苏科版数学八年级上册2.5《等腰三角形的轴对称性三》教案
- 格式:doc
- 大小:76.00 KB
- 文档页数:3
按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。
2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。
从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。
本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。
等腰三角形的轴对称性(3)教学目标:1.探索并掌握直角三角形的一个性质定理:直角三角形斜边上的中线等于斜边的一半;2.经历“折纸、画图、观察、归纳”的活动过程,发展学生的空间观念和抽象、概括能力,不断积累数学活动的经验;3.在交流过程中,引导学生体会推理的思考方法,进一步提高说理、分析、猜想和归纳的能力;4. 引导学生理解合情推理和演绎推理都是获得数学结论的重要途径,进一步体会证明的必要性.教学重点:探索并能应用“直角三角形斜边上的中线等于斜边的一半”解决相关数学问题.教学难点:引导学生用“分析法”证明“直角三角形斜边上的中线等于斜边的一半”.教学过程:情境创设:提问:1.等腰三角形有哪些性质?(等边对等角;等腰三角形底边上的高线、中线及顶角平分线重合.)2.怎样判定一个三角形是等腰三角形?判定一个三角形是等腰三角形的方法:(1)根据定义,证明三角形有两边相等;(2)根据“等角对等边”,只要证明一个三角形有两个角相等.(设计思路:复习回顾等腰三角形的性质及判定方法,为下面解决问题作铺垫,同时也明确无论是证明线段相等还是折出等腰三角形,都只要证(寻)得相等的角即可.)应用反馈:根据你所掌握的方法独立解决下列问题:已知:如图,∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC.求证:AB=AC.学生独立思考分析,代表发言.解:△ABC是等腰三角形.∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C.∵∠EAD=∠DAC,∴∠B=∠C.∴AB=AC(等角对等边).(设计思路:对等腰三角形的判定方法的直接应用,同时也为下面折纸活动作铺垫.)思考:(1)上图中,如果AB=AC,AD∥BC,那么AD平分∠EAC吗?试证明你的结论.学生板演.∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C.∵AB=AC,∴∠B=∠C(等边对等角).∴∠EAD=∠DAC.∴AD平分∠EAC.思考:(2)上图中,如果AB=AC,AD平分∠EAC,那么AD∥BC吗?通过这一系列问题的解决,你有什么发现?学生交流想法,代表发言.归纳结论:①AB=AC;②AD平分∠EAC;③AD∥BC三个论断中,其中任意两个成立,第三个一定也成立.(设计思路:“思考”两题是第1题的变式,同时也是“等边对等角”性质的应用.培养学生积极思考,举一反三的思维习惯,也培养学生的归纳概括能力.)活动一:操作·探索1.提问:你能用折纸的方法将一个直角三角形分成两个等腰三角形吗?学生思考,操作,小组内交流.学生代表发言,说明折纸的方法,指出△ACD与△BCD是等腰三角形;A A ADDB C CB BC B2.提问:△ACD与△BCD为什么是等腰三角形?请说明理由.在学生代表带领下操作,将剪出的直角三角形纸片,分别按图(2)(3)折叠,标出点D,连接CD.3.提问:观察图形,你还有哪些发现?观察图形,小组内交流自己的发现,代表发言.有4个直角三角形全等;BD=CD=AD;……(设计思路:激发学生的学习兴趣,也明确操作活动的目的,为在折纸过程中发现直角三角形的性质作铺垫.通过折纸,让学生亲历操作——观察——发现——归纳的过程,体验“做数学”,发展空间观念,提高动手能力.设计这个活动的目的是通过观察线段CD把直角三角形ABC分成的2个三角形,进一步获得直角三角形与斜边的关系.实质是从中引导学生不断地学会从多个角度观察、认识图形,主动地发现和获得新的数学结论,不断地积累数学活动经验.相互讨论使学生主动参与到学习活动中来,提高学生的观察分析能力,培养学生善于思考的良好习惯,同时也培养学生合作交流精神和发散思维能力.)活动二:探索·说理1.提问.(1)D是斜边AB的中点吗?(2)斜边AB上的中线CD与斜边AB有何数量关系?在刚才讨论交流的基础上,学生回答,得出结论:“直角三角形斜边上的中线等于斜边的一半”.(设计思路:在相互交流的过程中,培养学生的归纳概括能力.)2.刚才我们通过折纸活动发现“直角三角形斜边上的中线等于斜边的一半”,你能说明理由吗?(1)你能根据题中的已知条件和要说明的结论画出图形来表示吗?画出Rt△ABC,∠ACB=90°,CD为斜边上的中线.DB(设计思路:巩固证明文字命题的一般步骤.引导学生进行严格的证明,使学生进一步体会证明的必要性.提供学生充分讨论和交流的机会,鼓励学生进行不同证明思路的交流和讨论.) (2)思考:怎样说明CD =12AB ?分析:在折纸活动中,你怎样找出斜边上的中线?假设已知CD =12AB ,那么我们可以得出怎样的结论?这对于你说明结论有启发吗?(2)首先独立思考,尝试证明,再小组讨论交流,代表发言,说明如何想到证明思路的?①通过折叠,使∠BCD =∠B ,从而确定斜边AB 的中点D ,并发现结论,所以说理时也可以在∠ACB 内作∠B =∠BCD ,在证明CD 是斜边上的中线时也能证明结论; ②如果CD =21AB ,那么CD =BD =AD ,∠A =∠ACD ,∠B =∠BCD ,那么首先需作CD 使∠A =∠ACD 或∠B =∠BCD ,再证CD 为斜边AB 上的中线,且CD =BD =AD 即可; (设计思路:)引导学生回顾折纸过程,从而明确像折叠那样使∠BCD =∠B ,就能逐步证得结论,目的是使学生感受合情推理有助于发现证明思路和方法. 让学生了解“分析法”,逐步学会自己进行分析寻找解题思路. 展现学生的思路,并通过讨论,引导学生体会推理的思考方法,并由学生自己逐步完善证明的思路.使学生认识将探索和证明有机的结合起来和演绎推理都是人们正确的认识事物的重要途径.同时,培养学生“言之有理,落笔有据”的习惯. ③阅读课本.(设计思路:回归教材,阅读课本,培养学生的阅读理解能力.) 3.小结. (1)定理:“直角三角形斜边上的中线等于斜边的一半”,并用符号语言表述;(2)证明中常用的一种思考方法:即分析法从需要证明的结论出发,逆推出要使结论成立所需要的条件,再把这样的“条件”看作“结论”,一步一步逆推,直至归结为已知条件. 学生口答,板书.∵ 在△ABC 中,∠ACB =90°,点D 是AB 的中点, ∴ CD =21AB . 4.尝试练习.(1)Rt △ABC 中,如果斜边AB 为4cm ,那么斜边上的中线CD =_______cm . (2)如图,在Rt△ABC 中,CD 是斜边AB 上的中线,DE ⊥AC ,垂足为E . ①如果CD =2.4cm ,那么AB = cm .②写出图中相等的线段和角. (3)在Rt △ABC 中,∠ACB =90°,CA =CB ,如果斜边AB =5cm ,那么斜边上的高CD = cm . 学生口答,并说明理由. (1)根据“直角三角形斜边上的中线等于斜边的一半”,CD =21AB =2cm . DCBA D C(2)①根据“直角三角形斜边上的中线等于斜边的一半”,AB =2CD =4.8cm . ②CD =BD =AD ,CE =AE ,∠A =∠ACD ,∠B =∠BCD ,∠ACB =∠DEA =∠DEC =90°.(3)因为CA =CB ,CD ⊥AB ,根据“等腰三角形底边上的高线、中线及顶角平分线重合”得AD =BD ,又因为∠ACB =90°,根据“直角三角形斜边上的中线等于斜边的一半”得CD =12AB =2.5cm .(设计思路:通过尝试练习,及时巩固定理的应用. (1)已知斜边上的中线长,应用定理求出斜边长.(2)综合应用等腰三角形“三线合一”的性质和“直角三角形斜边上的中线等于斜边的一半”.学生回答时,要求他们说明理由,及时巩固等腰三角形的性质和直角三角形的这一性质,同时也锻炼学生有条理的表达能力.) 例题讲解:1.如图,Rt △ABC ,∠ACB =90°,如果∠A =30°,那么BC 与AB 有怎样的数量关系? 试证明你的结论.A提问引导:(1)对于BC 与AB 的数量关系,你有何猜想?你为什么作这样的猜想? 猜想:BC =21AB ; (设计思路:学生猜想后追问为什么这样猜想,引导学生认识到可以通过度量或叠合等操作获得线段(或角)之间的数量关系的感性认识,以便作出合理猜想. )(2)我们猜想BC =21AB ,根据我们学过的知识,什么与21AB 相等?这对于你证明结论有启发吗? 联想:“直角三角形斜边上的中线等于斜边的一半”,也有21AB ,作斜边上的中线CD ,则CD =BD ,如果结论成立,则△BCD 为等边三角形,∠B =60°,由已知条件易得;ADC(设计思路:引导学生采用分析法推理证明思路.师生互动,锻炼学生的口头表达能力,培养学生勇于发表自己看法的能力.) (3)指导学生完成证明过程(投影).学生口答,说明自己的思考过程.书写证明过程. 解:BC =21AB . 作斜边上的中线CD ,∵∠ACB =90°,∠A =30°, ∴∠B =60°.∵∠ACB =90°,CD 是斜边上的中线,∴CD =12AB =BD (直角三角形斜边上的中线等于斜边的一半).∴△BCD 是等边三角形(有一个角是60°的等腰三角形是等边三角形). ∴BC =CD =12AB .(设计思路:指导学生进一步规范证明的书写格式.)2.已知:如图,点C 为线段AB 的中点, ∠AMB =∠ANB =90°.CM 与CN 是否相等?为什么?O CBANM指导学生完成证明过程,对板演点评. 独立思考,完成证明过程,学生板演. 解:CM =CN .∵点C 为线段AB 的中点,∠AMB =∠ANB =90°,∴CM =12AB ,CN =12AB (直角三角形斜边上的中线等于斜边的一半).∴CM =CN .(设计思路:第2题也是巩固“直角三角形斜边上的中线等于斜边的一半”这一性质的应用.) 完成练习:1.课本P66练习2.2.如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,试说明: (1)MD =MB ; (2)MN ⊥BD .NAMCDB(设计思路:课本练习第2题是角平分线、等腰三角形性质和判定的综合应用,学生通过“分析法”分析证明思路.练习2是例2的变式,也有助于了解学生对“直角三角形斜边上的中线等于斜边的一半”和等腰三角形性质的掌握情况.)课堂小结这节课你有哪些收获?说一说自己的收获.1.知道直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半,并会应用性质定理解决问题.2.通过折纸等操作活动能发现结论,用分析法也可以帮助我们寻找证明思路.(设计思路:及时对所学进行反思和小结,便于知识内化.)课堂作业:(见附页)课后作业:课本PT补充习题P伴你学P本节课仍存在着一些不足:学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
要点全析:等腰三角形1.等腰三角形(isosceles triangle)有两条边相等的三角形叫做等腰三角形.如图14-3-1,△ABC中,AB=AC,则△ABC是等腰三角形.相等的两条边叫腰,另一条边BC叫底边,两腰所夹的角叫顶角,如∠BAC,底边和腰的夹角∠ABC和∠ACB叫底角.如图14-3-2中,∠C=90°,AC=BC,那么,AC、BC为腰,AB边为底,∠A、∠B为底角,∠C为顶角.【说明】要理解等腰三角形的定义,需注意以下几点:(1)等腰三角形的底不一定在下方,而顶角不一定在上方,如图14-3-2中,AB为底,∠C为顶角.它是根据两腰的位置来确定的.(2)等腰三角形的三边仍要满足条件:任意两边之和大于第三边(或任意两边之差小于第三边).若图14-3-1中,AB=AC=m,BC=a,则2m>a,即m>a/2时,才能构成三角形,否则不成立.如边长分别为2,2.5的三条线段不能构成三角形,因为2+2<5.例如:(1)下列各组数据为边长时,能否组成三角形?①a=2,b=3,c=5;②a=4,b=3,c=2;③a=1,b=2,c=2;④a=2 005,b=2 004,c=2 008.(2)已知等腰三角形的两边为6 cm,7 cm,求其周长.(3)已知等腰三角形的两边长为2 cm,7 cm,求其周长.解:(1)①由于2+3=5,即a+b=c,而不满足a+b>c,∴不能组成三角形.②由于2+3=5>4,即b+c>a,所以a、b、c可以组成三角形.③由于1+2>2,即a+b>c,所以a、b、c可以组成三角形.④由于a+b>c,因此a、b、c可以组成三角形.(2)因等腰三角形的两边长分别为6 cm、7 cm当腰长为6 cm时,周长为6+6+7=19(cm)当腰长为7 cm时,周长为6+7+7=20(cm).∴等腰三角形的周长为19 cm或20 cm.(3)因等腰三角形的两边长分别为2 cm,7 cm,所以腰长为7 cm,而不能是2 cm.若为2 cm,则2+2=4<7,不能组成三角形.因此周长为7+7+2=16(cm),∴等腰三角形的周长为16 cm.2.等腰三角形的性质1等腰三角形的两个底角相等(简写成“等边对等角”)如图14-3-3,△ABC中,AB=AC,则∠B=∠C证法一:(利用轴对称)过点A作△ABC的对称轴AD.∵AB=AC,∴点A在BC的垂直平分线上.又∵AD为△ABC的对称轴,∴△ABD≌△ACD(轴对称性质).∴∠B=∠C证法二:(作顶角平分线)过点A作AD平分∠BAC交BC于D,如图14-3-3,在△ABD和△ACD中⎪⎩⎪⎨⎧∠∠ADADCADBADACAB===∴△ABD≌△ACD(SAS).∴∠B=∠C【说明】还可以作底边BC的中线和高来证明.3.等腰三角形的性质2(简称“三线合一”)等腰三角形的顶角平分线、底边上的中线、底边上的高线相互重合.如图14-3-6,在△ABC中,AB=AC,AD为顶角的平分线,那么AD既是中线,又是高线,这三条线重合.在使用时,在这三条线段中,只要作出其中一条,另外两条也就可以认为作出来了.即△ABC中,AB=AC,若AD平分∠BAC,则AD⊥BC,BD=CD;若BD=CD,则AD⊥BC,∠BAD=∠CAD;若AD⊥BC,则BD=DC,∠BAD=∠CAD.因此,等腰三角形中的这条线非常重要,一旦作出,边、角的等量关系就都有了.【说明】(1)“三线合一”仅限于等腰三角形中才有,其他三角形中没有.(2)在一般三角形中,这三条线是不会重合的.如图14-3-7,在△ABC中,AD为高,AE为中线,AF平分∠BAC,因此,这三条线不重合.只有等腰时,三条线才会重合;反过来,若某一三角形中三线重合,则该三角形为等腰三角形.(3)在今后的证明题中,经常会使用“三线合一”进行证明.例如:△ABC中,AB=AC,BD⊥AC交AC于D,如图14-3-8.求证:∠BAC=2∠DBC证法一:在△BCD中,∵BD⊥AC,∴∠BDC=90°.∴∠DBC=90°-∠C.在△ABC中,∵AB=AC,∴∠ABC=∠ACB.∴∠BAC=180°-(∠ABC+∠ACB)=180°-2∠ACB=2(90°-∠C).∴∠BAC=2∠DBC证法二:借助于三线合一的性质,过A作AM⊥BC于M,则AM平分∠BAC,∴∠BAC=2∠BAM=2∠CAM.又∵BD⊥AC交AC于D,AM⊥BC交BC于M,∴∠DBC=90°-∠C又∵AM⊥BC,∴∠CAM=90°-∠C,∴∠DBC=∠CAM4.等腰三角形的性质3(轴对称性)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在的直线就是它的对称轴.如图14-3-9,△ABC中,AB=AC,AD平分∠BAC,则△ABC的对称轴为AD所在的直线,△ABD≌△ACD.过D作DE⊥AB,交AB于E,作DF⊥AC,交AC于F.由△ABD≌△ACD可知DE=DF.同理,过D分别作AB、AC边上的中线和角平分线,它们都相等.因此,得到等腰三角形的一个重要结论.重要结论:过等腰三角形底边的中点向两腰所作的高线、中线以及角平分线,其与两腰所截得的线段都分别对应相等.5.等腰三角形的性质4(两腰上的对应线段相等)等腰三角形两腰上的中线、高线和两底角平分线对应相等.例如:如图14-3-10,△ABC中,AB=AC,若BD、CE分别为AC、AB边上的高线,则BD =CE.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).又∵BD⊥AC,CE⊥AB,∴∠BDC=∠CEB=90°.在△BCD和△CBE中,⎪⎩⎪⎨⎧∠∠∠∠,=,=,=CBBCCEBBDCCBEBCD∴△BCD≌△CBE(AAS).∴BD=CE.或S△ABC=0.5×AB·CE=0.5×AC·BD.∵ AB=AC,∴BD=CE.此法较为简便.同样道理,可分别作出两腰上的中线,两底角的平分线,也分别对应相等.6.等腰三角形的判定定理(等角对等边)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).例如:如图14-3-11,△ABC中,若∠B=∠C,则AB=AC证明:过点A作AD平分∠BAC,交BC于点D,则∠BAD=∠CAD.在△ABD和△ACD中,∴△ABD≌△ACD(AAS).∴AB=AC因此,这一结论可直接利用.【说明】(1)在使用“等边对等角”或“等角对等边”时,一定要注意是在同一个三角形中才有这一对应关系,不在同一三角形中的边、角没有这一对应关系.(2)有了这一结论,为今后证明线段相等又添了一种重要的解题途径.例如:如图14-3-12,△ABC中,AB=AC,BD、CE相交于O点.且BE=CD求证:OB=OC.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).在△BCE和△CBD中⎪⎩⎪⎨⎧∠∠,=,=,=CBBCDCBEBCCDBE∴△BCE≌△CBD(SAS).∴∠BCE=∠CBD,即∠OBC=∠BCO∴OB=OC(等角对等边).【说明】证两条线段相等,若这两条线段在同一个三角形中,可利用等腰三角形的判定定理来证明.7.已知底边和底边上的高,求作等腰三角形已知线段a、b,求作等腰三角形ABC,使底边BC=a,高为b.作法:(1)作线段BC=a;(2)作线段BC的垂直平分线MN与BC交于点D;(3)在MN上截取AD=b;(4)连接AB、AC,△ABC就是所求的等腰三角形.【说明】(1)由作法知MN为BC的垂直平分线,∴AB=AC∴△ABC为等腰三角形,如图14-3-13.(2)以前所作的三角形分别为:已知三边,两边夹角,两角夹边和已知斜边、直角边求作三角形,今天又学习了已知底边和底边上的高求作等腰三角形,共有五种情况,今后还将学习一些更为复杂的作法,都是以这五种为基础进行作图的.8.等边三角形(equilateral triangle)(1)定义:三条边都相等的三角形,叫等边三角形.如图14-3-14,△ABC中,AB=BC =CA,则△ABC为等边三角形.(2)性质:①等边三角形的三个内角都相等,并且每一个角都等于60°.如图14-3-14中,若△ABC 为等边三角形,则∠A=∠B=∠C=60°.②除此之外,还具有等腰三角形的一切性质,如三线合一,轴对称等.(3)判定:①三个角都相等的三角形是等边三角形.②有一个角是60°的等腰三角形是等边三角形.下面证明以上两条判定.判定①:如图14-3-15,已知△ABC中,∠A=∠B=∠C求证:△ABC是等边三角形.证明:∵∠B=∠C,∴AB=AC又∵∠A=∠B∴AC=BC∴AB=AC=BC,∴△ABC是等边三角形.判定②:如图14-3-15,已知△ABC中,AB=AC,∠B=60°.求证:△ABC是等边三角形.证明:∵AB=AC,∴∠B=∠C.又∵∠B=60°,∴∠B=∠C=60°.又∵∠A+∠B+∠C=180°,∴∠A=180°-(∠B+∠C)=60°.∴∠A=∠B=∠C,∴AB=BC=AC.∴△ABC为等边三角形.(4)应用:例如:如图14-3-16,△ABC为等边三角形,D、E为直线BC上的两点,且BD=BC=CE,求∠DAE的度数.分析:要求∠DAE的度数,需分开求,先求∠BAC,再求∠DAB和∠CAE,由△ABC为等边三角形知∠BAC=60°,又∵BD=BC,而BC=BA,则BD=BA,∴△ABD为等腰三角形,∴∠D=∠DAB=0.5×∠ABC=30°.同理可知,∠CAE=30°.解:∵△ABC为等边三角形,∴AB=BC=AC,∠BAC=∠ABC=∠ACB=60°.又∵BD=BC,∴BD=BC=AB.∴∠DAB=∠D,又∵∠ABC=∠D+∠DAB,∴∠ABC=2∠DAB=60°,∴∠DAB=30°.同理,∠CAE=30°.∴∠DAE=∠DAB+∠BAC+∠CAE=30°+60°+30°=120°.【说明】本题中用到了等边三角形的性质.再如:如图14-3-17,已知△ABC为等边三角形,D、E、F分别为△ABC三边上的点,且BD=CE=AF,直线AD、BE、CF两两相交于点R、Q、P.求证:△PQR是等边三角形.分析:本题既用到了等边三角形的性质,又用到了其判定.要证△PQR为等边三角形,证三边相等难度较大,可考虑证其三角相等.也可先证∠PQR=60°,而∠PQR=∠ACQ+∠QAC,又因为∠ACQ+∠BCF =60°,只需证∠BCF=∠DAC,由此可联想证△BCF与△CAD全等.证明:∵△ABC为等边三角形,∴∠BAC=∠ABC=∠BCA=60°,AB=BC=CA.又∵BD=CE=AF,∴BF=DC=AE在△ABE和△BCF和△CAD中,⎪⎩⎪⎨⎧∠∠∠,==,==,==CDBFAEDCAFBCBAECABCAB∴△ABE≌△BCF≌△CAD(SAS).∴∠ABE=∠BCF=∠CAD.∵∠ACQ+∠BCF=60°,∴∠ACQ+∠CAQ=60°.∴∠AQF=∠ACQ+∠CAQ=60°,即∠PQR=60°.同理,∠RPQ=∠PRQ=60°.∴△PQR为等边三角形.【说明】(1)此题证明思路比较清晰,只是步骤书写较繁,书写应认真;(2)在证明过程中用到了三个三角形全等的连等形式,可仿照两个三角形全等的方式使用.9.含30°角的直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.如图14-3-18,在Rt△ABC中,∠C=90°,∠A=30°,则BC=0.5×AB,这一性质反过来也成立.即在Rt△ABC中,∠C=90°,若BC=0.5×AB,则∠A=30°.因此Rt△ABC 中,∠C=90°,∠A=30° BC=AB/2这一性质在解题中经常用到.例如:如图14-3-19,在Rt△ABC中,∠BAC为直角,高AD交BC于D,∠B=30°,BC =12米,求CD,BD的长.解:∵在Rt△ABC中,∠BAC=90°,∠B=30°,∴∠C=60°,BC=2AC∴AC=BC/2=6(米).在Rt△ACD中,∵AD⊥BC,∠C=60°,∴∠CAD=30°.∴DC=AC/2=0.5××6=3(米).∴BD=BC-DC=9-6=12-3=9(米).【说明】在本题中两次用到直角三角形的这一性质,并且用的方式都一样.。
期末复习(3):等腰三角形教学案一、知识点:1、等腰三角形的性质:①等腰三角形是 , 是它的对称轴; ②等腰三角形的两个 相等;(简称“ ”)③等腰三角形的顶角平分线、底边上的中线、底边上的高 。
(简称“ ”) 2、等腰三角形的判定:① ;② 。
3、等边三角形的性质:①等边三角形是轴对称图形,并且有 条对称轴;②等边三角形的三条边 ; ③等边三角形的每个角都等于 。
4、等边三角形的判定:① 相等的三角形是等边三角形;② 相等的三角形是等边三角形; ③有一个角等于600的 是等边三角形。
二、基础训练:1.等腰三角形一腰上的高与底边的夹角与顶角的关系。
变形:等腰三角形一腰上的高与另一腰的夹角与顶角的关系。
2.在三角形ABC 中,AB=AC ,点P 是BC 边上的任意一点,PM ⊥AB,PN ⊥AC,垂足分别为M 、N ,CD 是AB 边上的高,则PM+PN= 。
变形1:矩形ABCD 中,PM ⊥BD ,PN ⊥AC ,若AB=3,BC=4,则PM+PN= 变形2:正方形ABCD 中,AB=2,BC=BE ,PM ⊥BD ,PN ⊥BC ,则PM+PN= 3.△ABC 中,BD 平分∠ABC ,DE ∥BC ,则△BDE 是 三角形。
变形1:BD 、CD 分别平分∠ABC 和∠ACB ,MN ∥BC ,则BM+CN=变形2:BD 、CD 分别平分∠ABC 和∠ACB 的外角,MN ∥BC ,则BM-CN=变形3:BD 、CD 分别平分∠ABC 的外角和∠ACB 的外角,MN ∥BC ,则BM+CN=AD M BP NCAMN BC DPMNPABC DEA FCEB D MPA B C D E F三、例题讲解:例1:若等腰三角形底角为72°,则顶角为( ) A .108° B .72° C .54° D .36° 变形:若等腰三角形一个角为72°,则顶角为 。
学案1.5 等腰三角形的轴对称性班级姓名学号教学目标:1、知道等腰梯形的概念,等腰梯形的轴对称性极其相关性质能够画出简单的轴对称图形.2、等边三角形性质的运用教学重点:等腰梯形的轴对称性极其相关性质;教学难点:能利用等腰梯形的性质进行有条理的说理;教学过程:一、复习提问:1.等边三角形是轴对称图形,它有______条对称轴,它们分别是_______.2.等边三角形ABC中,AD是BC•边上的中线,•那么∠ADB=•_____•°,•∠BAD=_____°.3.在Rt△ABC中,∠C=90°,∠A=30°,CD是AB边上的中线,△BCD•是等边三角形吗?为什么?二、探索新知:1、等边三角形的概念三边相等的三角形叫做等边三角形或正三角形.2、那么等边三角形具有什么性质?等边三角形是轴对称图形,并且有3条对称轴.等边三角形都等于0603、探索活动思考:(1)3个角相等的三角形是等边三角形吗?为什么?(2)有两个角等于060的三角形是等边三角形吗?为什么?(3)有一个角等于060的等腰三角形是等边三角形吗?为什么?(对于问题2要引导学生借助于两块相同的含060直角三角板进行拼图实验;对于问题3要引导分类思考.)CDEBA三、例题示范:例1. 有一个角等于60°的等腰三角形是等边三角形吗?为什么? 分析:应分两情况讨论,一是当这个角是底角时;二是当这个角是顶角时.例2如图,在△ABC 中,AB=AC ,∠BAC=120°, AD ⊥AB,AE ⊥AC. ⑴图中,等于30°的角有__ _,等于60°的角有 ; ⑵△ADE 是等边三角形吗?为什么?⑶在Rt △ABD 中, ∠B=_____,AD=_____BD;在Rt △ACE 中,有类似结论吗?五、课堂小结:等边三角形是底和腰相等的等腰三角形,有3条对称轴,每个角都是600. 六、课后作业: 七、教学后记:【课后作业】1、底角等于顶角一半的等腰三角形是____________三角形.2、剪四个同样大小的等边三角形,你能将这四个三角形拼成一个三角形吗?是一个什么三角形?3、在等边三角形、角、线段这三个图形中,对称轴最多的是 ,它共有 条对称轴,最少的是 ,有 条对称轴.4、等腰三角形一腰上的高与另一腰的夹角是45°,这个等腰三角形的顶角是________°.ABCMNP Q5、下列说法:(1)等腰三角形的高、中线、角平分线互相重合;(2)等腰三角形的两腰上的中线长相等;(3)等腰三角形的腰一定大于其腰上的高;(4)等腰三角形的一边长为8,一边长为16,那么它的周长是32或40.其中不正确...的个数是 ( )A .1B .2C .3D .46、如图,在△ABC 中,AB=AC , B F 与CF 是角平分线且交于点F ,DE ∥BC ,若B D+CE=9,则线段DE 的长为( )A .6B .7C .8D .97、如图,在△ABC 中,PM 、QN 分别是AB 、AC 的垂直平分线, ∠BAC=110°,那么∠PA Q 等于 °.8、如图,在等边三角形ABC 的边BC 、AC 上分别取点D 、E ,使BD=CE ,AD 与BE 相交于点F .求∠AFE 的度数.(第7题)ABCD E FEF DC BAABCP ′P9.如图,△ABC 是等边三角形,点D 、E 、F 分别在AB 、BC 、CA 的延长线上,•且BD=CE=AF .△DEF 也是等边三角形吗?为什么?F CB A10、如图,△ABC 是等边三角形,P 为△ABC 内部一点,将△ABP 绕点A 逆时针旋转后,能与△ACP ˊ重合,如果A P=3,求PP ˊ的长.11、在两个三角形中,它们的内角分别为:(1)20°,40°,120°;(2) 20°,60°,100°,怎样把每个三角形分成两个等腰三角形?试画出图形.。
精选教课教课设计设计| Excellent teaching plan教师学科教课设计[ 20–20学年度第__学期]任教课科: _____________任教年级: _____________任教老师: _____________xx市实验学校精选教课教课设计设计| Excellent teaching plan《等腰三角形的轴对称性三》教课设计学习目标1、掌握“直角三角形斜边上的中线等于斜边的一半”的性质.2、经历“折纸、绘图、察看、归纳”的活动过程,发展学生的空间观点和抽象归纳能力,感觉分类、转变等数学思想方法.学习重难点要点:掌握“直角三角形斜边上的中线等于斜边的一半”的性质.难点:会利用性质解决实质问题 .自主学习1、已知,如图,∠EAC 是△ ABC 的外角, AD 均分∠ EAC , AD∥ BC.求证: AB=AC.EA DB C2、直角三角形斜边上的中线等于的一半.合作研究操作: ( 1) 剪一张直角三角形纸片,如图:ADB C( 1)( 2)( 3)(4)( 2) 剪得的纸片能否能折成图2和图 3的形状?.( 3) 把纸片睁开,连结CD,你有什么发现?∠ A=∠,∠ B=∠1AB. ,即: AD =CD, BD =CD ,因此 CD=2结论 : 直角三角形斜边上的中线等于.精选教课教课设计设计| Excellent teaching planADCB符号语言:如图, 在△ ABC 中,∠ ACB=90°,∵ AD=BD( 或许 D 为 AB 中点 ) ,∴ CD 1AB . 2达标稳固1、若直角三角形斜边上的高和中线分别是5cm 和 6cm ,则斜边长为 ,面积为.2、在△ A BC 中,∠ A=30°,当∠ B=时,△ ABC 为等腰三角形;当∠ B=时,△ ABC 为直角三角形.3、如图,在△ ABC 中,∠ ACB=90°, CD 是 AB 边上的中线且 CD =5cm ,求 AB.BDAC4、一个三角形的一个外角为130°,且它恰巧等于一个不相邻的内角的二倍 . 这个三角形是()A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形5、如图,在△ ABC 中,∠ ACB=90°,D 是 AB 的中点, CE ⊥ AB ,且 AC=6,BC=8,EC=4. 8,求 CD 的长度AEDC B4. 一个等腰三角形的周长为 15cm ,一腰上 的中线把周长分为两部分,这两部分的差为 6cm ,求腰长 .精选教课教课设计设计| Excellent teaching plan ADCB。
《等腰三角形的轴对称性三》教案
学习目标
1、掌握“直角三角形斜边上的中线等于斜边的一半”的性质.
2、经历“折纸、画图、观察、归纳”的活动过程,发展学生的空间观念和抽象概括能力,感受分类、转化等数学思想方法.
学习重难点
重点:掌握“直角三角形斜边上的中线等于斜边的一半”的性质.
难点:会利用性质解决实际问题.
自主学习
1、已知,如图,∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC.
求证:AB=AC.
E
D
C
B
A
2、直角三角形斜边上的中线等于的一半.
合作探究
操作:(1)剪一张直角三角形纸片,如图:
D
C
B
A
(2)剪得的纸片是否能折成图2和图3的形状? .
(3)把纸片展开,连接CD,你有什么发现?
∠A=∠,∠B=∠,即:AD=CD,BD=CD,所以CD=
1
2
AB. 结论:直角三角形斜边上的中线等于.
(1)(2)(3)(4)
符号语言:如图,在△ABC 中,∠ACB =90°,
∵AD =BD (或者D 为AB 中点), ∴AB CD 2
1 . 达标巩固
1、若直角三角形斜边上的高和中线分别是5cm 和6cm ,则斜边长为 ,面积为 .
2、在△A BC 中,∠A =30°,当∠B = 时,△ABC 为等腰三角形; 当∠B = 时,△ABC 为直角三角形.
3、如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的中线且CD =5cm ,
求AB .
C A
4、一个三角形的一个外角为130°,且它恰好等于一个不相邻的内角的二倍.这个三角形是( )
A .钝角三角形
B .直角三角形
C .等腰三角形
D .等边三角形
5、如图,在△ABC 中,∠ACB =90°,D 是AB 的中点,CE ⊥AB ,且AC =6,BC =8,EC =4.8,求CD 的长度
4.一个等腰三角形的周长为15cm ,一腰上的中线把周长分为两部分,这两部分的差为6cm ,求腰长.。