化工实验报告-传热系数的测定
- 格式:doc
- 大小:71.00 KB
- 文档页数:4
化工原理传热膜系数测定实验报告SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#北京化工大学化工原理实验报告实验名称:传热膜系数测定实验班级:化工1305班姓名:张玮航学号: 32 序号: 11同组人:宋雅楠、陈一帆、陈骏设备型号:XGB型旋涡气泵及ASCOM5320型压力传感器第4套实验日期: 2015-12-17一、实验摘要首先,本实验让空气走内管,蒸汽走环隙,采用由XGB 型漩涡气泵风机、ASCOM5320型压力传感器、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,由人工智能仪来读取所有温度和压差等参数,用计算机软件实现数据的在线采集与控制。
其次,由所得数据分别求得了正常条件和加入静态混合器后的强化条件下的对流传热膜系数α,再通过作图,使用图解法确定了传热膜系数准数关系式Re Pr m n Nu A =(n=)中的系数A 和指数m 后,在双对数坐标纸中作出了0.4/Pr Re Nu 的关系曲线。
最后,整理出了流体在圆管内做强制湍流流动的传热膜系数准数半经验关联式,并与公认的关联式进行了比较。
关键词:传热膜系数K 、雷诺数Re 、努赛尔准数Nu 、普朗特数Pr 、图解法二、实验目的1、掌握传热膜系数α及传热系数K 的测定方法: (1)测定空气在圆管内作强制湍流时的给热系数α1 (2)测定加入静态混合器后空气的强制湍流给热系数α1’2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,将实验所得结果与公认的关联式进行比较,分析影响α的因素,了解工程上强化传热的措施。
三、实验原理间壁式传热过程可分为三个过程:第一、由热流体对固体壁面的对流传热,第二、固体壁面的热传导,第三、固体壁面对冷流体的对流传热。
当流体无相变时的对流传热准数关系式可由量纲分析法写为:Re Pr m n p Nu A Gr =对于强制湍流而言,Gr 数可忽略,进行简化后:Re Pr m n Nu A =在本文中,采用Excel 软件对上述准数关系式中的指数m 、n 和系数A 进行计算机求解。
化工原理实验报告(传热)
实验名称:传热实验
实验目的:掌握传热原理,测定传热系数。
实验原理:传热是指热能从物体的高温区域传递到物体的低温区域的过程。
传热方式
主要有三种,分别是传导、对流和辐射。
传导是指物质内部由高温区传递热量到低温区的过程。
传导的速率与传导材料的种类、厚度、温度差等因素有关。
对流是指由于物流的运动而引起的热量传递过程。
对流的速率与流动速度、流动形式
等因素有关。
辐射是指物体之间通过电磁波传递热量的过程。
辐射的速率与物体温度、表面特性等
因素有关。
实验仪器:传热实验装置、数显恒温槽、数显搅拌器、功率调节器、电热水壶、测温仪、电阻丝、保温材料等。
实验步骤:
1、将传热实验装置放入数显恒温槽内,开启电源,将温度恒定在80℃左右。
2、将试样加热,使其温度达到与恒温槽内温度一致。
3、将试样放入传热实验装置中,开始实验。
4、在实验过程中,保持搅拌器的匀速转动,确保传热速率的稳定。
5、记录实验数据,计算传热系数。
实验结果:
本实验测定的传热系数为:λ=10.2 W/m•K
通过本次实验,我们掌握了传热原理和测定传热系数的方法,同时也了解了传导、对
流和辐射三种传热方式的特点及其影响因素。
实验结果表明,传热系数是物体传热速率的
量化表示,对于不同的物体和温度差,传热系数是不同的,因此在具体实际应用中需要根
据实际情况进行调整。
北京化工大学化工原理实验报告传热膜系数测定实验院(部):化学工程学院专业:化学工程与工艺班级:化工1005*名:*** 2010011136同组人员:王彬刘玥波方郡实验名称:传热膜系数测定实验实验日期: 2012.11.28传热膜系数测定实验一、摘要本实验以套管换热器为研究对象,以冷空气及热蒸汽为介质,冷空气走黄铜管内,即管程,热蒸汽走环隙,即壳程,研究热蒸汽与冷空气之间的传热过程。
通过测得的一系列温度及孔板压降数值,分别求得正常条件和加入静态混合器后的强化条件下的对流传热膜系数α及Nu ,做出lg (Nu/Pr0.4)~lgRe 的图像,分析出传热膜系数准数关联式Nu=ARemPr0.4中的A 和m 值。
关键词:对流传热 Nu Pr Re α A 二、实验目的1、掌握传热膜系数α及传热系数K 的测定方法;2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,并分析影响α的因素,了解工程上强化传热的措施。
三、实验原理黄铜管内走冷空气,管外走100℃的热蒸汽,壁内侧热阻1/α远远大于壁阻、垢阻及外侧热阻,因此研究传热的关键问题是测算α,当流体无相变时对流传热准数关系式的一般形式为:p n m Gr A Nu Pr Re ⋅⋅=对于强制湍流有: n m A Nu Pr Re =用图解法对多变量方程进行关联,要对不同变量Re 和Pr 分别回归。
本实验可简化上式,即取n=0.4(流体被加热)。
在两边取对数,得到直线方程为Re lg lg Pr lg4.0m A Nu+= 在双对数坐标中作图,求出直线斜率,即为方程的指数m 。
在直线上任取一点函数值代入方程中,则可得到系数A ,即mNuA RePr4.0=其中 λαλμμρdNu Cp du ===,Pr ,Re 实验中改变空气的流量,以改变Re 值。
根据定性温度计算对应的Pr 值。
同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu 值。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==化工原理实验实验报告篇一:化工原理实验报告吸收实验姓名专业月实验内容吸收实验指导教师一、实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数KYa.三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。
但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。
(一)、空塔气速与填料层压降关系气体通过填料层压降△P与填料特性及气、液流量大小等有关,常通过实验测定。
若以空塔气速uo[m/s]为横坐标,单位填料层压降?P[mmH20/m]为纵坐标,在Z?P~uo关系Z双对数坐标纸上标绘如图2-2-7-1所示。
当液体喷淋量L0=0时,可知为一直线,其斜率约1.0—2,当喷淋量为L1时,?P~uo为一折线,若喷淋量越大,Z?P值较小时为恒持Z折线位置越向左移动,图中L2>L1。
每条折线分为三个区段,液区,?P?P?P~uo关系曲线斜率与干塔的相同。
值为中间时叫截液区,~uo曲ZZZ?P值较大时叫液泛区,Z线斜率大于2,持液区与截液区之间的转折点叫截点A。
姓名专业月实验内容指导教师?P~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B。
在液泛区塔已Z无法操作。
塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。
图2-2-7-1 填料塔层的?P~uo关系图 Z图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。
若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。
其吸收速率方程可用下式表示: NA?KYa???H??Ym(1)式中:NA——被吸收的氨量[kmolNH3/h];?——塔的截面积[m2]H——填料层高度[m]?Ym——气相对数平均推动力KYa——气相体积吸收系数[kmolNH3/m3·h]被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):NA?V(Y1?Y2)?L(X1?X2) (2)式中:V——空气的流量[kmol空气/h]L——吸收剂(水)的流量[kmolH20/h]Y1——塔底气相浓度[kmolNH3/kmol空气]Y2——塔顶气相浓度[kmolNH3/kmol空气]X1,X2——分别为塔底、塔顶液相浓度[kmolNH3/kmolH20] 由式(1)和式(2)联解得:KYa?V(Y1?Y2)(3) ??H??Ym为求得KYa必须先求出Y1、Y2和?Ym之值。
传热实验一、实验目的1、熟悉套管换热器、列管换热器的结构及操作方法;2、通过对套管换热器空气-水蒸汽传热性能的实验研究,掌握对流传热系数的测定方法;3、确定套管传热管强化前后内管中空气的强制湍流换热关联式,并比较强化传热前后的效果;4、通过对列管换热器传热性能实验研究,掌握总传热系数K 的测定方法,并对变换面积前后换热性能进行比较。
二、实验原理1、普通套管换热器传热系数测定及准数关联式的确定:(1)对流传热系数i α的测定:对流传热系数i α可以根据牛顿冷却定律,通过实验来测定。
i i i mQ S t α=⨯⨯∆(1)i i m iQ t S α=∆⨯(2)式中:i α—管内流体对流传热系数,W/(m 2·℃);i Q —管内传热速率,W ;i S —管内换热面积,m 2;m t ∆—壁面与主流体间的温度差,℃。
平均温度差由下式确定:m w t t t∆=-(3)式中:t —冷流体的入口、出口平均温度,℃;w t —壁面平均温度,℃。
因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,w t 用来表示,由于管外使用蒸汽,所以w t 近似等于热流体的平均温度。
管内换热面积:i i iS d L π=(4)式中:i d —内管管内径,m ;i L —传热管测量段的实际长度,m 。
由热量衡算式:21()i i pi i i Q W c t t =-(5)其中质量流量由下式求得:3600i i i V W ρ=(6)式中:i V —冷流体在套管内的平均体积流量,m 3/h ;pi c —冷流体的定压比热,kJ/(kg·℃);i ρ—冷流体的密度,kg/m 3;pi c 和i ρ可根据定性温度查得,122i i m t t t +=为m 冷流体进出口平均温度;1i t 、2i t 、w t 、i V 可采取一定的测量手段得到。
(2)对流传热系数准数关联式的实验确定:流体在管内作强制湍流,被加热状态,准数关联式的形式为:m ni i i Nu ARe Pr =(7)其中:i i i i d Nu αλ=,i i i i i u d Re ρμ=,pi i i ic Pr μλ=。
化工原理实验报告实验名称:传热系数的测定学院:化学工程学院专业:化学工程与工艺班级:化工09-5班姓名:陈茜茜学号09402010501 同组者姓名:陈俊燕孙彬芳陈益益指导教师:周国权日期:2011年10月20日一、 实验目的1、观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型;2、测定空气或水在圆直管内强制对流给热系数αi ;3、应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 值;4、掌握热电阻测温的方法。
二、 实验原理在套管换热器中,环隙通以水蒸汽,内管管内通以空气,水蒸汽冷凝放热以加热空气,在传热过程达到稳定后,有如下热量衡算关系式(忽略热损失):()()m W i i m i i p t t S t S K t t C V Q -=∆=-=αρ12由此可得总传热系数空气在管内的对流传热系数(传热膜系数)上式中 Q :传热速率,w ;V :空气体积流量(以进口状态计),m 3/s ; ρ: 空气密度(以进口状态计),kg/m 3; C P :空气平均比热,J/(kg ·℃);K i :以内管内表面积计的总传热系数,W/(m 2·℃); αi : 空气对内管内壁的对流传热系数,W/(m 2·℃); t 1、t 2 :空气进、出口温度,℃;A i :内管内壁传热面积,m 2; Δt m :水蒸气与空气间的对数平均温度差,℃;2121ln)()(t T t T t T t T t m -----=∆T :蒸汽温度(取进、出口温度相同),℃。
(t w -t )m :空气与内管内壁间的对数平均温度差,℃; 22112211ln )()()(t t tt t t t t t t w w w w m w -----=-t w1、t w2 :内管内壁上进、出口温度,℃。
对流传热的核心问题是求算传热膜系数,当流体无相变时对流传热准数关联式的一般形式为:Nu i =A ·Re i m ·Pr i n取n=0.4(流体被加热)。
北京化工大学化工原理实验报告实验名称:传热膜系数测定实验班级:化工1305班姓名:张玮航学号: 2013011132 序号: 11同组人:宋雅楠、陈一帆、陈骏设备型号:XGB型旋涡气泵及ASCOM5320型压力传感器第4套实验日期: 2015-12-17一、实验摘要首先,本实验让空气走内管,蒸汽走环隙,采用由XGB 型漩涡气泵风机、ASCOM5320型压力传感器、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,由人工智能仪来读取所有温度和压差等参数,用计算机软件实现数据的在线采集与控制。
其次,由所得数据分别求得了正常条件和加入静态混合器后的强化条件下的对流传热膜系数α,再通过作图,使用图解法确定了传热膜系数准数关系式Re Pr m n Nu A =(n=0.4)中的系数A 和指数m 后,在双对数坐标纸中作出了0.4/Pr Re Nu 的关系曲线。
最后,整理出了流体在圆管内做强制湍流流动的传热膜系数准数半经验关联式,并与公认的关联式进行了比较。
关键词:传热膜系数K 、雷诺数Re 、努赛尔准数Nu 、普朗特数Pr 、图解法二、实验目的1、掌握传热膜系数α及传热系数K 的测定方法: (1)测定空气在圆管内作强制湍流时的给热系数α1 (2)测定加入静态混合器后空气的强制湍流给热系数α1’2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,将实验所得结果与公认的关联式进行比较,分析影响α的因素,了解工程上强化传热的措施。
三、实验原理间壁式传热过程可分为三个过程:第一、由热流体对固体壁面的对流传热,第二、固体壁面的热传导,第三、固体壁面对冷流体的对流传热。
当流体无相变时的对流传热准数关系式可由量纲分析法写为:Re Pr m n p Nu A Gr =对于强制湍流而言,Gr 数可忽略,进行简化后:Re Pr m n Nu A =在本文中,采用Excel 软件对上述准数关系式中的指数m 、n 和系数A 进行计算机求解。
实验三、总传热系数与对流传热系数的测定一、实验目的1.了解间壁式换热器的结构与操作原理;2.学习测定套管换热器总传热系数的方法; 3.学习测定空气侧的对流传热系数;4.了解空气流速的变化对总传热系数的影响。
二、实验原理本实验采用套管式换热器,热流体走管间,为蒸汽冷凝,冷流体走内管,为空气。
该传热过程由水蒸气到不锈钢管外管壁的对流传热、从外管壁到内管壁的传导传热、内管壁到冷水的对流传热三个串联步骤组成。
图1. 传热实验装置流程图1-空气流量调节阀 2-转子流量计 3-蒸汽调节阀 4-蒸汽压力表 5-套管换热器 6-冷凝水排放筒 7-旋塞 8-空气进口温度计 9-空气出口温度计 10-不凝气排放口套管换热器5由不锈钢管(或紫铜管)内管和无缝钢外管组成。
内管的进出口端各装有热电阻温度计一支,用于测量空气的进出口温度。
内管的进、出口端及中间截面外壁表面上,各焊有三对热电偶,型号为WRNK-192。
不锈钢管规格Φ21.25⨯2.75,长1.10米 S=πd o L=0.0734m 2 紫铜管Φ16⨯2,长1.20米 S=πd o L=0.0603m 2 转子流量计(空气,0~20m 3/h ,20℃)数字显示表SWP-C40 此设备的总传热系数可由下式计算:mt S Q K ∆⋅=其中 ()()出进出进t T t T t T t Tt m -----=∆ln式中:Q ——传热速率,W ;S ——传热面积,m 2;S=πd o L;m t ∆——对数平均温度差,℃T ——饱和蒸汽温度,℃,根据饱和蒸汽压力查表求得;出进、t t ——分别为空气进、出口温度,℃。
通过套管换热器间壁的传热速率,即空气通过换热器被加热的速率,用下式求得:()进出t t c m Q p s -⋅⋅=, W其中,C p 应取进、出口平均温度下空气的比热容。
W=V s ⋅ρ,其中ρ为进口温度下空气的密度。
对流传热系数的计算公式为m t S Q ∆⋅⋅=α式中S ─内管的内表面积,m 2;α─空气侧的对流传热系数,W/(m 2⋅︒C);∆t m ─空气与管壁的对数平均温度差,︒C 。
北京化工大学化工原理实验报告实验名称:传热膜系数测定实验班级:化工1305班*名:***学号:********** 序号:11同组人:宋雅楠、陈一帆、陈骏设备型号:XGB型旋涡气泵及ASCOM5320型压力传感器第4套实验日期:2015-12-17一、实验摘要首先,本实验让空气走内管,蒸汽走环隙,采用由XGB 型漩涡气泵风机、ASCOM5320型压力传感器、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,由人工智能仪来读取所有温度和压差等参数,用计算机软件实现数据的在线采集与控制。
其次,由所得数据分别求得了正常条件和加入静态混合器后的强化条件下的对流传热膜系数α,再通过作图,使用图解法确定了传热膜系数准数关系式Re Pr m n Nu A =(n=0.4)中的系数A 和指数m 后,在双对数坐标纸中作出了0.4/Pr Re Nu 的关系曲线。
最后,整理出了流体在圆管内做强制湍流流动的传热膜系数准数半经验关联式,并与公认的关联式进行了比较。
关键词:传热膜系数K 、雷诺数Re 、努赛尔准数Nu 、普朗特数Pr 、图解法二、实验目的1、掌握传热膜系数α及传热系数K 的测定方法: (1)测定空气在圆管内作强制湍流时的给热系数α1 (2)测定加入静态混合器后空气的强制湍流给热系数α1’2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,将实验所得结果与公认的关联式进行比较,分析影响α的因素,了解工程上强化传热的措施。
三、实验原理间壁式传热过程可分为三个过程:第一、由热流体对固体壁面的对流传热,第二、固体壁面的热传导,第三、固体壁面对冷流体的对流传热。
当流体无相变时的对流传热准数关系式可由量纲分析法写为:Re Pr m n p Nu A Gr =对于强制湍流而言,Gr 数可忽略,进行简化后:Re Pr m n Nu A =在本文中,采用Excel 软件对上述准数关系式中的指数m 、n 和系数A 进行计算机求解。
传热系数测定实验报告
实验目的:通过实验测定传热系数,分析传热过程中的热传递机制。
实验原理:传热系数是描述热量在单位面积上传递的能力的物理量。
在实验中,可以通过测定某个物体(如金属板)的两端温度差,以及已知的热导率、厚度和面积来计算传热系数。
实验材料和设备:
1. 金属板
2. 温度计
3. 热源
4. 温度控制装置
5. 热传导测试装置
实验步骤:
1. 将金属板与热源、温度控制装置连接,使金属板的一端接触热源,另一端与温度控制装置相连。
2. 将温度计插入金属板的两端,测量金属板两端的温度。
3. 调节温度控制装置,使金属板两端的温度保持稳定。
4. 根据已知的热导率、厚度和面积,计算出金属板传热系数。
实验结果:
根据实验测得的金属板温度差、热导率、厚度和面积,计算得到金属板的传热系数为XXX。
实验讨论:
根据实验结果,可以分析金属板传热过程中的热传递机制。
比较实验测得的传热系数与文献数值的差异,可以进一步分析实验误差的来源,并讨论实验的可靠性和精确性。
结论:
通过实验测定传热系数,可以得到某个物体在传递热量时的能力。
实验结果可用于热工工程、材料科学等领域的设计和分析。
在实验中需要注意测量的准确性和实验条件的控制,以确保实验结果的可靠性。
太原师范学院
实验报告
Experimentation Report of Taiyuan teachers College
系部:化学系年级:大四课程:化工实验
姓名:学号:日期:2012/10/15
项目: 气体强制对流传热系数的测定
一、实验目的:
1.熟悉传热设备;
2.了解传热原理和强化传热途径,分析热交换过程的影响因素;
3.测定热流体空气与冷流体水在并流和逆流条件下的总传热系数K;
4.测定努赛尔数Nu和雷诺数Re之间的关系,确定他们的关联式。
二、实验原理:
传热过程按其方式可分为热导传热、对流传热和辐射传热三种。
在工业生产上的传热过程中,按冷流体和热流体的接触方式可分为直接接触式、间壁式和蓄热式三种。
本实验采用的单套管式换热器为间壁式传热,其热流体为热空气,冷流体为水,热空气与水在套管内进行传热,传热方程为:q=K*A*△t m
式中:q为传热速率(W);
K为总传热系数(W*m-2*k-1)
A为热空气—水间的传热面积(套管换热器的内管平均面积A=π*d m*L,d m为内管
内外径的平均值,L为套管换热器套管的长度);
△t m 为热空气与冷却水间的平均温度差
【△t m =(△t1 +△t2 )/ (ln△t1 -ln△t2 ),℃或K】,△t1 和△t2 分别为换热器两端的温度差。
在稳定传热过程中,热流体热空气通过换热器壁面将热量传给冷流体水,捂热量损失,两流体也未发生相变化,冷流体吸收热量与热流体放出热量相等,因此,传热速率Φ衡算式为:Φ=W g C p(T1-T2)
式中:W g 为空气的质量流量(Kg*S-1)
C p 为空气的比热容(K J*Kg*K-1)
T1,T2分别为热流体俄进口和出口温度(℃或K)
根据传热关系,传热系数是由以下几个分热阻的倒数组成,即
式中:a1、a2分别为热空气和冷却水的给热系数(W*m-2*k-1)
d1、d2分别为内管的内径和外径(m), δ为内管的壁厚(m);
λ为内管的导热系数(W*m-2*k-1)。
因冷却水的给热系数a2较大,d1 / (a2* d2 )值较小;λ值较大,δd1 /λd m 值也较小,故d1 / (a2* d2 )和δd1 /λd m 可略去。
于是,可认为空气在圆管内作强制对流的给热系数a1 近似为热空气与冷却水之间的总传热系数,即K= a1 。
当热空气在圆形直管中作强制湍流流流动时,传热系数(给热系数)的关联式可写为:Nu=A*Re m*Pr n
式中:Nu为努赛尔数,表达式为Nu=a*d/λ;
Re为雷诺数,表达式为Re=du ρ/μ
Pr为普兰特数,表达式为Pr= C p*μ/λ
A为系数;
m、n为雷诺数的指数和普兰特数的指数。
空气的努赛尔数受给热系数a的影响,雷诺数又受空气在管内流速的影响,在很高温度和压力下,普兰特数变化很小,可近似认为它是一个常数,因此,可改写为:Nu=B*Re m
式取对数后为LgNu=LgB+m*LgRe
当空气流速改变后,它们原有的热平衡关系被打破,数值也随之发生变化,Nu亦随Re 的改变而改变。
通过实验可测出不同条件下的空气的给热系数a与流速u,就能计算出Nu
和Re。
以Nu为纵坐标,Re为横坐标,在双对数坐标上作出它们的关系图,关系图的斜率为
截距为LgB,将求得的B,m值代入式中,即得出给热准数关联式。
三、实验步骤:
1.熟悉实验装置及流程,检查设备,做好操作前的准备工作。
2.全开冷却水阀门,降水通入换热气中;打开鼓风机,打开空气控制阀门,将空气通入实验装置的电加热器中。
3.接通加热器电源,将电压调至,并始终保持电压稳定,当空气被加热后,在套管换热器上的进口温度测量点上显示温度为100-120℃左右(在稳定状态下,3min内热空气温度变化不超过1℃)时,开始在流量计上读取数值。
热流体空气和冷流体冷却水的进、出口温度直接从装置上的各测量点读取。
4.逐渐由大到小调节空气控制阀门,改变空气流量6-8次,每次改变流量后,稳定3-5min 后,按步骤3读取相关数据。
5.完成所有数据测量后,将调压器上的电压指示调至零处,切断加热电源;继续通气、通水约5mi后关闭鼓风机,最后关闭冷却水阀门。
四、数据记录及处理
1、实验数据记录
2、实验数据处理
五、误差分析
影响给热系数的主要因素:
(1)液体的状态:气体、液体、蒸气及传热过程是否有相变化等;
(2)液体的物理性质:如密度、比热容、粘度及导热系数;
(3)液体的流动形态:层流或湍流;
(4)液体对流的对流状况:自然对流,强制对流等;
(5)传热表面积的形状、位置及大小。
在该实验过程中,空气流量读数时存在误差;进行温度读数时,温度不稳定,使得读数时存在误差;实验是在固定水流量的条件下进行的,但在实验过程中,水流量会出现波动,会对测定结果产生影响。