三校2018届九年级数学上学期第一次联考试题
- 格式:doc
- 大小:305.00 KB
- 文档页数:10
2018-2019上期三校联考初三数学试题(总分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠ 的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2b x a =-. 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D .的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.下列方程中,是关于x 的一元二次方程为( ) A .x 2﹣4x +5=0B .x 2+x +1=yC . +8x ﹣5=0D .(x ﹣1)2+y 2=32.抛物线y =﹣(x +1)2﹣2的顶点坐标是( )A .(1,2)B .(1,﹣2)C .(﹣1,2)D .(﹣1,﹣2)3.把抛物线y =﹣x 2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是( ) A .y =﹣(x +1)2+2 B .y =﹣(x +1)2﹣2 C .y =(x +1)2﹣2D .y =﹣(x ﹣1)2+2 4.若一元二次方程x 2+2x +a =0的有实数解,则a 的取值范围是( ) A .a <1 B .a ≤4 C .a ≤1 D .a ≥15.三角形两边的长是3和4,第三边的长是方程x 2﹣12x +35=0的根,则该三角形的周长为( ) A .14B .12C .12或14D .以上都不对6.若二次函数y =x 2﹣6x +c 的图象过A (﹣1,y 1),B (3,y 2),C (3+,y 3),则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 1>y 3D .y 3>y 1>y 27.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( ) A .200(1+a %)2=148 B .200(1﹣a %)2=148 C .200(1﹣2a %)=148D .200(1﹣a 2%)=1488.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( ) A .x 2+130x ﹣1400=0 B .x 2﹣65x ﹣350=0C .x 2﹣130x ﹣1400=0D .x 2+65x ﹣350=09.在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是( )A B C D10.定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a +b +c =0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx +c =0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A .a =cB .a =bC .b =cD .a =b =c11.已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如表:则下列判断中正确的是( )A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程ax 2+bx +c =0的正根在3与4之间12.已知x 1,x 2是一元二次方程x 2+m x -1=0的两个实数根,x 1<x 2; x 3,x 4是一元二次方程x 2+m x -2=0的两个实数根, x 3<x 4.则下列结论正确的是()A .x 1<x 2< x 3<x 4B .x 1 < x 3<x 4 <x 2C . x 3< x 1<x 2<x 4D . x 1 < x 3<x 2<x 4二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上. 13.若函数y =x 2﹣6x +m 的图像与x 轴只有一个公共点,则m = 。
2018年初三一诊考试数学试题答案及解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣的相反数是()A.5B.C.﹣D.﹣52.(3分)已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3D.12.39×10﹣4g/cm33.(3分)如图,立体图形的俯视图是()A.B.C.D.4.(3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π5.(3分)如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.40°B.36°C.50°D.45°(6.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.47.3分)使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m的和是()A.﹣1B.2C.﹣7D.08.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为△x,AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)因式分解:9a3b﹣ab=.10.(3分)如图,直线a∥b,∠P=75°,∠2=30°,则∠1=.11.(3分)已知一组数据:3,3,4,5,5,则它的方差为.12.(3分)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商F (品共支付 16 元,B 购 5 件甲商品和 3 件乙商品共支付 25 元,求一件甲商品和一件乙商品各售多少元.设甲商品售价 x 元/件,乙商品售价 y 元/件,则可列出方程组.13.(3 分)如图,在 Rt △ABC 中,∠A=30°,BC=2 ,以直角边 AC 为直径作⊙O 交 AB 于点 D ,则图中阴影部分的面积是.14.(3 分)已知 x 1,x 2 是关于 x 的方程 x 2+ax ﹣2b=0 的两实数根,且 x 1+x 2=﹣2, x 1•x 2=1,则 b a 的值是.15.(3 分)对于实数 a ,b ,我们定义符号 max {a ,b }的意义为:当 a ≥b 时, max {a ,b }=a ;当 a <b 时,max {a ,b ]=b ;如:max {4,﹣2}=4,max {3,3}=3,若关于 x 的函数为 y=max {x +3,﹣x +1},则该函数的最小值是.16.(3 分)如图,在正方形 ABCD 中,AC 为对角线,E 为 AB 上一点,过点 E 作EF ∥AD ,与 AC 、DC 分别交于点 G , ,H 为 CG 的中点,连接 DE ,EH ,DH ,FH .下列结论:①EG=DF ;②∠AEH +∠ADH=180°;③△EHF ≌△DHC ;④若,其中结论正确的有 .△DHC= ,则 3S △EDH =13S三、解答题(本大题共 8 个题,共 72 分)17.(10 分)(1)计算:|﹣2|﹣(π﹣2015)0+( )﹣2﹣2sin60°+;(2)先化简,再求值:÷(2+ ),其中 a=.18. 6 分)如图,分别过点C 、B 作△ABC 的 BC 边上的中线 AD 及其延长线的垂线,垂足分别为 E 、F .求证:BF=CE .(19.8分)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.20.(8分)某商城销售A,B两种自行车.A型自行车售价为2100元/辆,B型自行车售价为1750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80000元购进A型自行车的数量与用64000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13000元,求获利最大的方案以及最大利润.21.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)22.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.23.(10分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若tan∠BAD=,且OC=4,求BD的长.24.(12分)如图,已知抛物线y=+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.2参考答案一、选择题(本大题共 8 小题,每小题 3 分,共 24 分)1-8.B A C B B A CA二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)9. ab (3a +1)(3a ﹣1) .10. 45° .11.12.13.14...﹣ π ..15. 2 .16. ①②③④ .三、解答题(本大题共 8 个题,共 72 分)17.(1)|﹣2|﹣(π﹣2015)0+( )﹣﹣2sin60°+=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+ ;(2)==÷(2+ )=,当 a=时,原式= = ﹣1.( (18.证明:根据题意,知 CE ⊥AF ,BF ⊥AF ,∴∠CED=∠BFD=90°,又∵AD 是边 BC 上的中线,∴BD=DC ;在 Rt △BDF 和 Rt △CDE 中,∠BDF=∠CDE (对顶角相等),BD=CD ,∠CED=∠BFD ,∴△BDF ≌△CDE (AAS ),∴BF=CE (全等三角形的对应边相等).19.解:(1)四个年级被抽出的人数由小到大排列为 30,45,55,70,∴中位数为 50;(2)根据题意得:3000×(1﹣25%)=2250 人,则该校帮助父母做家务的学生大约有 2250 人;(3)画树状图,如图所示:所有等可能的情况有 12 种,其中恰好是甲与乙的情况有 2 种,则 P== .20、解:1)设每辆 B 型自行车的进价为 x 元,则每辆 A 型自行车的进价为(x +400)元,根据题意,得= ,解得 x=1600,经检验,x=1600 是原方程的解,x +400=1 600+400=2 000,答:每辆 A 型自行车的进价为 2 000 元,每辆 B 型自行车的进价为 1 600 元;(2)由题意,得 y=(2100﹣2000)m +(1750﹣1600) 100﹣m )=﹣50m +15000,根据题意,得,解得:33≤m≤40,∵m为正整数,∴m=34,35,36,37,38,39,40.∵y=﹣50m+15000,k=﹣50<0,∴y随x的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.21.解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.22.解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∵OA∥BC,∴S△ABC=S △OBC=×BO×xC=×3×4=6.23.解:(1)连结OB,则OA=OB.如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连结BE.如图2,∵在Rt△AOC中,tan∠BAD=tan∠CAO==,且OC=4,∴AC=6,则 BC=6.在 Rt △APO 中,∵AC ⊥OP ,∴△PAC ∽△AOC ,∴AC 2=OC•PC ,解得 PC=9,∴OP=PC +OC=13.在 Rt △ PBC 中 , 由 勾 股 定 理 , 得PB==3,∵AC=BC ,OA=OE ,即 OC 为△ABE 的中位线.∴OC= BE ,OC ∥BE ,∴BE=2OC=8.∵BE ∥OP ,∴△DBE ∽△DPO ,∴=,即=,解得 BD=.24.解:(1)将 A (0,1),B (﹣ 9,10)代入函数解析式,得,解得,抛物线的解析式 y=+2x +1;(2 分)(2)∵AC ∥x 轴,A (0,1),∴ x 2+2x +1=1,解得 x 1=﹣6,x 2=0(舍),即 C 点坐标为(﹣6,1),∵点 A ( 0,1),点 B (﹣9,10),∴直线 AB 的解析式为 y=﹣x +1,设 P (m ,m 2+2m +1),∴E (m ,﹣m +1),∴PE=﹣m +1﹣( m 2+2m +1)=﹣ m 2﹣3m ,∵AC⊥PE,AC=6,(4分)∴S四边形AECP =S△AEC+S△APC=AC•EF+AC•PF,=AC•(EF+PF)=AC•EP=×6(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0,∴当m=﹣时,四边形AECP的面积最大值是,此时P(﹣,﹣);(6分)(3)∵y=x2+2x+1=(x+3)2﹣2,∴顶点P(﹣3,﹣2).∴PF=2+1=3,CF=6﹣3=3,∴PF=CF,PC=3,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∵A(0,1),B(﹣9,10),∴AB==9,∴在直线AC上存在满足条件得点Q,设Q(t,1),∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,,CQ=2,(7分)∴Q(﹣4,1);(8分)②当△CPQ∽△ACB时,则=,,∴=,CQ=9,(9分)∴Q(3,1);综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,Q点的坐标为(﹣4,1)或(3,1).(10分)11/11。
……内………………○………………外………………○………… 学校:______________姓2018届九年级第一次模拟大联考【安徽卷】数 学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列四个数中,最大的数是 A .-5B .0C .1D .722.2017年中秋、国庆假日八天里,中国民航共运送旅客1295万人次,将1295万用科学记数法表示应为 A .0.1295⨯108B .1295⨯104C .12.95⨯106D .1.295⨯1073.如图是一个由4个相同的长方体组成的立体图形,它的左视图是A .B .C .D .4.下列运算正确的是 A .x 2•x 6=x 12B .(-6x 6)÷(-2x 2)=3x 3C .2a -3a =-aD .(x -2)2=x 2-45.不等式组10360x x -≤⎧⎨-<⎩的解集在数轴上表示正确的是A .B .C .D .6.如图,将等腰直角三角板的直角顶点放在直尺的一边上,若∠1=70°,则∠2的度数为A .95°B .105°C .115°D .125°7.某种商品的进货价为每件a 元,零售价为每件90元,若商品按八五折出售,仍可获利10%,则下列方程正确的是 A .85%a 10%×90B .90×85%×10%=aC .85%(90-a )=10%D .(1+10%)a =90×85%8.已知二次函数y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)的图象如图所示,则一次函数y =cx +2ba与反比例函数y =abx -1在同一坐标系内的大致图象是A .B .C .D .9.寒假结束了,开学后小明对本校七年级部分同学寒假阅读总时间(结果保留整10小时)进行了抽样调查,所得数据整理后制作成如图所示的频数分布直方图,观察这个频数分布直方图,给出如下结论,正确的是……○………………○………………订………○………………线………………○…不密……○………………○………………订…………………线………………○…A.小明调查了100名同学B.所得数据的众数是40小时C.所得数据的中位数是30小时D.全区有七年级学生6000名,寒假阅读总时间在20小时(含20小时)以上的约有5000名10.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为,点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为A B C.2 D第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分)11.9的平方根是__________.12.分解因式:xy2-2xy+x=__________.13.如图,四边形ABCD内接于⊙O,若∠B=130°,OA=1,则 AC的长为__________.14.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD,下列结论:①∠BAE=30°;②△ABE∽△ECF;③AE⊥EF;④△ADF∽△ECF.其中正确结论是__________.(填序号)三、(本大题共2小题,每小题8分,满分16分)1516.食品安全关乎民生,食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存.某饮料厂为了解A、B两种饮料添加剂的添加情况,随机抽检了A种30瓶,B种70瓶,检测发现,A种每瓶比B种每瓶少1克添加剂,两种共加入了添加剂270克,求A、B两种饮料每瓶各加入添加剂多少克?四、(本大题共2小题,每小题8分,满分16分)17.如图,某湖心岛上有一亭子A,在亭子A的正东方向上的湖边有一棵树B,在这个湖心岛的湖边C处测得亭子A在北偏西45︒方向上,测得树B在北偏东36︒方向上,又测得B、C之间的距离等于200米,求A、B之间的距离(结果精确到1米).1.414≈,sin360.588︒≈,cos360.809︒≈,tan360.727︒≈)18.如图,在平面直角坐标系中,△ABC的顶点(01)(32)(14),,,,,A B C均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△111A B C;(2)将△111A B C向左平移3个单位后得到△222A B C,画出△222A B C,并写出顶点2A的坐标.五、(本大题共2小题,每小题10分,满分20分)19.如图,△ABC内接于⊙O,过点A作⊙O的切线,交OC的延长线于点D,∠D=30°.………………○………………装……………线………………○………………○………………装……………线………………○校:______________姓名:_________________(1)求∠B 的度数;(2)若OD ⊥AB ,BC =5,求AD 的长.20.有A ,B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A 布袋中随机取出一个小球,记录其标有的数字为x ,再从B 布袋中随机取出一个小球,记录其标有的数字为y ,这样就确定点Q 的一个坐标为(x ,y ). (1)用列表或画树状图的方法写出点Q 的所有可能坐标; (2)求点Q 落在直线y =-x -1上的概率. 六、(本题满分12分)21.如图,直线AB 交x 轴于点A (4,0),交y 轴于点B ,交反比例函数y =kx(k ≠0)于点P (第一象限),若点P 的纵坐标为2,且tan ∠BAO =1. (1)求出反比例函数y =kx(k ≠0)的解析式; (2)过线段AB 上一点C 作x 轴的垂线,交反比例函数y =kx(k ≠0)于点D ,连接PD ,当△CDP 为等腰三角形时,求点C 的坐标.七、(本题满分12分)22.某旅行社推出一条成本价为500元/人的省内旅游线路,游客人数y (人/月)与旅游报价x (元/人)之间的关系为1300y x =-+,已知:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间. (1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价的取值范围; (2)求经营这条旅游线路每月所需要的最低成本;(3)当这条旅游线路的旅游报价为多少时,可获得最大利润?最大利润是多少? 八、(本题满分14分)23.如图,把两个边长相等的等边△ABC 和△ACD 拼成菱形ABCD ,点E 、F 分别是射线CB 、DC 上的动点(E 、F 与B 、C 、D 不重合),且始终保持BE =CF ,连接AE 、AF 、EF .(1)求证:①△ABE ≌△ACF ; ②△AEF 是等边三角形;(2)①当点E 运动到什么位置时,EF ⊥DC ?②若AB =4,当∠EAB =15°时,求△CEF 的面积.。
3.抛物线y=x2-2x+2的顶点坐标为( )A.(1,1)B.(-1,1) C(1,3) D(-1,3)4.如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF.四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x之间的函数关系式为( )A.y=5-xB.y=5-x2C. y=25-xD. y=25-x25.对于抛物线y=﹣(x+2)2+3,下列结论中正确结论的个数为()①抛物线的开口向下;②对称轴是直线x=﹣2;③图象不经过第一象限;④当x>2时,y随x的增大而减小.A.4B.3C.2D.16.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是( )A. B C.D.7.已知抛物线y=(a+1)x2-ax-8过点(2,-2),且与x轴的一个交点的横坐标为2n,则代数式4n2-n+2016 的值为( )A,2020 B.2019 C.2018 D.20178.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y(元)与销售单价x(元)满足关系y=﹣x2+70x﹣800,要想获得最大利润,则销售单价为()A.30元B.35元C.40元D.45元9.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()A. 方有两个相等的实数根B. 方程有一根等于0C. 方程两根之和等于0D. 方程两根之积等于010.已知,抛物线y=ax2+bx+c的部分图象如图,则下列说法:①对称轴是直线x=-1;②当-1<x<3时,y<0;③a+b+c=-4;④方程ax2+bx+c+5=0无实数根.其中正确的有( )A. 1个B. 2个C. 3个D.4个二.填空题的坐标为_____.22三.解答题16.如图在平面直角坐标系中,的顶点,,均在正方形网格的格点上。
数学试题 第1页(共6页) 数学试题 第2页(共6页)………………内……………………………外…………… 学校:_____2018届九年级第一次模拟大联考【湖北卷】数 学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1 A .4B .2C .±2D .±42.若代数式2xx +在实数范围内有意义,则x 的取值范为是 A .x ≥-2B .x ≠2C .x ≠0D .x ≠-23.地球绕太阳公转的速度约为110000 km /h ,则110000用科学记数法可表示为 A .0.11610⨯B .1.1510⨯C .0.11510⨯D .1.1610⨯4.如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是A .B .C .D .5.下列运算正确的是A .5a 2+3a 2=8a 4B .a 3•a 4=a 12C .(a +2b )2=a 2+4b 2D .(a -b )(-a -b )=b 2-a 26.把不等式组1010x x ⎧+>⎨-≤⎩的解集表示在数轴上,正确的是A .B .C .D .7.在我市开展的“好书伴我成长”读书活动中,某学校随机调查了九年级50名学生读书的册数统计数据如下表所示:那么这50名学生读书册数的平均数与中位数分别为A .2和3B .3和3C .2和2D .3和28.如图,△ABO 缩小后变为△A B O '',其中A 、B 的对应点分别为A′、B′,A′、B′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P ′的坐标为A .(2m,n ) B .(m ,n )C .(m ,2n ) D .(2m ,2n ) 9.已知直线y =kx (k >0)与双曲线3y x=交于点A (x 1,y 1),B (x 2,y 2)两点,则x 1y 2+x 2y 1的值为 A .-6 B .-9C .0D .910.如图,矩形ABCD 中,AB =4,AD =3,P 是边CD 上一点,将△ADP 沿直线AP 对折,得到△APQ .当……○………………内○………………装………………○………………订………………○…只装不密封……○………………外○………………装………………○………………订………………○…射线BQ交线段CD于点F时,DF的最大值是A.3 B.2C.4D.4第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)11.-7-(-21)=__________.12.分解因式:y3-4x2y=__________.13.一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为__________.14.如图,△ABC中,D为BC边上一点,∠ACD=45°,∠B=∠CAD=30°,则BDCD的值是__________.15.如图,在平行四边形ABCD中,M、N分别为CD、BC的中点,AM=2,AN=1,∠MAN=60°,则AB的长为__________.16.如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……如此进行下去,直至得C10.若P(28,m)在第14段抛物线C10上,则m=__________.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程组:4710611280x yx y+=⎧⎨-+=⎩.18.(本小题满分8分)如图,已知EF∥MN,EG∥HN,且FH=MG,求证:△EFG≌△NMH.19.(本小题满分8分)今年我国中东部大部分地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=__________,n=__________,扇形统计图中E组所占的百分比为__________%;(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数.20.(本小题满分8分)某家装公司聘请两队搬运工来搬运货物,他们都只能连续搬运5小时,甲队于某日0时开始搬运,过了1小时,乙队也开始搬运,如图,线段OG表示甲队搬运量y(千克)与时间x(时)的函数图象,线段EF表示乙队搬运量y(千克)与时间x(时)的函数图象.(1)求乙队搬运量y与时间x之间的函数关系式.(2)如果甲、乙两队各连续搬运5小时,那么乙队比甲队多搬运多少千克?数学试题第3页(共6页)数学试题第4页(共6页)数学试题 第5页(共6页) 数学试题 第6页(共6页)……………订………………线………………○………………………订………………线………………○…………_______________考号:______21.(本小题满分8分)如图,AB 为⊙O 的直径,D 是弧BC 的中点,DE ⊥AC 交AC 的延长线于E ,⊙O的切线BF 交AD 的延长线于F .(1)求证:DE 是⊙O 的切线;(2)若DE =3,⊙O 的半径为5.求BF 的长.22.(本小题满分10分)某商店原来将进货价为8元的商品按10元售出,每天可销售200件.现在采用提高售价,减少进货量的方法来增加利润,已知每件商品涨价1元,每天的销售量就减少20件.设这种商品每个涨价x 元.(1)填空:原来每件商品的利润是__________元,涨价后每件商品的实际利润是__________元(可用含x 的代数式表示);(2)为了使每天获得700元的利润,售价应定为多少元? (3)售价定为多少元时,每天利润最大,最大利润是多少元?23.(本小题满分10分)如图,将矩形ABCD 沿AH 折叠,使得顶点B 落在CD 边上的P 点处.折痕与边BC 交于点H ,已知AD =8,HC ∶HB =3∶5. (1)求证:△HCP ∽△PDA ;(2)探究AB 与HB 之间的数量关系,并证明你的结论;(3)连接BP ,动点M 在线段AP 上(点M 与点P 、A 不重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问当点M 、N 在移动过程中,线段EF 的长度是否发生变化?若变化,说明理由;若不变,求出线段EF 的长度.24.(本小题满分12分)如图,直线y =-x +3与x 轴交于点C ,与y 轴交于点B ,抛物线y =ax 2+12x +c 经过B 、C 两点,点E 是直线BC 上方抛物线上的一动点.(1)求抛物线的解析式;(2)过点E 作y 轴的平行线交直线BC 于点M 、交x 轴于点F ,当S △BEC =32时,请求出点E 和点M 的坐标;(3)在(2)的条件下,当E 点的横坐标为1时,在EM 上是否存在点N ,使得△CMN 和△CBE 相似?如果存在,请求出点N 的坐标;如果不存在,请说明理由.备用图。
2018届九年级第一次联考数学试卷(时间120分钟 满分150分)一、选择题:(每小题4分,共40分. 每小题四个选项,只有一项是正确的,请把它填写在下列表格中.) 1.下列计算错误..的是 ( )=D.3.2.在函数y =x 的取值范围是 ( ) A.2x -≥且0x ≠ B.2x ≤且0x ≠ C.0x ≠ D.2x -≤3.已知甲乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙则( )A.甲组数据比乙组数据的波动大B.乙组数据比甲组数据的波动大 C.甲组数据与乙组数据的波动一样大D.甲乙两组数据的波动大小不能比较4.用M ,N ,P ,Q 各代表四种简单几何图形(线段、正三角形、正方形、圆)中的一种. 图4-1—图4-4是由M ,N ,P ,Q 中的两种图形组合而成的(组合用“&”表示). 那么,下列组合图形中,表示P&Q 的是 ( )学校 班级: 姓名:M&PN&PN&QM&图4-1图4-2图4-3图4-4A .B .C .D .5. 方程0)()(2=-+-+-a c x c b x b a 的一个解必是 ( ) A.x =-1 B. x =1 C. x =a b - D. x =c a -6,那么能与它们组成直角三角形的第三条线段的长是( )A 、1cmBC 、5cmD 、1cm7. 在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a b c ,,,…,z (不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x 为奇数时,密码对应的序号12x y +=;当明码对应的序号x 为偶数时,密码对应的序号132x y =+.按上述规定,将明码“love ”译成密码是( )A .gawqB .shxcC .sdriD .love8、用配方法解下列方程时,配方有错误..的是( )A 、x 2― 2 x ― 99 = 0化为 (x ―1)2=100 B 、x 2+8x +9=0化为( x +4)2=25 C 、2t 2―7t ―4=0化为1681)47(2=-t D 、3y 2―4y ―2=0化为910)32(2=-y 9. 若一个三角形的三边长均满足方程2680x x -+=,则此三角形的周长为( ). A.6 8 10 B. 8 10 12 C.6 8 12 D. 6 10 1210. ====(a 、b 为正整数),请推测a + b =( )A.69 B.70 12 C. 71 D. 72二、填空题(每小题5分,共20分.)11. = __ .12. 化简:2+_______________.13.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长是a ,则图中四个小正方形A 、B 、C 、D 的面积之和是________________.14.若k 为实数,关于x 的一元二次方程05)1(2)1(2=+++--k x k x k 有实数根,则实数k 的取值范围为__________________.三、解答题(本大题共90分.)解答下列各题:(15、16各8分,共计16分) 15. 计算:)1043(53544-÷∙ 16.计算: 22)3352()3352(-+用适当的方法解一元二次方程:(17、18各8分,共计16分)17. 22)32()2(+=-x x 18 . 08922=+-x x19. (本题满分10分) 已知实数满足x x x =-+-20092008,求22008-x 的值.学校: 班级: 姓名:20.(本题满分10分)将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,而成本价又不高于10000元,售价应定为多少?这时应进货多少个?21. (12分)据某市旅游局统计:2018年“十一”黄金周期间,某市实现旅游收入再创历史新高,旅游消费呈现多样化,各项消费所占的比例如图所示,其中住宿消费为3438.24万元. (1)求某市今年“十一”黄金周期间旅游消费共多少亿元?旅游消费中各项消费的中位数是多少万元?(2)对于“十一”黄金周期间的旅游消费,如果某市2018年要达到3.42亿元的目标,那么,2018年到2018年的平均增长率是多少?2018年某市“十一”黄金周旅游各项消费分布统计图22、(本题满分12分)阅读下面的材料:)0(02≠=++a c bx ax 的根为.2421a ac b b x -+-=.2422aacb b x ---= ∴,2221a b a b x x -=-=+ .4)4(22221a caac b b x x =--=∙ 综上得,设)0(02≠=++a c bx ax 的两根为1x 、2x ,则有,21a b x x -=+.21acx x = 请利用这一结论解决问题:(1)若02=++c bx x 的两根为1和3,求b 和c 的值。
安徽省2018届九年级数学上学期第一次联考试题1.A.2. •选择题(共10小题,每小题4分,满分40分) 下列各式中,y 是x 的二次函数的是( ) 2 2 2(m^ 0) B. y=ax +bx+c C . y= ( x - 2) - xA. C. 3. A. 4. y=mx+1 二次函数 向左平移 向左平移 已知函数 k v 4D . y=3x - 1 ) 1个单位,再向上平移 1个单位,再向下平移 k 的取值范围是( D. k < 4 且 k 工 3 y= - 2 (x - 1) 2+3的图象如何平移就得到 y=- 2x 2的图象( 1个单位,再向上平移 3个单位B .向右平移 1个单位,再向下平移 3个单位D .向右平移 y= (k - 3) x +2x+1的图象与x 轴有交点,贝UB . k w 4C . k v 4 且 k z 33个单位 3个单位 ) x 3.23 3.24 3.25 3.26 y -0.06 -0.02 0.03 0.09根据下表中二次函数 y=ax 2+bx+c (a 丰0)的对应值: 2z A. 3.23 v x v 3.24 B. 3.24 v x v 3.25 C. 3.25 v x v 3.26 D.不能确定 5. 已知二次函数y=ax 2+bx+c ( a z 0)的图象如图,则下列说法:①c=0;②该抛物线的对称 轴是直线x= - 1;③当x=1时,y=3a ;④am 2+bm+a> 0( m z- 1),其中正确的个数是() A. 4 B . 3 C . 2 6. 如图,用若干个全等的正五边形可以拼成一个环状, 接情况,要完全拼成一个圆环还需要的正五边形个数是A. 5 B . 6 C . 7D . 1 图中所示的是前 ( ) D . 8 3个正五边形的拼 7. 如图,一次函数 y 1=kx+n (k z 0)与二次函数 y 2=ax+bx+c (a z 0)5)、B (9,2)两点,则关于 x 的不等式kx+n >ax 2+bx+c 的解集为( A. - 1 w x < 9 B.- 1 w x v 9 C. - 1 v x < 9的图象相交于 A (- 1, ) D. x <- 1 或 x >9 (第5题) (第6题) &如图,在宽为20m,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分) 部分种上草坪.要使草坪的面积为 列方程正确的是( ) A. (20 - x ) ( 32 - x ) =540 C. ( 20+x ) ( 32 - x ) =540 540mf ,,余下的 求道路的宽. 如果设小路宽为x ,根据题意,所 .(20 - x ) (32 - x ) =100 .(20+x ) (32 - x ) =100 9.在10X 10的网格中,每个小方格都是边长为 1的小正方形,每个小正方形的顶点称为格 点.若抛物线经过图中的三个格点, 则以这三个格点为顶点的三角形称为抛物线的“内接格 点三角形”.以 O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线 OB的两个交点之间的距离为 匚,且这两个交点与抛物线的顶点是抛物线的内接格点三角形 的三个顶点,则满足上述条件且对称轴平行于 y 轴的抛物线条数是( ) A. 16 B . 15 C . 14 D . 1310. 如图,已知:正方形 ABCD 边长为1, E 、F 、G H 分别为各边上的点,且 AE=BF=CG=DH设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是()二•填空题(共 4小题,每小题5分) 11. 规定:如果10n =M 则称n 是M 的常用对数,记作:lgM=n .如102=100,所以lg100=2 .那 么以下选项正确的有 ________ (填写序号).① lg1000=3 ; ② Ig10+Ig100=lg110 ; ③ lg1 +lg0.1= - 1;④ 10叫M ( M 是正数). 12. 已知二次函数 y=x 2+bx+3,其中b 为常数,当x >2时,函数值y 随着x 的增大而增大, 则b 的取值范围是 ________ . 13.如图,一段抛物线:y= - x (x - 3) (0< x w 3),记为G,它与x轴交于点O, A; 将C 绕点A 旋转180°得C 2,交x 轴于点A 2; 将C 2绕点A 旋转180°得G,交x 轴于点A a ;如此进行下去,直至得 C 13.若P (37, m 在第13段抛物线C 13上,贝U m= _________ . 14.如图,抛物线的顶点为 P (- 2, 2),与y 轴交于点A (0, 3).若平移该抛物线使其顶 点P 沿直线移动到点 P' ( 2, - 2),点A 的对应点为A',则抛物线上PA 段扫过的区域(阴影部分)的面积为 ________(第13题)(第14题)三. 解答题(共4小题,每题8分,满分32分)15.如图、四边形 ABCD 中, AB=AD=6 / A=60°,/ ADC=150,已知四边形的周长为 30,求四边形ABCD 勺面积.(第15题)JD.OU(第 8 题) (第 9 题) (第 10 题)16. (1)观察下列图形与等式的关系,并填空勤行325 62 3 (2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:• ••• Mnfr....... 第n —匝• e • •第 0*2 行_ 217.如图,二次函数 y=ax +bx 的图象经过点 A ( 2,4)与B ( 6,0). (1 )求a , b 的值; (2)点C 是该二次函数图象上 A, B 两点之间的一动点,横坐标为x (2 v x v 6),写出四边形0ACB 勺面积S 关于点C 的横坐标x 的函数表达式,并求 S 的最大值.1+3+5+…+ ( 2n - 1) + ( _____ ) + (2n - 1) + …+5+3+1 =1+3+5+7= O O O• • O O• •• o• o oo 01+3*5+7-^•■+ ( 2n-l )=o o oo …18. 已知抛物线y=- • .■ - x+4,2 x(1) 用配方法确定它的顶点坐标、对称轴;(2) x取何值时,y随x增大而减小?(3) x取何值时,抛物线在x轴上方?四、(共2题,每题10分,满分共20分)19. 2015年全球葵花籽产量约为4200万吨,比2014年上涨2.1%,某企业加工并销售葵花籽,假设销售量与加工量相等,在图中,线段AB折线CDB分别表示葵花籽每千克的加工成本y1 (元)、销售价y2 (元)与产量x (kg)之间的函数关系;(1 )请你解释图中点B的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数解析式;(3)当0 v x< 90时,求该葵花籽的产量为多少时,该企业获得的利润最大?最大利润是多少?(第19 题)20. 2015年励志中学荣获广德县首届“皖新杯”汉字听写大赛团体第一名。
2017-2018学年四川省成都三校联考九年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)如图,数轴上点A表示数a,则|a|是()A.2B.1C.﹣1D.﹣22.(3分)某种零件模型如图所示,该几何体(空心圆柱)的从上面看到的形状图是()A.B.C.D.3.(3分)“2014年至2016年,中国同‘一带一路’沿线国家贸易总额超过3万亿美元”.将数据3万亿美元用科学记数法表示为()A.3×1014美元B.3×1013美元C.3×1012美元D.3×1011美元4.(3分)剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.5.(3分)若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根6.(3分)下列计算正确的是()A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4C.a2•a3=a6D.(ab2)2=a2b47.(3分)下列事件中是必然事件的是()A.任意画一个正五边形,它是中心对称图形B.实数x使式子有意义,则实数x>3C.a,b均为实数,若a=,b=,则a>bD.5个数据分别是:6,6,3,2,1,则这组数据的中位数是38.(3分)若关于x的方程+3=有增根,则m的值是()A.﹣2B.2C.1D.﹣19.(3分)如图的矩形ABCD中,E点在CD上,且AE<AC.若P、Q两点分别在AD、AE上,AP:PD=4:1,AQ:QE=4:1,直线PQ交AC于R点,且Q、R两点到CD的距离分别为q、r,则下列关系何者正确?()A.q<r,QE=RC B.q<r,QE<RC C.q=r,QE=RC D.q=r,QE<RC10.(3分)如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x 轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)如图,CD平分∠ECB,且CD∥AB,若∠A=36°,则∠B=.12.(4分)二次函数y=x2﹣2x+3的图象向左平移一个单位,再向上平移两个单位后,所得二次函数的解析式为.13.(4分)如图,在△ABC中,两条中线BE、CD相交于点O,则S△DOE:S△COB=.14.(4分)《九章算术》中记载:“今有竹高一丈,未折抵地,去根三尺,问折者高几何?”译文:有一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?我们用线段OA和线段AB来表示竹子,其中线段AB表示竹子折断部分,用线段OB表示竹梢触地处离竹根的距离,则竹子折断处离地面的高度OA是尺.三、解答题(本大题共6小题,共54分)15.(12分)(1)(﹣1)﹣1+﹣6sin45°+(﹣1)2017(2)解方程:4x2﹣3=12x(用公式法解)16.(6分)先化简(1﹣)÷,再从不等式2x﹣1<6的正整数解中选一个适当的数代入求值.17.(8分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.18.(8分)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔.文峰塔的木塔年久倾毁,仅存塔基.1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁塔的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)19.(10分)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x 轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连接AB,E是线段AB上一点,过点E作x轴的垂线,交反比例函数图象于点F,若EF=AD,求出点E的坐标.20.(10分)如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC 交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②若CE=4,CF=2,求DN的长.B卷(50分)一、填空题(本大题共5小题,每小题4分,共20分)21.(4分)已知一元二次方程x2+3x﹣4=0的两根为x1、x2,则x12+x1x2+x22=.22.(4分)已知△ABC中,AB=6,AC=BC=5,将△ABC折叠,使点A落在BC边上的点D处,折痕为EF(点E.F分别在边AB、AC上).当以B.E.D为顶点的三角形与△DEF相似时,BE的长为.23.(4分)已知抛物线y=x2,以D(﹣2,1)为直角顶点作该抛物线的内接Rt△ADB(即A.D.B 均在抛物线上).直线AB必经过一定点,则该定点坐标为.24.(4分)在直角坐标系中,函数y=(x>0,k为常数)的图象经过A(4,1),点B(a,b)(0<a<4)是双曲线上的一动点,过A作AC⊥y轴于C,点D是坐标系中的另一点.若以A.B.C.D为顶点的平行四边形的面积为12,那么对角线长度的最大值为.25.(4分)我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计.用计算机随机产生m 个有序数对(x,y)(x,y是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部.如果统计出这些点中到原点的距离小于或等于1的点有n个,则据此可估计π的值为.(用含m,n的式子表示)二、解答题(本大题共3小题,共30分)26.(8分)某花木公司在20天内销售一批马蹄莲.其中,该公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)部分对应值如下表所示.与时间x(x为整数,单位:天)关2系如图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与x的变化规律,写出y1与x的函数关系式及自变量x的取值范围;(2)观察马蹄莲网上销售量y2与时间x的变化规律,请你设想商家采用了何种销售策略使得销售量发生了变化,并写出销售量y2与x的函数关系式及自变量x的取值范围;(3)设该花木公司日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时最大值.27.(10分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.28.(12分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.【分析】直接根据数轴上A点的位置可求a,再根据绝对值的性质即可得出结论.【解答】解:∵A点在﹣2处,∴数轴上A点表示的数a=﹣2,|a|=|﹣2|=2.故选:A.【点评】本题考查的是绝对值和数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.2.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:由上向下看空心圆柱,看到的是一个圆环,中间的圆要画成实线.故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3万亿=3 0000 0000 0000=3×1012,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是中心对称图形,也不是轴对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项错误;D、既是中心对称图形,也是轴对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【分析】结合平方根和算术平方根的定义可做选择.【解答】解:∵方程(x﹣5)2=19的两根为a和b,∴a﹣5和b﹣5是19的两个平方根,且互为相反数,∵a>b,∴a﹣5是19的算术平方根,故选:C.【点评】本题主要考查了平方根和算术平方根的定义,熟记定义是解答此题的关键.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为根号a.6.【分析】根据去括号、同底数幂的乘法底数不变指数相加,积的乘方,可得答案.【解答】解:A、括号前是负号,去括号全变号,﹣(a﹣b)=﹣a+b,故A不符合题意;B、a2+a2=2a2,故B不符合题意;C、同底数幂的乘法底数不变指数相加,a2•a3=a5,故C不符合题意;D、积的乘方等于乘方的积,故D符合题意;故选:D.【点评】本题考查了积的乘方,熟记法则并根据法则计算是解题关键.7.【分析】根据中心对称图形的概念,二次根式有意义的条件,立方根和算术平方根的定义,中位数的定义对各选项分析判断即可得解.【解答】解:A、任意画一个正五边形,它是中心对称图形,是不可能时事件,故本选项错误;B、实数x使式子有意义,则实数x>3,是不可能时事件,应为x≥3,故本选项错误;C、a,b均为实数,若a=,b=,则a=2,b=2,所以,a=b,故a>b是不可能事件,故本选项错误;D、5个数据是:6,6,3,2,1,则这组数据的中位数是3,是必然事件,故本选项正确.故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.【分析】解分式方程找出方程的根为x=4﹣,由此根为增根可得出4﹣=3,解之即可得出m的值.【解答】解:方程+3=可变形为1+3(x﹣3)=x﹣m,解得:x=4﹣.∵原分式方程有增根,∴4﹣=3,解得:m=2.故选:B.【点评】本题考查了分式方程的增根以及解分式方程,根据原分式方程有增根找出4﹣=3是解题的关键.9.【分析】根据矩形的性质得到AB∥CD,根据已知条件得到,根据平行线分线段成比例定理得到PQ∥CD,=4,根据平行线间的距离相等,得到q=r,证得=,于是得到结论.【解答】解:∵在矩形ABCD中,AB∥CD,∵AP:PD=4:1,AQ:QE=4:1,∴,∴PQ∥CD,∴=4,∵平行线间的距离相等,∴q=r,∵=4,∴=,∵AE<AC,∴QE<CR.故选:D.【点评】本题考查了平行线分线段成比例定理,矩形的性质,熟练掌握平行线分线段成比例定理是解题的关键.10.【分析】把点A坐标代入y2,求出a的值,即可得到函数解析式;令y=3,求出A、B、C 的横坐标,然后求出BD、AD的长,利用勾股定理的逆定理以及结合二次函数图象分析得出答案.【解答】解:∵抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),∴3=a(1﹣4)2﹣3,解得:a=,故①正确;过点E作EF⊥AC于点F,∵E是抛物线的顶点,∴AE=EC,E(4,﹣3),∴AF=3,EF=6,∴AE==3,AC=2AF=6,∴AC≠AE,故②错误;当y=3时,3=(x+1)2+1,解得:x1=1,x2=﹣3,故B(﹣3,3),D(﹣1,1),则AB=4,AD=BD=2,∴AD2+BD2=AB2,∴③△ABD是等腰直角三角形,正确;∵(x+1)2+1=(x﹣4)2﹣3时,解得:x1=1,x2=37,∴当37>x>1时,y1>y2,故④错误.故选:B.【点评】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,已知函数值求自变量的值.二、填空题(本大题共4小题,每小题4分,共16分)11.【分析】先根据平行线的性质,得出∠A=∠ECD,∠B=∠BCD,再根据角平分线的定义,即可得到∠ECD=∠BCD,进而得出∠B=∠A.【解答】解:∵CD∥AB,∴∠A=∠ECD,∠B=∠BCD,又∵CD平分∠ECB,∴∠ECD=∠BCD,∴∠B=∠A=36°,故答案为:36°.【点评】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同位角相等,内错角相等.12.【分析】先把函数化为顶点式的形式,再根据“左加右减,上加下减”的法则即可得出结论.【解答】解:∵抛物线y=x2﹣2x+3可化为y=(x﹣1)2+2,∴抛物线向左平移1个单位,再向上平移2个单位后,所得新抛物线的表达式为y=(x﹣1+1)2+2+4,即y=x2+4.故答案为:y=x2+4.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键.13.【分析】根据三角形的中位线得出DE∥BC,DE=BC,根据平行线的性质得出相似,根据相似三角形的性质求出即可.【解答】解:∵BE和CD是△ABC的中线,∴DE=BC,DE∥BC,∴=,△DOE∽△COB,∴=()2=()2=,故答案为:.【点评】本题考查了相似三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方,三角形的中位线平行于第三边,并且等于第三边的一半.14.【分析】根据题意结合勾股定理得出折断处离地面的长度即可.【解答】解:设折断处离地面的高度OA是x尺,根据题意可得:x2+32=(10﹣x)2,解得:x=4.55,答:折断处离地面的高度OA是4.55尺.故答案为:4.55.【点评】此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.三、解答题(本大题共6小题,共54分)15.【分析】(1)先求出每一部分的值,然后计算即可;(2)先求出b2﹣4ac的值,再代入公式求出即可.【解答】解:(1)原式=+1+2﹣6×+(﹣1)=+1+2﹣3﹣1=0;(2)4x2﹣3=12x,4x2﹣12x﹣3=0,△=(﹣12)2﹣4×4×(﹣3)=192,x=,x1=,x2=.【点评】本题考查了负整数指数幂,二次根式的性质,特殊角的三角函数值,能求出每一部分的值是解(1)的关键,能熟记公式是解(2)的关键.16.【分析】先把括号里的式子进行通分,再把后面的式子根据完全平方公式、平方差公式进行因式分解,然后约分,再求出不等式的解集,最后代入一个合适的数据代入即可.【解答】解:(1﹣)÷=×=,∵2x﹣1<6,∴2x<7,∴x<,把x=3代入上式得:原式==4.【点评】此题考查了分式的化简求值以及一元一次不等式的解法,用到的知识点是通分、完全平方公式、平方差公式以及一元一次不等式的解法,熟练掌握公式与解法是解题的关键.17.【分析】(1)由周角乘以“优秀”所对应的扇形的百分数,得出“优秀”所对应的扇形的圆心角度数;求出全年级总人数,得出“良好”的人数,补全统计图即可;(2)画出树状图,由概率公式即可得出答案.【解答】解:(1)360°(1﹣40%﹣25%﹣15%)=72°;故答案为:72;全年级总人数为45÷15%=300(人),“良好”的人数为300×40%=120(人),将条形统计图补充完整,如图所示:(2)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、丁的结果有2个,∴P(选中的两名同学恰好是甲、丁)==.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.18.【分析】(1)利用题中的公式和特殊角的三角函数值计算75度的正切值;(2)如图2,先在Rt△BDE中利用正切的定义计算出BE,然后计算BE+AE即可.【解答】解:(1)tan75°=tan(45°+30°)====2+;(2)如图2,易得DE=CA=5.7,AE=CD=1.72,在Rt△BDE中,∵tan∠BDE=,∴BE=DEtan75°=5.7×(2+)≈21.2724,∴AB=BE+AE=21.2724+1.72≈23(m).答:文峰塔AB的高度约为23m.【点评】本题考查了解直角三角形的应用﹣仰角俯角:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.19.【分析】(1)设反比例函数的解析式为y=,根据题意得出方程组,求出方程组的解即可;(2)设直线AB的解析式为y=ax+b,求出直线AB的解析式,设E点的横坐标为m,则E(m,﹣m+7),F(m,),求出EF=﹣m+7﹣,得出关于m的方程,求出m即可.【解答】解:(1)设反比例函数的解析式为y=,把(n,1)代入得:k=n,即y=,∵点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5,∴,解得:m=1,n=6,即A(1,6),B(6,1);反比例函数的解析式为:y=;(2)设直线AB的解析式为y=ax+b,把A(1,6)和B(6,1)代入得:,解得:a=﹣1,b=7,即直线AB的解析式为:y=﹣x+7,设E点的横坐标为m,则E(m,﹣m+7),F(m,),∴EF=﹣m+7﹣,∵EF=AD,∴﹣m+7﹣=,解得:m=2,m2=3,经检验都是原方程的解,即E的坐标为(2,5)或(3,4).【点评】本题考查了用待定系数法求出反比例函数和一次函数的解析式,解二元一次方程组的应用,能得出二元一次方程组是解此题的关键,综合性比较强,比较好.20.【分析】(1)根据等腰直角三角形的性质得到∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,于是得到∠DCE=∠DCF=135°,根据全等三角形的性质即可的结论;(2)①证得△CDF∽△CED,根据相似三角形的性质得到,即CD2=CE•CF,根据等腰直角三角形的性质得到CD=AB,于是得到AB2=4CE•CF;②如图,过D作DG⊥BC于G,于是得到∠DGN=∠ECN=90°,CG=DG,当CE=4,CF=2时,求得CD=2,推出△CEN∽△GDN,根据相似三角形的性质得到=2,根据勾股定理即可得到结论.【解答】(1)证明:∵∠ACB=90°,AC=BC,AD=BD,∴∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,∴∠DCE=∠DCF=135°,在△DCE与△DCF中,,∴△DCE≌△DCF,∴DE=DF;(2)解:①∵∠DCF=∠DCE=135°,∴∠CDF+∠F=180°﹣135°=45°,∵∠CDF+∠CDE=45°,∴∠F=∠CDE,∴△CDF∽△CED,∴,即CD2=CE•CF,∵∠ACB=90°,AC=BC,AD=BD,∴CD=AB,∴AB2=4CE•CF;②如图,过D作DG⊥BC于G,则∠DGN=∠ECN=90°,CG=DG,当CE=4,CF=2时,由CD2=CE•CF得CD=2,∴在Rt△DCG中,CG=DG=CD•sin∠DCG=2×sin45°=2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△CEN∽△GDN,∴=2,∴GN=CG=,∴DN===.【点评】本题考查了旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.B卷(50分)一、填空题(本大题共5小题,每小题4分,共20分)21.【分析】根据根与系数的关系得到x1+x2=﹣3,x1x2=﹣4,再利用完全平方公式变形得到x12+x1x2+x22=(x1+x2)2﹣x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=﹣3,x1x2=﹣4,所以x12+x1x2+x22=(x1+x2)2﹣x1x2=(﹣3)2﹣(﹣4)=13.故答案为13.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.22.【分析】分两种情形如图2中,①当∠FED=∠EDB时,②当∠FED=∠DEB时,分别求解即可.【解答】解:如图,①当∠FED=∠EDB时,∵∠B=∠EAF=∠EDF,∴△EDF∽△△DBE,∴EF∥CB,设EF交AD于点O,∵AO=OD,OE∥BD,∴AE=EB=3,②当∠FED=∠DEB时,则∠FED=∠FEA=∠DEB=60°,此时△FED∽△DEB,设AE=ED=x,作DN⊥AB于N,则EN=x,DN=x,∵DN∥CM,∴=,∴=,∴x=,∴BE=6﹣x=,∴BE=3或,故答案为:3或.【点评】本题考查了相似三角形的判定与性质:有两个角对应相等的两个三角形相似;相似三角形的对应边的比相等.也考查了折叠的性质以及等腰三角形的性质,学会分类讨论的思想,不能漏解,属于中考常考题型.23.【分析】将一次函数与二次函数组成方程组,得到关于x的一元二次方程,利用根与系数的关系建立起系数与根的关系,又知两直线垂直,可得比例系数之积为﹣1,列出关于x、y 的方程,利用根与系数的关系将方程转化为直线的解析式,再判断其所过定点.【解答】解:设A(x1,y1),B(x2,y2),直线AB的解析式为y=kx+b,由得x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,y1+y2=x12+x22= [(x1+x2)2﹣2x1x2=4k2+2b,•y1y2=x12•x22=(x12•x22)=b2,∵AD⊥BD,k AD•k BD=﹣1∴•=﹣1,∴(y1﹣1)(y2﹣1)+(x1+2)(x2+2)=0,∴x1x2+2(x1+x2)+4+y1y2﹣(y1+y2)+1=0,b2﹣6b﹣4k2+8k+5=0∴(b﹣3)2=4(k﹣1)2,b﹣3=2(k﹣1),b﹣3=﹣2(k﹣1)则b=2k+1或b=﹣2k+5,代入y=kx+b得,y=kx+2k+1,y=kx﹣2k+5,y=(x+2)k+1,y=(x﹣2)+5∵x≠﹣2.则直线AB的解析式为y=(x﹣2)k+5,且知过定点(2,5).故答案为:(2,5).【点评】本题考查了一次函数与二次函数的性质及根与系数的关系,此题设计知识面广,各种知识错综复杂交织在一起,要有恒心和毅力并有足够的经验方可解答.24.【分析】过点B作BF⊥AC于点F,可先将反比例函数式求解出,利用勾股定理得出PB;同时过点D1作D1M⊥CA于M,可得出CD1的长;过D2作D2N⊥直线AC于N,并得出AD2的长,分别比较BP、CD1和AD2的大小即可.【解答】解:∵函数y=(x>0,k为常数)的图象经过A(4,1),∴k=4×1=4,则双曲线为y=,如图,过B作BF⊥AC于F,当平行四边形ABCD面积为12时,BF•AC=12,∴BF=3,即b=4.把y=4代入y=得,x=1,则B(1,4),设BD交AC于P,PC=AP=2,CF=PF=1,∴PB2=32+12=10,∴PB=,BD=2PB=2,当四边形AD1BC面积为12时,过D1作D1M⊥CA于M,D1M=BF=3,CF=AM=1,CD12=52+32=34,∴CD1=,当平行四边形ABD2C的面积为12时,过D2作D2N⊥直线AC于N,CN=AF=3,D2N=BF=3,AN=7.∴AD22=72+32=58,AD2=,∴对角线最长可达,故答案为.【点评】本题主要考查了反比例函数的综合应用以及平行四边形的面积等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.25.【分析】根据落在扇形内的点的个数与正方形内点的个数之比等于两者的面积之比列出=,可得答案.【解答】解:根据题意,点的分布如图所示:则有=,∴π=,故答案为:.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.二、解答题(本大题共3小题,共30分)26.【分析】(1)先判断出y1与x之间是二次函数关系,然后设y1=ax2+bx+c(a≠0),然后取三组数据,利用待定系数法求二次函数解析式解答;(2)销售量增加,从降价促销上考虑,然后分两段利用待定系数法求一次函数解析式解答;(3)分①0≤x≤8时,②8<x≤20时两种情况,根据总销售量y=y1+y2,整理后再根据二次函数的最值问题解答.【解答】解:(1)由图表数据观察可知y1与x之间是二次函数关系,设y1=ax2+bx+c(a≠0),则,解得,故y1与x函数关系式为y1=﹣x2+5x(0≤x≤20);(2)销售8天后,该花木公司采用了降价促销(或广告宣传)的方法吸引了淘宝买家的注意力,日销量逐渐增加;当0≤x≤8,设y=kx,∵函数图象经过点(8,4),∴8k=4,解得k=,所以,y=x,当8<x≤20时,设y=mx+n,∵函数图象经过点(8,4)、(20,16),∴,解得,所以,y=x﹣4,综上,y2=;(3)当0≤x≤8时,y=y1+y2=x﹣x2+5x=﹣(x2﹣22x+121)+=﹣(x﹣11)2+,∵抛物线开口向下,x的取值范围在对称轴左侧,y随x的增大而增大,8﹣11)2+=28;∴当x=8时,y有最大值,y最大=﹣(当8<x≤20时,y=y1+y2=x﹣4﹣x2+5x,=﹣(x2﹣24x+144)+32,=﹣(x﹣12)2+32,∵抛物线开口向下,顶点在x的取值范围内,∴当x=12时,y有最大值为32,∴该花木公司销售第12天,日销售总量最大,最大值为32万朵.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售量的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=﹣时取得.27.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.先推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,∠DCE=∠EDC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①先表示出DN,BM,再判断出△BMD∽△DNE,即可得出结论;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:∵OA=2,OC=2,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DCE=∠EDC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①如图1,过点D作MN⊥AB交AB于M,交OC于N,∵A(0,2)和C(2,0),∴直线AC的解析式为y=﹣x+2,设D(a,﹣a+2),∴DN=﹣a+2,BM=2﹣a∵∠BDE=90°,∴∠BDM+∠NDE=90°,∠BDM+∠DBM=90°,∴∠DBM=∠EDN,∵∠BMD=∠DNE=90°,∴△BMD∽△DNE,∴==.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.【点评】本题考查相似形综合题、四点共圆、锐角三角函数、相似三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加辅助线,学会构建二次函数解决问题,属于中考压轴题.28.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);。
2017-2018学年度第一学期三校第一次联考数学试题一.选择题(共10小题,每小题4分,满分40分) 1.下列各式中,y 是x 的二次函数的是( )A .y=mx 2+1(m ≠0)B .y=ax 2+bx+cC .y=(x ﹣2)2﹣x 2D .y=3x ﹣12.二次函数y=﹣2(x ﹣1)2+3的图象如何平移就得到y=﹣2x 2的图象( )A .向左平移1个单位,再向上平移3个单位B .向右平移1个单位,再向上平移3个单位C .向左平移1个单位,再向下平移3个单位D .向右平移1个单位,再向下平移3个单位3.已知函数y=(k ﹣3)x 2+2x+1的图象与x 轴有交点,则k 的取值范围是( ) A .k <4 B .k ≤4 C .k <4且k ≠3 D .k ≤4且k ≠32判断方程ax +bx+c=0(a ≠0)的一个解x 的范围是( )A .3.23<x <3.24B .3.24<x <3.25C .3.25<x <3.26D .不能确定5.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=3a ;④am 2+bm+a >0(m ≠﹣1),其中正确的个数是( ) A .4 B .3 C .2 D .16.如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是( ) A .5 B .6 C .7 D .87.如图,一次函数y1=kx+n (k ≠0)与二次函数y 2=ax 2+bx+c (a ≠0)的图象相交于A (﹣1,5)、B (9,2)两点,则关于x 的不等式kx+n ≥ax 2+bx+c 的解集为( ) A .﹣1≤x ≤9 B .﹣1≤x <9 C .﹣1<x ≤9 D .x ≤﹣1或x ≥9(第5题) (第6题) (第7题)8.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m 2,求道路的宽. 如果设小路宽为x ,根据题意,所列方程正确的是( ) A .(20﹣x )(32﹣x )=540 B .(20﹣x )(32﹣x )=100C .(20+x )(32﹣x )=540 D.(20+x)(32﹣x )=1009.在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是( ) A .16 B .15 C .14 D .13密封线内不要题答10.如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.(第8题)(第9题)(第10题)二.填空题(共4小题,每小题5分)11.规定:如果10n=M,则称n是M的常用对数,记作:lgM=n.如102=100,所以lg100=2.那么以下选项正确的有______(填写序号).①lg1000=3;②lg10+lg100=lg110;③lg1+lg0.1=﹣1;④10lgM=M(M是正数).12.已知二次函数y=x2+bx+3,其中b为常数,当x≥2时,函数值y随着x的增大而增大,则b的取值范围是______.13.如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=______.14.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为______.(第13题)(第14题)三.解答题(共4小题,每题8分,满分32分)15.如图、四边形ABCD中,AB=AD=6,∠A=60°,∠ADC=150°,已知四边形的周长为30,求四边形ABCD的面积.(第15题)16.(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+(______)+(2n﹣1)+…+5+3+1=______.17.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.18.已知抛物线y=﹣﹣x+4,(1)用配方法确定它的顶点坐标、对称轴;(2)x取何值时,y随x增大而减小?(3)x取何值时,抛物线在x轴上方?四、(共2题,每题10分,满分共20分)19. 2015年全球葵花籽产量约为4200万吨,比2014年上涨2.1%,某企业加工并销售葵花籽,假设销售量与加工量相等,在图中,线段AB、折线CDB分别表示葵花籽每千克的加工成本y1(元)、销售价y2(元)与产量x(kg)之间的函数关系;(1)请你解释图中点B的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数解析式;(3)当0<x≤90时,求该葵花籽的产量为多少时,该企业获得的利润最大?最大利润是多少?(第19题)20.2015年励志中学荣获广德县首届“皖新杯”汉字听写大赛团体第一名。
今年九月某校也举办了首届“做文明人,写规范字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,请根据表格提供的信息,解答以下问题:(1)本次决赛共有______名学生参加;(2)直接写出表中a=______,b=______;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为______.五、(共2题,每小题12分,满分24分)21.设二次函数y1,y2的图象的顶点分别为(a,b)、(c,d),当a=﹣c,b=2d,且开口方向相同时,则称y1是y2的“反倍顶二次函数”.(1)请写出二次函数y=x2+x+1的一个“反倍顶二次函数”;(2)已知关于x的二次函数y1=x2+nx和二次函数y2=nx2+x,函数y1+y2恰是y1﹣y2的“反倍顶二次函数”,求n.22.已知点A(2,a)在抛物线y=x2上(1)求A点的坐标;(2)在x轴上是否存在点P,使△OAP是等腰三角形?若存在写出P点坐标;若不存在,说明理由.六、(本题满分14分23.如图,已知二次函数L1:y=ax2﹣2ax+a+3(a>0)和二次函数L2:y=﹣a(x+1)2+1 (a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣2ax+a+3(a>0)的最小值为______,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是______.(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明).(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+1)2+1=0的解.2017-2018学年度第一学期三校第一次联考数学试题参考答案与试题解析一.选择题(共10小题)A.C.B.B.A.C.A.A.C.B.二.填空题(共4小题)11、①③④. 12、b≥﹣4. 13、2. 14、12.三.解答题(共8小题)15.解:连接BD,作DE⊥AB于E,∵AB=AD=6,∠A=60°,∴△ABD是等边三角形,∴AE=BE=AB=3,∴DE==3,因而△ABD的面积是=×AB•DE=×6×3=9,∵∠ADC=150°∴∠CDB=150°﹣60°=90°,则△BCD是直角三角形,又∵四边形的周长为30,∴CD+BC=30﹣AD﹣AB=30﹣6﹣6=18,设CD=x,则BC=18﹣x,根据勾股定理得到62+x2=(18﹣x)2解得x=8,∴△BCD的面积是×6×8=24,S四边形ABCD=S△ABD+S△BDC=9+24.16. 解:(1)42;n2.(2)2n+1;2n2+2n+1.17.解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值为16.18.解:(1)∵y=﹣﹣x+4=﹣(x2+2x﹣8)=﹣[(x+1)2﹣9]=﹣+,∴它的顶点坐标为(﹣1,),对称轴为直线x=﹣1;(2)∵抛物线对称轴是直线x=﹣1,开口向下,∴当x>﹣1时,y随x增大而减小;(3)当y=0时,即﹣+=0解得x1=2,x2=﹣4,而抛物线开口向下,∴当﹣4<x<2时,抛物线在x轴上方.19解:(1)图中点B的横坐标、纵坐标的实际意义为:当产量为130kg时,葵花籽每千克的加工成本与销售价相同,都是9.8元.(2)设线段AB所表示的y1与x之间的函数解析式为y1=k1x+b1,∵A点坐标为(0,2),B点坐标为(130,9.8),∴有,解得:.∴线段AB所表示的y1与x之间的函数解析式y1=0.06x+2.(3)当0<x≤90时,销售价y2(元)与产量x(kg)之间的函数图象为线段CD.设线段CD所表示的y2与产量x之间的函数解析式为y2=k2x+b2,∵C点坐标为(0,8),D点坐标为(90,9.8),∴有,解得:.∴线段CD所表示的y2与x之间的函数解析式y2=0.02+8.令企业获得的利润为W,则有W=x(y2﹣y1)=﹣0.04x2+6x=﹣0.04(x﹣75)2+225,故当x=75时,W取得最大值225.答:该葵花籽的产量为75kg时,该企业获得的利润最大;最大利润为225元.20.(1)本次决赛共有50 名学生参加;(2)直接写出表中a= 16 ,b= 0.28 ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为48% .21.解:(1)∵y=x2+x+1,∴y=,∴二次函数y=x2+x+1的顶点坐标为(﹣,),∴二次函数y=x2+x+1的一个“反倍顶二次函数”的顶点坐标为(,),∴反倍顶二次函数的解析式为y=x2﹣x+;(2)y1+y2=x2+nx+nx2+x=(n+1)x2+(n+1)x,y1+y2=(n+1)(x2+x+)﹣,顶点坐标为(﹣,﹣),y1﹣y2=x2+nx﹣nx2﹣x=(1﹣n)x2+(n﹣1)x,y1﹣y2=(1﹣n)(x2﹣x+)﹣,顶点坐标为(,﹣),由于函数y1+y2恰是y1﹣y2的“反倍顶二次函数”,则﹣2×=﹣,解得n=.22.解:(1)∵点A(2,a)在抛物线y=x2上,∴a=22=4,∴A点的坐标为:(2,4);(2)如图所示:以O为顶点时,AO=P1O=2或AO=AP2=2∴点P坐标:(2,0),(﹣2,0),以A为顶点时,AO=OP,∴点P坐标:(4,0);以P为顶点时,OP′=AP′,∴AE2+P′E2=P′A2,设AP′=x则42+(x﹣2)2=x2,解得:x=5,∴点P坐标:(5,0),综上所述使△OAP是等腰三角形则P点坐标为:(2,0),(﹣2,0),(4,0),(5,0).23.(1)函数y=ax2﹣2ax+a+3(a>0)的最小值为 3 ,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是﹣1≤x≤1 .(2)由二次函数L1:y=ax2﹣2ax+a+3可知E(0,a+3),由二次函数L2:y=﹣a(x+1)2+1=﹣a2x﹣2ax﹣a+1可知F(0,﹣a+1),∵M(1,3),N(﹣1,1),∴EF=MN==2,∴a+3﹣(﹣a+1)=2,∴a=﹣1,作MG⊥y轴于G,则MG=1,作NH⊥y轴于H,则NH=1,∴MG=NH=1,∵EG=a+3﹣3=a,FH=1﹣(﹣a+1)=a,∴EG=FH,在△EMG和△FNH中,,∴△EMG≌△FNH(SAS),∴∠MEF=∠NFE,EM=NF,∴EM∥NF,∴四边形ENFM是平行四边形;∵EF=MN,∴四边形ENFM是矩形;(3)由△AMN为等腰三角形,可分为如下三种情况:①如图2,当MN=NA=2时,过点N作ND⊥x轴,垂足为点D,则有ND=1,DA=m﹣(﹣1)=m+1,在Rt△NDA中,NA2=DA2+ND2,即(2)2=(m+1)2+12,∴m1=﹣1,m2=﹣﹣1(不合题意,舍去),∴A(﹣1,0).由抛物线y=﹣a(x+1)2+1(a>0)的对称轴为x=﹣1,∴它与x轴的另一个交点坐标为(﹣1﹣,0).∴方程﹣a(x+1)2+1=0的解为x1=﹣1,x2=﹣1﹣.②如图3,当MA=NA时,过点M作MG⊥x轴,垂足为G,则有OG=1,MG=3,GA=|m﹣1|,∴在Rt△MGA中,MA2=MG2+GA2,即MA2=32+(m﹣1)2,又∵NA2=(m+1)2+12,∴(m+1)2+12=32+(m﹣1)2,m=2,∴A(2,0),则抛物线y=﹣a(x+1)2+1(a>0)的左交点坐标为(﹣4,0),∴方程﹣a(x+1)2+1=0的解为x1=2,x2=﹣4.③当MN=MA时,32+(m﹣1)2=(2)2,∴m无实数解,舍去.综上所述,当△AMN为等腰三角形时,方程﹣a(x+1)2=0的解为x1=﹣1,x2=﹣1﹣或x1=2,x2=﹣4.。