应用地球物理学原理第二章01
- 格式:ppt
- 大小:616.00 KB
- 文档页数:75
地球物理学原理及应用地球物理学是研究地球内部结构、地震活动、地壳运动以及地磁场等自然现象的学科。
它涉及的原理和应用非常广泛,以下是一些相关内容的概述。
一、原理:1. 地震学原理:地震波的产生、传播和记录是地震学的基础。
地震波可以分为P波、S波和表面波,利用地震波的速度和传播路径可以推断地球内部的物理性质和结构。
2. 重力学原理:地球的引力场是由地球质量分布所产生的,通过测量重力场的变化可以了解地壳的厚度和密度分布。
3. 磁力学原理:地球的磁场是由地球核心中的电流所产生的,通过测量地磁场的变化可以了解地壳运动、板块活动和磁异常的分布。
4. 电磁学原理:地球内部的电导率和电阻率分布也会影响地球的电磁场变化。
通过测量地球的电磁场变化可以了解地壳的物质组成和地下水运动等信息。
二、应用:1. 地球内部结构研究:地震学可以通过观测地震波传播路径和速度来推断地球内部的物理结构,如地幔、地核等,这对于了解地球演化和板块构造非常重要。
2. 地壳运动研究:地震学和地磁学可以观测地壳的运动与改变,通过监测地震活动和地磁异常,可以预测地震和火山喷发等自然灾害。
3. 矿产资源勘探:重力学、磁力学和电磁学等物理方法可以用于探测地下的矿产资源,通过测量重力场、磁场和电磁场的变化可以找到潜在的矿床。
4. 地下水资源调查:通过电磁法和地壳运动观测等方法可以了解地下水的分布和运动状况,对于地下水资源的合理开发和利用具有重要意义。
5. 环境调查和地质灾害预测:地球物理学方法可以用于监测环境污染、地下水污染和地质灾害的发生和演变,有助于制定相应的防治措施。
总结起来,地球物理学原理和应用为我们揭示了地球内部的奥秘,通过相关方法和技术,可以实现对地球内部结构、地震活动、地壳运动和地质灾害等自然现象的研究和预测,对于保护和利用地球资源,以及维护人类的生存环境具有重要意义。
应用地球物理学原理地球物理学原理是一种研究地球内部结构和物质性质的科学方法。
这种方法主要通过测量和分析地球各种物理场的变化,如地震波、重力场、地磁场、电磁场等,来推导出地球的内部特征。
地球物理学原理被广泛应用于地质勘探、矿产资源调查、地震灾害预测、环境监测等领域。
地球物理学原理的应用之一是地震探测。
地震是指地下岩石断裂或移动释放出的能量,它会产生地震波。
地震波的传播受到地下岩石的物理特性影响,如密度、弹性模量等。
通过记录地震波在地球内部的传播路径和速度变化,可以推断出地壳、地幔、地核等不同岩石层的特征。
这对于了解地球的内部结构、划分地质单元、寻找地下矿产资源等具有重要意义。
另一个地球物理学原理的应用是重力测量。
地球的重力场是由地球质量分布引起的,而地形和地下岩石的变化会对重力场产生影响。
通过测量不同地点的重力值,可以推断出地下岩石的密度变化。
重力测量在石油勘探、矿产资源调查、地质环境评价等方面都有广泛应用。
地球物理学原理还可以应用于地磁测量。
地球具有一个磁场,它由地球内部的液态外核运动产生。
地磁场的强度和方向会随着地下岩石的变化而变化。
通过测量地磁场的强度和方向,可以推断出地下岩石的性质和构造。
地磁测量在地质构造研究、矿产资源勘探等方面有着重要的应用价值。
最后,地球物理学原理还可以应用于电磁测量。
地球内部岩石的导电性和磁性会对地下电磁场产生影响。
通过测量地下电磁场的变化,可以推断出地下岩石的电导率、磁化率等特性。
电磁测量在地质工程、环境监测等方面有广泛应用。
综上所述,地球物理学原理是一种研究地球内部结构和物质性质的重要科学方法,它在地质勘探、矿产资源调查、地震灾害预测、环境监测等领域都有着广泛应用。
地球物理学的基本原理和应用地球物理学是一门研究地球内部结构、物性、物理现象以及与地表地貌形成有关的科学,它是地球科学中必不可少的研究分支之一。
在地球物理学研究中使用物理学、数学和化学等方面的工具,来探测、分析和解释地球内部的各种形态、结构和物理特性。
本文将从地球物理学的基本原理和应用两个方面进行讨论。
第一部分:地球物理学的基本原理地球物理学的基本原理是探测和解释地球内部的结构和物性。
在探测和解释这些信息时,地球物理学主要研究以下三个方面:物理场、动力学和地球化学。
1. 物理场物理场是指地球表观或地下某一点上的一种物理量场,例如重力场、磁场、电磁场和声波场等。
这些物理场既包括地球本身的物理场,也包括周围环境对地球产生的影响。
物理场的特性和变化都是地球物理学研究的对象之一。
重力场:重力场是地球物理学中最基本的物理场之一。
重力场决定了地球物质的密度和分布情况,在研究地壳构造时常以重力勘探方法来探测地下岩石密度。
磁场:地球拥有一个强大的磁场,磁场在地球物理学研究中又被称为地磁场。
磁场的研究和应用主要有两个方面:一是测量磁场的强度、方向及其随时间变化的规律;二是利用磁场信息进行矿产勘探和磁场导航。
电磁场:电磁场包括地球的自然电场和自然磁场及其变化。
电磁场的研究和应用主要涉及矿产勘探、地壳构造和地球物理学实验室研究中的地磁学。
声波场:声波场是地球物理学中最广泛应用的物理场之一。
声波可穿透地下,勘探地下物质的性质和构造。
声波在液体和固体介质中的传播速度决定了勘探的深度和分辨率。
2. 动力学动力学是指地球内部物质的活动和运动,如地震和地热等。
地震作为一种动态现象,是地球物理学的核心研究内容之一。
地震勘探可用于判定地下构造和识别地下矿床等。
地球热力学和热力学也是动力学的重要研究内容。
研究地球的热流、地热和地震等有助于探索地下热源和能源的分布情况。
这些数据对于研究地球的内部结构、热力学过程和构造演化等方面有着极大的意义。
《应用地球物理学原理》教学大纲课程编号:学时:100 学分: 5一、课程性质和目的《应用地球物理学原理》是地球物理和应用地球物理专业的主干专业课程,也是新调整后的地矿类工科本科专业的主要专业基础课之一。
《应用地球物理学原理》是应用地球物理专业的新课程体系-“应用地球物理学原理”、“应用地球物理的数据采集与处理”、“地球物理反演的基本理论及应用方法”和“地球物理方法的综合应用与解释”4本专业系列课程的第1门课程,是整个专业系列课程的基础。
自五十年代初到九十年代末,我国的应用地球物理专业的课程体系基本上与前苏联类似,专业课主要按重力、磁法、电法、地震和测井五门课分别讲授,学科和专业分得较细,教学内容较窄。
结果培养的科研人员越来越专,这对促进科技快速纵向发展起到了积极作用,但不利于学科交叉和学科综合的发展。
另外,重、磁、电、震、测五门课程内容之间也存在着某些重复。
随着科学技术的发展,专业课的教学内容也需进一步更新。
长期以来,应用地球物理专业为了适应国民经济发展的需要,坚持教学改革,进行了教学思想、内容和方法的改革,课程结构有所变化,教学内容有所更新。
随着我国由计划经济逐渐向市场经济过渡,国内应用地球物理专业为适应市场经济的需要,都在积极地拓宽专业面,在加强基础和增强适应性方面进行教学改革和研究。
所谓系列课程的建设,是指为了向学生传授某一方面相对完整的知识或比较全面训练学生某一方面的能力,而把教学内容密切相关、相互之间有必然联系的若干课程组织在一起,从总体上确定每一门课程的教学目标、教学内容和教学方法。
应用地球物理系列课程建设的指导思想是:1.系统地向学生传授应用地球物理的基础知识,使学生知识面较宽、专业基础扎实、适应性较强;2.优化课程体系和教学内容,避免不必要的重复,提高学生的学习效率,减轻学生的学习负担;3.加强综合和交叉,发挥学生潜能、特长和创造性思维。
应用地球物理专业课的系列课建设可分为纵向和横向两种。
应用地球物理学原理引言:应用地球物理学原理是一种利用地球物理学的知识和技术来研究地球内部结构和地球表面特征的方法。
地球物理学是地球科学的一个重要分支,包括地震学、重力学、磁学、电磁学、地热学等多个学科领域。
通过应用地球物理学原理,我们可以深入了解地球的内部构造和研究地球的物理性质,为资源勘探、地质灾害预测和环境保护等提供科学依据。
一、地震学原理的应用地震学原理是应用地球物理学的重要部分,它研究地球内部产生和传播的地震波以及地震波在地球体内的反射、折射和干涉等现象。
通过地震学原理,我们可以确定地震的震源位置、地震波的传播速度和传播路径,从而实现地壳的构造和地球内部的物理性质的研究。
地震学原理在地震勘探、地震预测和地震灾害防治等方面有着重要应用。
二、重力学原理的应用重力学原理是研究地球重力场的性质和变化规律的学科。
利用重力学原理可以测量地球不同地方的重力加速度差异,进而推断出地下地壳中的密度和物质分布情况。
应用重力学原理,我们可以研究地理结构的特征和研究地下的岩石构造,为矿产资源的勘探提供重要依据。
三、磁学原理的应用磁学原理研究地球磁场的产生和变化规律,通过测量地磁场的强度和方向,可以推断地球内部的磁性物质的分布和性质。
应用磁学原理,可以揭示地球物质运动的规律,为地球内部构造的研究提供重要信息。
此外,应用磁学原理还可以用于勘探矿产资源、制定地磁导航和地磁探测等方面。
四、电磁学原理的应用电磁学原理研究地球内部的电磁现象和电磁场的分布。
通过应用电磁学原理,可以探测地球中的地下水、油气和矿产等资源分布情况。
例如,电磁勘探方法可以通过测量地下电磁场的强度和频率变化来判断某一地区的地下水储备情况,为地下水资源的开发提供科学依据。
五、地热学原理的应用地热学是研究地球内部热量的分布和传输规律的学科。
应用地热学原理,可以进行地热资源的勘探和开发,为地热能的利用提供技术支持。
地热学的应用还可以在地球科学领域和环境科学领域提供重要的参数和数据。
地球物理学原理及应用地球物理学是研究地球内部结构、地球物理过程以及地球表面及其与大气、海洋相互作用的一门学科。
它通过运用物理学的原理和方法,揭示地球内部的构造与性质,解析地球物理现象及其规律,并对地球相关领域的问题进行预测与应用。
本文将对地球物理学的基本原理及其在各领域的应用进行论述。
一、地球物理学的基本原理地球物理学的研究对象包括地球的地壳、地幔、核等部分,以及地球表面的岩矿、水体和大气等。
在研究过程中,地球物理学家运用了几种基本的原理和方法。
1.重力原理:地球物质之间存在引力,重力场的差异可以反映地下密度变化。
这一原理的应用使得地球物理学家能够通过重力异常来确定地壳中的地下构造。
2.地磁原理:地球表面存在磁场,其特征和变化可以揭示地壳中的磁性物质分布及其变化,如磁铁矿、磁性岩石等。
地磁原理的应用广泛,包括地质勘探、磁测勘、地震预警等。
3.电磁原理:利用电磁场与地下电导体之间相互作用的原理,可以揭示地下电导体分布,如矿石、地下水等。
电磁法在勘探、资源评价、灾害预警等方面有着广泛的应用。
4.地震原理:地震波在地下传播时的速度和路径受到不同地质体的影响,通过地震波的接收与分析,地球物理学家可以推断地下介质的性质和结构,如地下岩层、断层等。
地震学不仅是地球物理学的基石,也是地震预测与监测的重要方法。
二、地球物理学在不同领域的应用地球物理学的应用范围广泛,涵盖了地质勘探、资源开发、环境保护、自然灾害预测等多个领域。
1.地质勘探:地球物理勘探是勘探过程中的重要手段之一。
通过采集重力数据、地磁数据、电磁数据和地震数据,可以确定地下构造、矿产分布和油气储量等信息。
这些数据对于矿产资源的评估和开发具有重要意义。
2.自然灾害预测:地球物理学在地震、火山、滑坡、地下水涌出等自然灾害的预测和监测方面起着重要作用。
通过地震数据和地磁数据的监测和分析,可以对地震活动进行预警,提高救灾和抗灾能力。
3.资源开发与环境保护:地球物理学在能源资源开发、水资源管理和环境保护方面发挥着重要作用。
本科生课程大纲课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修一、课程介绍1.课程描述:应用地球物理学以不同岩、矿石间物理性质的差异为基础,利用物理学原理分析和解释各种地球物理场特征以达到勘探目的,该课程是地球信息科学与技术方向的专业骨干课程。
通过本课程的学习,使学生了解各类地球物理方法的基本原理、技术以及在地质学中的应用。
课程重点介绍地震(天然地震和人工地震)、电法、重力、磁法等勘探方法的基本原理、资料处理、解释方法以及在地质学研究中的应用。
侧重于地球物理各种勘探方法的探测原理以及如何利用地球物理方法解决地质问题。
教学中注意结合并分析地质问题、引入地球物理研究新进展,使学生学会利用的地球物理勘探方法解决的地质学问题。
2.设计思路:本课程在教学中,拟突出地震、电法、重力、磁法四种勘探方法的基本原理和探测方法的讲解,在理解各种勘探方法基本原理的基础上再进一步介绍资料处理、解释方法以及在地质学研究中的应用。
该课程的理论性和实践性均较强,除要求学生具有一定的数、理和地质方面的基础外,讲授时应辅以一定学时的实践课程,介绍现代地球物理仪器的基本结构、工作原理以及操作流程,掌握野外资料测量的过程及相应的数据处理手段,以建立感性认识,加深对课堂教学内容的理解。
课程内容主要包括两个部分:一、非地震勘探部分- 1 -(一)绪论1)电法、重力、磁法勘探的历史及基本概念2)非地震勘探方法的重要作用3)非地震勘探方法的应用范围4)非地震勘探面临的任务、问题和发展趋势(二)第一章电法勘探1)地电场:天然地电场和人工地电场了解大地电磁场的一般性质;熟悉电磁场的基本方程;了解自然电场的分类;了解稳定电流场、激电场、电磁场的基本性质;熟悉稳定电流场的拉普拉斯方程;熟悉等效电阻率法。
2)主动源电法勘探:电阻率法、激发极化法、充电法、电磁感应法熟悉视电阻率的基本概念及常用电阻率法;熟悉电阻率法中常用的装置类型及布置方案;了解测深曲线的定量解释方法;熟悉激电法的主要观测参数和常用装置类型;熟悉充电法的基本理论;熟悉电磁感应法的分类及频率域和时间域电磁场的基本特点;了解各类主动源电法勘探的应用范围。