高效音频功率放大器-模电课程设计
- 格式:doc
- 大小:27.50 KB
- 文档页数:4
模电课程设计报告1)设计题目:音频功率放大电路2)设计任务:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8Ω。
设计要求:频带宽50HZ ~20kHZ,输出波形基本不失真;电路输出功率大于8W;输入灵敏度为100mV,输入阻抗不低于47KΩ。
3)原理电路和程序设计:(1)方案比较:①利用运放芯片 LM317和各元器件组成音频功率放大电路,有保护电路,电源分别接+30v和-30v并且电源功率至少要50w,输出功率30w。
②利用运放芯片TDA2030和各元器件组成音频功率放大电路,有保护电路,电源只需接+15v,另一端接地,输出功率大于8w。
通过比较,方案①的输出功率有30w,但其输入要求比较苛刻,添加了实验难度。
而方案②的要求不高,并能满足设计要求,所以选取方案②来进行设计。
(2)整体电路框图(3)单元电路设计及元器件选择:(4)系统的电路总图4)理论计算:①放大倍数分析由于电路引入电压串联负反馈(图中R6,R7,C4组成反馈网络),所以其阻态为电压串联负反馈,由电压串联负反馈放大倍数公式(Aus=1+R7/R6)可知,其放大倍数约为11.303。
②频率响应分析中频电压放大倍数:11.303.③反馈对输入输出电阻的影响由于电路引入电压串联负反馈,故其输入电阻增大,输出电阻减小,增大驱动负载的能力。
输出电阻:Rof=Ro/(1+AF),输入电阻:Rif=(1+AF)Ri。
4)电路调试过程与结果:①测量输出电压放大倍数测试条件:直流电源电压15v,输入信号10mv,输入频率0.1KHz。
数据分析:理论计算中频放大倍数为11.303,由于输入信号频率为0.1KHz,在中频放大范围内,所以测试结果与理论计算值误差很小。
仿真截图:②测量允许的最大输入信号(0.1KHz )和最大不失真功率测试条件:直流电源电压15v 。
当输入信号越来越大时,该放大电路开始出现失真,经过测试,其允许的最大不失真输入信号为Ui=790mv。
1、设计题目:音频功率放大电路2、设计任务目的与要求:要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8Ω。
指标:频带宽50HZ ~20kHZ ,输出波形基本不失真;电路输出功率大于8W ;输入灵敏度为100mV ,输入阻抗不低于47K Ω。
3、整体电路设计:⑴方案比较:①利用运放芯片 LM1875和各元器件组成音频功率放大电路,有保护电路,电源分别接+30v 和-30v 并且电源功率至少要50w ,输出功率30w 。
②利用运放芯片TDA2030和各元器件组成音频功率放大电路,有保护电路,电源只需接+19v ,另一端接地,负载是阻抗为8Ω的扬声器,输出功率大于8w 。
通过比较,方案①的输出功率有30w ,但其输入要求比较苛刻,添加了实验难度。
而方案②的要求不高,并能满足设计要求,所以选取方案②来进行设计。
⑵整体电路框图:⑶单元电路设计及元器件选择: ①单元电路设计:功率放大器按输出级静态工作点的位置可分为甲类、乙类和甲乙类三种;若按照输出级与负载的耦合方式,甲乙类又可分为电容耦合(OTL 耦合)、直接耦合(OCL 电路)和变压器耦合三种。
变压器耦合容易实现阻抗匹配,但体积大,较笨重。
又OCL电路电源输入要求较高,所以采用OTL电路。
采用单电源的OTL 电路不需要变压器中间抽头,但需要在输出端接上大电容,且低频特性不如OCL 好。
根据“虚短”、“虚断”的原理,利用电阻的比值,可求得电路所需的放大倍数,其中可加入一个电位器替代反馈电阻,这样就能够实现电路放大倍数的调整。
因为功率放大电路是追求在电源电压确定的情况下,输出尽可能大的功率,可以采取OTL电路来实现。
为了提高转换功率,我们要对电路进行改善,这主要围绕功率放大电路频率响应的改善和消除非线性失真来改进电路,因此要用到若干个电阻电容来保护电路。
OTL电路会产生交越失真,为了消除这种失真,应当设置合适的静态工作点,使电路中的两只放大管均工作在临界导通或微导通的状态,这可以通过加入两个二极管来实现,因为二极管具有单向导电性。
沈阳工业大学信息科学与工程学院设计题目:音响放大器专业:小组成员:2021年11月29日第一章方案设计与论证1.基本要求:(1)正弦信号输入电压幅度为5~700mV,等效负载电阻为R L为8Ω条件下,应满足:①额定输出功率P OR ≥10W;②带宽B W ≥50~10 000Hz;③在P OR下和B W内的非线性失真系数≤ 3%;④在P OR下的效率≥ 55%⑤在前置放大级输入端交流短接到地时,R L=8Ω上的交流声功率≤10mW;⑥整体电路的联调与试听。
(2)设计并制作满足本设计任务要求的稳压电源2.设计方案:由于设计要求不是对单一信号频率实施放大,而是对一个输入电压变化幅度大(5—700mV),频带范围宽(50—10000Hz)的频带信号实施功率放大,所以不能只从简单的功率放大上考虑,至少应从以下几方面作较为全面的考虑:1、解决本设计的电路对信号源,尤其是信号幅度小的时候的影响。
2、要求对整个频带内不同频率成分,不同电压幅度信号都要均匀放大。
因此,本设计所要求的功率放大电路,应该是一个既能有效实施隔离,完成电路阻抗匹配;又能在所规定的频带内进行信号均衡放大额定一种实用型电路。
所以将输入信号通过均衡电路处理之后,送入功率放大器,提升到所需的额定输出功率。
依据设计要求,我们可确定音响放大器的基本组成框图如下,电路由话音放大器、电子混响器、前置放大器、音调控制器、功率放大器以及稳压电源组成:话音放大器:话音放大器的作用是不失真地放大音频信号。
电子混响器:电子混响器是用电路模拟声音的多次反射,产生混响效果,使声音听起来具有一定的深度感和空间立体感。
混合前置放大器:混合前置放大器的作用是将音乐信号和电子混响后的声音信号混合放大。
音调控制器:音调控制器主要是控制、调节音响放大器的幅频特性。
功率放大器:功率放大器的作用是给音响放大器的负载RL提供一定的输出功率。
第二章各模块电路原理与仿真1、话音放大器由于话筒的输出信号一般只有5mV左右,而输出阻抗达到20K 亦有低输出阻抗的话筒如(20欧,200欧等),所以话筒放大器的作用是不失真地放大声音信号(最高频率达到10KHz)。
模电课设报告-音频功率放大器11.设计思路此次课程设计要求我们做一款音频功率放大器,通过在网上查找资料,我们发现TDA203是一款性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA2030在内的几种。
TDA2030集成电路的另一特点是输出功率大,而保护性能以较完善。
根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。
另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。
然而在TDA2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。
TDA2030集成电路的第三个特点是外围电路简单,使用方便。
现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑封大功率管,这就给使用带来不少方便。
TDA2030在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%)、在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。
该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。
该电路可供低频课程设计选用。
12.电路选择通过学习模电,我们对OCL、OTL和BTL 功率放大电路有的一定的认识,经过比较,我们决定选择其一进行设计。
下面是对三个功放电路的比较及介绍:2.1 OCL电路简介:OCL电路称为无输出电容功放电路,是在OTL 电路的基础上发展起来的。
主要特点:1采用双电源供电方式,输出端直流电位为零;由于没有输出电容,低频特性很好扬声器一端接地,一端直接与放大器输出端连接,因此须设置保护电路;2具有恒压输出特性;允许选择4Ω、8Ω或16Ω负载;3最大输出电压振幅为正负电源值,额定输出功率约为/(2RL)2.2 OTL电路简介:OTC称为无输出变压器功放电路。
【精品】模电课程设计音响放大器的设计一、框架(1)任务:设计一台具有50W功率音响放大器,要求声音清晰,具有良好的保护功能,支持3.5mm音频输入。
(2)实施:选用模拟式和数字式电路,设计和组装电路,调试音响放大器,完成实物演示。
二、设计1. 原理设计(1)电源部分采用折磨精度的运放作为电源的主要电路:运放采用LMi3320芯片,它能将外部直流电压转换成小压差(±25V)。
并且芯片内置保护功能,能以较宽的电流范围将输出电压维持在±25V,运放芯片在运行时可以根据音乐音量的增大减小时电流的输出,更好的驱动音响喇叭。
(2)信号处理部分本设计的信号处理部分采用模拟和数字相结合的方式处理音频信号:对于音频输入部分,采用高性能的功放放大器,它能够将输入的小信号充满的放大,使得各种音频设备输出的信号能被正确的携带进入放大器内部;信号经过后处理,将信号标准化并转化为数字信号,用于后面数字放大部分;最后,将数字信号转为模拟信号,并且通过功率放大器,最终将信号放大,推动音响驱动器实现有效播放。
(3)元器件及材料LMi3320运放,op07运放,NE5532运放,STM32单片机,电容,0.2mm铜厚的喷锡板,330ω电阻,220uF电容。
2. 电路设计音响放大器设计主要分为三部分:电源模块,信号处理模块和功率模块。
电源模块的主要功能是将外部的直流电压转换成±25V的电压,然后再交由信号处理模块和功率模块经行处理。
电源模块以固定的LMi3320运放实现,它可以将外部传入直流电压得到平衡的±25V的输出。
(3)功率模块该模块将从信号处理模块得到的模拟信号放大至±25V,然后再将其在实现50W功率的情况下,转入驱动器输出至音响放大器。
三、调试完成电路的设计后,进行音响放大器的调试,首先拆下电路,进行检查,确保电路结构完整,各种元器件牢固;接着根据说明书尝试与3.5mm入口相连,使得放大器可以接受外部传入的音频信号;然后,接入电源,开启开关,对放大器的功能和特性做出校准;最后,用音乐源测试放大器的效果,确保声音清晰完整,功能是否符合要求。
课程设计报告--音频功率放大器设计音频功率放大器设计报告一、引言音频功率放大器是电子工程领域中的一个重要组成部分,它能将输入信号放大并驱动扬声器输出高质量的音频信号。
音频功率放大器设计的主要目标是提高音频信号的功率,同时保持音频信号的稳定和高保真度。
本报告将介绍一个音频功率放大器的设计过程,包括电路设计、原理图设计、仿真和测试结果等。
二、电路设计1. 器件选择首先需要选择适合的放大器芯片和其他必要的元件。
在音频功率放大器设计中,常用的芯片有TDA2030、TDA2050等,选择芯片时需考虑芯片的功率输出、输入电压、高保真度等参数。
2. 电路图设计根据所选芯片的数据手册和设计要求,进行电路图的设计。
电路图设计主要包括输入电路、放大电路、输出功率放大电路等部分。
在设计过程中应注意信号的阻抗匹配、滤波等问题。
三、原理图设计根据电路设计,绘制电路的原理图。
原理图将各个部分的连接关系以及元件的数值等信息展示出来,为后续的仿真和测试提供便利。
四、仿真基于设计好的原理图,进行电路仿真。
使用仿真软件(如Proteus、Multisim等)对电路进行仿真,验证放大器的性能指标,包括功率输出、频率响应、失真度等参数。
五、测试结果根据仿真结果,制作音频功率放大器的实物电路,并进行测试。
测试包括输入信号的幅值、频率、输出功率、失真度等参数的测量。
根据测试结果,评估设计的音频功率放大器的性能和有效性。
六、总结通过本次课程设计,了解了音频功率放大器的设计过程,掌握了电路设计、原理图设计、仿真和测试等技能。
同时也深入了解了音频功率放大器的重要性和应用领域。
在今后的学习和工作中,将进一步拓展音频功率放大器设计的知识,不断提高设计水平,为音频领域的发展做出更大的贡献。
1 初始条件和设计要求1.1 初始条件具备模拟电子电路的理论知识;具备模拟电路基本电路的设计能力;具备模拟电路的基本调试手段;自选相关电子器件;可以使用实验室仪器调试。
1.2 设计要求1、不失真输出功率≥2.4 W,频率响应:20HZ~20KHZ2、输入阻抗≥ 50KΩ,输入电压≤ 5mv3、具备高音和低音的音调控制功能4、效率>60%5、安装调试并完成符合学校要求的设计说明书3.1 电路组成我们设计的电路有两部分组成:(1)直流稳压电源首先我们考虑到直流稳压电源是每个电子设备的基础器件,应该与主电路分开设计,单独放置一个模块。
其次我们设计的是高保真音频功率放大器,因此对直流电源有着很高的要求,要尽可能的滤掉交流分量,达到稳压效果,使输出信号失真度达到最小。
(2)双声道高低音音频功率放大器实验要求是要有高低音可调电路,但是我们考虑到信号是由左右声道组成,所以为了达到最好的输出效果,我们设计了高低音调节外兼有左右声道的立体声高保真音频功率放大器。
此音频功率放大器所用的核心芯片是国际通用高保真音频功率放大集成电路TDA2030A。
4.1 直流稳压电源4.1.1 直流稳压电源原理图图4-1-14.1.2 直流稳压电源所选元件双24V变压器,二极管1N4007,1000uf电解电容,0.33uf独石电容,三端稳压管LM7815,LM7915,0.1uf瓷片电容,220uf电解电容4.1.3 直流稳压电源原理直流稳压电源分为四部分:变压,整流,滤波,稳压。
变压:此处我们选择双24V的交流变压器,输出相位相反的24V交流电。
整流:我们选择了耐压较好的整流二极管1N4007。
滤波:我们放置了多组电容,达到最好的滤波效果。
首先电流经过二极管整流后,先经过两个1000uf的大电容,滤掉直流中的交流分量,此处电容越大越好。
经过初步电容滤波的输出电压V0=(1.1-1.2)V2。
然后在经过两个0.33uf的电容,用以抵消输出端较长接线的电感效应,以防止自激震荡,还可抑制电源的高频脉冲干扰,一般取0.1-1uf。
课程设计说明书课程设计名称:模拟电路课程设计课程设计题目:OTL 音频功率放大器学院名称:南昌航空大学信息工程学院专业:通信工程班级:学号:姓名:评分:教师:2013年 3 月14 日模拟电路课程设计任务书2012-2013 学年第2学期第 1 周- 3 周题目OTL音频功率放大器内容及要求①设音频信号为vi=10mV, 频率f=1KHz;;②额定输出功率Po≥2W;③负载阻抗RL=8Ω;④失真度γ≤3%;进度安排第1周:查阅资料,到机房学习仿真软件,确定方案,完成原理图设计及仿真;第2周:领元器件、仪器设备,制作、焊接、调试电路,完成系统的设计;第3周:检查设计结果、撰写课设报告。
学生姓名:指导时间:周一、周三、周四下午指导地点:E 楼 311室任务下达2013 年2月25日任务完成2013 年 3 月15日考核方式 1.评阅□√ 2.答辩□ 3.实际操作□√ 4.其它□指导教师系(部)主任注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。
摘要功率放大器的常见电路是OTL和OCL电路。
有用集成运算放大器和晶体管组成的功率放大器,也有专集成电路功率放大器,本实验设计的是一个OTL功率放大器,该放大器采用复合管无输出耦合电路,并采用函数信号发生器供电。
该课程设计主要涉及了放大器的偏置电路克服交越失真,复合管的基本组合提高电路功率,交直流反馈电路,对称电路,并用multism软件对OTL功率放大器进行仿真实现。
根据电路图和给定的原件参数,使用multism软件模拟电路,并对其进行静态分析,动态分析,示波器显示波形图,计算数据等操作,让电路实现其要求的功能关键词:复合管、交越失真、交流反馈、推动级目录前言 (1)第一章理论依据 (2)第二章系统组成及原理 (3)2.2 实验电路图 (3)2.3实验元件UA741简介 (4)2.4功率放大计算过程 (5)第三章电路安装与调试 (6)3.1前期工作 (6)3.2电路调试 (6)3.3测试结果及分析 (7)第四章结果与分析 (8)仿真结果 (8)参考文献 (10)附录 (11)前言功率放大器通常分为五种工作状态,即A类、AB类、B类、C类、D类。
、设计题目:音频功率放大电路 二、设计的任务和要求1、主要要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8。
2、性能指标:频带宽50H Z 〜20kH Z ,输出波形基本不失真;电路输出功率大于8四输入灵敏度为100mV 输入阻抗不低于47K 。
三、原理电路和程序设计3.1、方案的确定及论证 1、OTA 互补对称功率放大器OTL 电路通常由两个对称的异型管构成,因此又称为互补对称电路,图3-1 为单电源OTL 互补对称功率 放大电路。
电路中T1是推动级(电压放大,也叫 激励级),其中Rb1、Rb2是T1的基极偏置电阻,Re 为T1发射极电阻,Rb 为T1集电极负载电阻,它们共同构成 T1的稳定静态工作点;T2、T3组成互补对称功率放大电路的输出级,且 T2、T3工作在乙类状态;C2为输出耦合电容。
功率放大器采用射极输出器,提高了输入电阻 和带负载的能力。
性能分析: 乙类互补推挽功放(OTL )的输出功率的计算公式如下: 输出功率:P o =Ul o =Ut7R L._ 2 2 2输出最大功率:Rm=UI 。
二U O /R L =U om /2R L =V Cc /8R L11=R L显然P om 与电源电压及负载有关当输入功率为8w,阻抗8w 时,有Pom=V/8RV Cc =8*8*8 ~22.6V 则电路所需的电源为 22.6v 。
2、用集成器件实现Tda2030简介:TDA203(是德律风根生产的音频功放电路,采用 V 型5脚单列直插式塑料封装结构。
该集成电路广泛应用于汽车立体声收录音机、中功率音 响设备,具有体积小、输出功率大、失真小等特点。
并具有内部保护电路。
电路特点:[1].外接元件非常少。
(基本应用电路图3-2 ) [2].输出功率大,Po=18W (RL 二④)。
[3].采用超小型封装(TO-220),可提高组装密度。
[4].开机冲击极小。
高效音频功率放大器
一、设计任务与要求
1、设计任务
设计并制作一个高效率音频功率放大器。
功率放大器的电源电压为+5V(电路其他部分的电源电压不限),负载为8Ω电阻。
2、设计要求
(1)3dB通频带为300~3400Hz,输出正弦信号无明显失真。
(2)最大不失真输出功率≥1W。
(3
(4
(5
3
(1
(2
(3
1
大器。
案。
②高速开关电路
a.输出方式
方案一:选用推挽单端输出方式(电路如图3所示)。
电路输出载波峰-峰值不可能超过5V电源电压,最大输出功率远达不到题目的基本要求。
图3高速开关电路
方案二:选用H桥型输出方式(电路如图4所示)。
此方式可充分利用电源电压,浮动输出载波的峰-峰值可达10V,有效地提高了输出功率,且能达到题目所有指标要求,故选用此输出电路形式。
图4高速开关电路
b.开关管的选择。
为提高功率放大器的效率和输出功率,开关管的选择非常重要,对它的要求是高速、低导通电阻、低损耗。
方案一:选用晶体三极管、IGBT管。
晶体三极管需要较大的驱动电流,并存在储存时间,开关特性不够好,使整个功放的静态损耗及开关过程中的损耗较大;IGBT管的最大缺点是导通压降太大。
方案二:选用VMMOSFET管。
VMOSFET管具有较小的驱动电流、低导通电阻及良好的开关特性,故选用高速VMOSFET管。
③滤波器的选择
方案一:采用两个相同的二阶Butterworth低通滤波器。
缺点是负载上的高频载波电压得不到充分衰减。
1、D
;(d)为
2、D
(1)
(电路如图7所示
率为
定输出的对称三角波幅度为1V(V
p-p =2V)。
若选定R
10
为100kΩ,并忽略比较器高电平时R
11
上的压降,
则R
9
的求解过程如下:
取R9为39kΩ。
图7三角波产生电路
选定工作频率为f=150kHz,并设定R
7+R
6
=20kΩ,则电容C
3
的计算过程如下:
对电容的恒流充电或放电电流为则电容两端最大电压值为
其中T
1为半周期,T
1
=T/2=1/2。
V f
c4
的最大值为2V,则
取C
4=220pF,R
7
=10kΩ,R
6
采用20kΩ可调电位器。
使振荡频率在150kHz左右有较大的调整范围。
图8比较器电路
②比较器。
选用LM311精密、高速比较器,电路如图8所示,因供电为5V单电源,为给V+=V-提供2.5V的静态电位,取R12=R15,R13=R14,4个电阻均取10kΩ。
由于三角波Vp-p=2V,所以要求音频信号的Vp-p不能大于2V,否则会使功放产生失真。
⑵前置放大器电路
如图9所示。
设置前置放大器,可使整个功放的增益从1~20连续可调,而且也保证了比较器的
号的V
p-p
Ω,反
调整R
4
如图10
驱PWM信
⑷H
于1W,属小功率输出,可选用功率相对较小、输入电容较小、容易快速驱动的对管,IRFD120和IRFD9120VMOS对管的参数能够满足上述要求,故采用之。
实际电路如图11所示。
互补PWM开关驱动
信号交替开启Q
5和Q
8
或Q
6
和Q
7
,分别经两个4阶Butterworth滤波器滤波后推动喇叭工作。
图10驱动电路
图11H桥互补对称输出及低通滤波电路
⑸低通滤波器
本电路采用4阶Butterworth低通滤波器(如图11)。
对滤波器的要求是上限频率≥20kHz,在
通频带内特性基本平坦。
采用了电子工作台(EWB)软件进行仿真,从而得到了一组较佳的参数:L1=22μH,L2=47μH,C1=l.68μH,C2=1μH。
19.95kHz处下降2.464dB,可保证20kHz的上限频率,且
通带内曲线基本平坦;100kHz、150kHz处分别下降48dB、62dB,完全达到要求。
四、系统测试及数据分析
1、测试使用的仪器
2、测试数据
(1)最大不失真输出功率测试数据如下表所示:
⑵通频带的测量测试数据如下表所示
由表看出通频带BW0.7≈fH≈20kHz,满足发挥部分的指标要求。
⑶效率的测量测试数据如下表所示:
⑷测量输出功率200mW时的最低电源电压测量结果:Vcc=4.12V。
3、测量结果分析
①功放的效率和最大不失真输出功率与理论值还有一定差别,其原因有以下几个方面:
a
30mA,b
1。