现的大角散射。
()A:错B:对答案:B8.原子由带正电荷并几乎占有全部质量的微小中心核以及绕核运行的电子所组成。
1906年诺贝尔物理学奖——气体导电1906年诺贝尔物理学奖授予英国剑桥大学的J.J.汤姆孙爵士(SirJoseph John Thomson,1856—1940),以表彰他对气体导电的理论和实验所作的贡献。
J.J.汤姆孙对气体导电的理论和实验研究最重要的结果就是发现了电子,这是继X射线和放射性之后又一重大发现。
人们把这三件事称为世纪之交的三大发现。
比起前两件来,电子的发现具有更伟大的意义,因为这一事件使人们认识到自然界还有比原子更小的实物。
原子不可分的传统观念终于被打破了。
如果说X射线和放射性的发现具有某种偶然性,那么,电子的发现却充分显示了科学发展的必由之路,它是许多人经过大量实验和理论研究,进行了长期的科学争论之后的产物。
在这场争论中,J.J.汤姆孙取得了决定性的成果。
19世纪是电磁学大发展的时期,到七、八十年代电气工业开始有了发展,发电机、变压器和高压输电线路逐步在生产中得到应用,空气漏电成了亟待解决的问题。
同时,电气照明也引起了许多科学家的注意。
于是,人们竞相研究低压气体发电现象。
1858年德国人普鲁克尔在研究气体放电时,注意到在放电管正对阴极的管壁上发出绿色的荧光,证明是某种射线从阴极发出打到管壁所致。
这一射线后来就叫做阴极射线。
他和另一位德国物理学家哥尔茨坦都认为这种射线是一种以太波,因为这种射线按直线行进,对物质有化学作用,性质上类似于紫外光。
英国物理学家也对阴极射线做了大量研究。
1871年瓦尔利发现阴极射线在磁场中会发生偏转,与带电粒子的行为很相近。
克鲁克斯在实验中证实阴极射线不但按直线前进、能聚焦、在磁场中会偏转,而且还可以传递能量和动量。
克鲁克斯认为阴极射线是由真空管中残余气体的分子组成,由于乱运动有些气体分子撞击到阴极,于是从阴极获得了负电荷,在电场的驱使下形成了带电的分子流。
舒斯特也认为阴极射线是带电粒子流。
他在1890年根据阴极射线的磁偏转算出带电粒子的电荷与质量之比(简称荷质比)e/m,数值大约是5×106C/kg~1×1010C/kg,而电解所得氢离子的荷质比约为108C/kg。
叙述十九世纪末物理学三大发现的时间、人物和历史意义。
学院:专业:学号:姓名:日期:论述19世纪末物理学三大发现对物理学发展的意义19世纪末,物理学上出现了三大发现,即X射线、放射性和电子。
这些新发现猛烈地冲击了道尔顿关于原子不可分割的观念,从而打开了原子和原子核内部结构的大门,揭露了微观世界中更深层次的奥秘。
1895年11月8日到12月28日,德国物理学家伦琴在研究阴极射线时,发现了具有惊人贯穿能力的X射线。
19世纪末,阴极射线是物理学研究课题,许多物理实验室都开展了这方面的研究。
1984年11月8日,伦琴将阴极射线管放在一个黑纸袋中,关闭了实验室灯源,他发现当开启放电线圈电源时,一块涂有氰亚铂酸钡的荧光屏发出荧光。
用一本厚书,2-3厘米夺取的木板或几厘米厚的硬橡胶插在放电管和荧光屏之间,仍能看到荧光。
他又用盛有水、二硫化碳或其他液体进行实验,实验结果表明它们也是“透明的”,铜、银、金、铂、铝等金属也能让这种射线透过,只要它们不太厚。
伦琴意识到这可能是某种特殊的从来没有观察到的射线,它具有特别强的穿透力。
他一连许多天将自己关在实验室里,集中全部精力进行彻底研究。
6个星期后,伦琴确认这的确是一种新的射线。
1895年12月22日,伦琴和他夫人拍下了第一张X射线照片。
天然放射性的发现与X 射线的发现直接相关。
1895 年末,伦琴发现X 射线后,把他的论文的预印本和一些X 射线照片分别寄给了欧洲各国著名的物理学家,其中包括法国科学家庞加莱。
在1896 年1 月20 日的法国科学院每周例会上,庞加莱展示了伦琴的论文和照片,立即引起了贝克勒耳的极大兴趣。
了解到X 射线是从管子正对着阴极的区域也就是玻璃管壁发出荧光的区域发出的,贝克勒耳提出了这样的猜测:X 射线和荧光之间可能存在着某种联系,能够发出荧光的物质可能同时也可以发出X射线。
1896年,法国物理学家贝克勒尔在研究铀盐的实验中,首先发现了铀原子核的天然放射性。
绪论单元测试1【多选题】(20分)初期的原子学说有哪些()。
A.量子原子学说B.热的原子学说C.电的原子学说D.物质的原子学说2【多选题】(20分)世纪之交的三大发现()。
A.质子的发现B.电子的发现C.X射线的发现D.放射性的发现3【多选题】(20分)原子物理学的发展经过那三个阶段()。
A.初期的原子学说B.量子力学建立C.早期原子论D.原子物理新篇章4【单选题】(20分)1900年,哪位科学家建立了能量子概念()。
A.卢瑟福B.玻尔C.普朗克D.汤姆逊5【单选题】(20分)1895年,以下哪位科学家发现了X射线()。
A.居里夫妇B.亨利贝克勒尔C.卢瑟福D.伦琴第一章测试1【单选题】(10分)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于50的范围内。
若金箔的厚度增加到4倍,那么被散射的α粒子会有多少?A.16B.2C.8D.42【单选题】(10分)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明()。
A.原子不一定存在核式结构B.小角散射时一次散射理论不成立C.散射物太厚D.卢瑟福理论是的3【单选题】(10分)在同一粒子源和散射靶的条件下观察到粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为()A.1:8B.1:4C.4:14【单选题】(10分)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍?()A.2B.1C.4D.1/25【单选题】(10分)1911年卢瑟福提出了原子的核式结构模型,根据该模型能够知道()。
A.入射 粒子的散射方向与靶物质种类无关B.原子半径在10-10m量级C.原子核由中子和质子构成D.原子核的质量远大于电子质量6【判断题】(10分)汤姆逊的原子模型是正确的,并且被α粒子散射实验所证实。
()A.对B.错7【判断题】(10分)卢瑟福的核式结构模型解释了粒子散射实验出现的大角散射。