人教版九年级一元二次方程知识点总结及基础题型
- 格式:doc
- 大小:793.50 KB
- 文档页数:28
一元二次方程知识点及考点精析一、知识结构: 一元二次方程⎪⎩⎪⎨⎧*⇒韦达定理根的判别解与解法二、考点精析考点一、概念(1)定义:只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
(2)一般表达式:)0(02≠=++a c bx ax 其中2ax 是二次项,a 叫二次项系数;bx 是一次项,b 叫一次项系数,c 是常数项。
二次项系数、一次项系数及常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式。
⑶难点:如何理解 “未知数的最高次数是2”:①该项系数不为“0”; ②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题: 例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。
针对练习:★1、方程782=x 的一次项系数是 ,常数项是 。
★2、若方程()021=--m xm 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。
★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )B.m=2,n=1C.n=2,m=1D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值; 例1、已知322-+y y 的值为2,则1242++y y 的值为 。
例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
最新人教版九年级数学上册知识点总结全套数学上册知识点总结21.1 一元二次方程知识点一:一元二次方程的定义一元二次方程是指等号两边都是只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程。
注意以下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。
知识点二:一元二次方程的一般形式一元二次方程的一般形式为ax2+ bx + c = 0(a≠0)。
其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
知识点三:一元二次方程的根一元二次方程的根是指使方程左右两边相等的未知数的值。
方程的解的定义是解方程过程中验根的依据。
21.2 降次——解一元二次方程21.2.1 配方法知识点一:直接开平方法解一元二次方程1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a。
2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。
3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
知识点二:配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:①把常数项移到等号的右边;②方程两边都除以二次项系数;③方程两边都加上一次项系数一半的平方,把左边配成完全平方式;④若等号右边为非负数,直接开平方求出方程的解。
21.2.2 公式法知识点一:公式法解一元二次方程一般地,对于一元二次方程ax2+bx+c=0(a≠0),如果b2-4ac≥0,那么方程的两个根为x=b±b2-4ac2a,这个公式叫做一元二次方程的求根公式。
一元二次方程知识点复习总结1. 一元二次方程的一般形式:a ≠0时,ax 2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、c ;其中 a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式:当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根;Δ=0 <=> 有两个相等的实根;Δ<0 <=> 无实根;Δ≥0 <=> 有两个实根(等或不等).4. 一元二次方程的根系关系:当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式:.ac x x ab x x )2(a2ac4bbx )1(212122,1,;※ 5.当ax 2+bx+c=0 (a ≠0) 时,有以下等价命题:(以下等价关系要求会用公式acx x a bx x 2121,;Δ=b 2-4ac 分析,不要求背记) (1)两根互为相反数ab = 0且Δ≥0 b = 0且Δ≥0;(2)两根互为倒数a c =1且Δ≥0 a = c 且Δ≥0;(3)只有一个零根a c = 0且a b ≠0 c = 0且b ≠0;(4)有两个零根a c = 0且a b = 0c = 0且b=0;(5)至少有一个零根a c =0 c=0;(6)两根异号a c <0 a 、c 异号;(7)两根异号,正根绝对值大于负根绝对值a c <0且a b >0a 、c 异号且a 、b 异号;(8)两根异号,负根绝对值大于正根绝对值a c <0且a b <0a 、c 异号且a 、b 同号;(9)有两个正根a c >0,ab >0且Δ≥0 a 、c 同号, a 、b 异号且Δ≥0;(10)有两个负根ac >0,ab <0且Δ≥0 a 、c 同号, a 、b 同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.ax 2+bx+c=a(x-x1)(x-x2) 或 ax 2+bx+c=a2ac4bb xa2ac4bb xa 22.7.求一元二次方程的公式:x 2-(x 1+x 2)x + x 1x 2 = 0.注意:所求出方程的系数应化为整数.8.平均增长率问题--------应用题的类型题之一(设增长率为x ):(1)第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程:第一年+第二年+第三年=总和.9.分式方程的解法:.0)1(),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2分母,值验增根代入原方程每个换元凑元,设元,换元法)(10. 二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x1x(x1x2)x1x(x1xx x 4)x x ()x x (x x 2)x x (xx )1(2121221221212122122121222222212212212122122214x x .22x x 2x x .12x x )2(221212121)两边平方为(和分类为;.,)2(34x x 34x x )1()916x x (34x x )3(2121222121因为增加次数两边平方一般不用和分类为或;.0x ,0x :.1x x Bsin A cos ,1Acos Asin ,90BAB sin x ,A sin x )4(2122212221注意隐含条件可推出由公式时且如.0x ,0x :.x ,x ),,(,x ,x )5(212121注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个。
一元二次方程知识归纳与题型突破(12类题型)一、一元二次方程的定义(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.(2)概念解析:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高01 思维导图02 知识速记次数是2”;“二次项的系数不等于0”;“整式方程”.二、一元二次方程的一般形式(1)一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(2)要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.三、一元二次方程的解(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.(2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax 2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0).四、解一元二次方程-直接开平方形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±.注意:①等号左边是一个数的平方的形式而等号右边是一个非负数.②降次的实质是由一个二次方程转化为两个一元一次方程.③方法是根据平方根的意义开平方.五、解一元二次方程-配方法(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.六、解一元二次方程-公式法(1)把a acbbx24 2-±-=(b2﹣4ac≥0)叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.(2)用求根公式解一元二次方程的方法是公式法.(3)用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值(注意符号);②求出b2﹣4ac的值(若b2﹣4ac<0,方程无实数根);③在b2﹣4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.七、解一元二次方程-因式分解法(1)因式分解法解一元二次方程的意义因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).(2)因式分解法解一元二次方程的一般步骤:到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.八、由实际问题抽象出一元二次方程在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.九、一元二次方程的应用1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.2、列一元二次方程解应用题中常见问题:(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.【规律方法】列一元二次方程解应用题的“六字诀”1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.2.设:根据题意,可以直接设未知数,也可以间接设未知数.3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.4.解:准确求出方程的解.5.验:检验所求出的根是否符合所列方程题型一 利用一元二次方程的定义判断是否是一元二次方程例1.(23-24八年级下·黑龙江哈尔滨·阶段练习)下列方程是关于x 的一元二次方程的是( )A .20ax bx c ++=B .212xx +=C .221x x y +=+D .()()22131x x+=+ 1.(2023·江苏盐城·模拟预测)下列方程是一元二次方程的是( )A .20ax bx c ++=B x=C .21220x x ++=D .()22134m x x +-=【答案】D【分析】此题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.根据一元二次方程的定义进行判断即可03 题型归纳【详解】解:A 、当0a =时不是一元二次方程,故本选项不符合题意;B 、该方程不是整式方程,故本选项不符合题意;C 、该方程不是整式方程,故本选项不符合题意;D 、该方程符合一元二次方程的定义,是一元二次方程,故本选项正确;故选:D .2.(23-24八年级下·山东烟台·期中)下列方程中,关于x 的一元二次方程是( )A .7x y -=B .220x x ++=C .120x x +=D .()232x x x -=+3.(23-24八年级下·山东烟台·期中)下列方程中:①2210x x -+=;②20ax bx c ++=;③22350x x +-=;④20x -=;⑤()2212x y -+=;⑥()()22132x x x --=,一元二次方程的个数为( )A .1B .2C .3D .4⑥()()22132x x x --=,即730x -+=,未知数的最高次不是2,不是一元二次方程;∴一元二次方程有2个,故选:B .题型二 一元二次方程的一般形式例2. (23-24八年级下·黑龙江哈尔滨·阶段练习)方程()()320x x +-=化为一元二次方程的一般形式是 .【答案】260x x +-=【分析】此题考查了一元二次方程的一般形式,即20(0)ax bx c a ++=¹.其中a 是二次项系数,b 是一次项系数,c 是常数项.去括号合并同类项整理即可.【详解】解:∵()()320x x +-=∴22360x x x -+-=∴260x x +-=故答案为:260x x +-=巩固训练1.(23-24八年级下·广西崇左·期中)把方程()()223243x x +=-化为一元二次方程的一般形式是 .2.(23-24八年级下·山东东营·阶段练习)把一元二次方程()()112x x x +-=化成一般形式后得到二次项系数是 ,一次项系数是 ,常数项是 .【答案】 1 2 1-【分析】此题主要考查了一元二次方程的一般形式.首先利用平方差公式进行计算,再整理得到2210x x +-=,然后再确定二次项、一次项系数和常数项.【详解】解:方程()()112x x x +-=整理为一般形式为2210x x +-=,∴二次项系数是1,一次项系数是2,常数项是1-,故答案为:1,2,1-.3.(23-24九年级上·四川南充·阶段练习)方程2(21)(3)1x x x +-=-化为一般形式为,二次项系数、一次项系数、常数项的和为.题型三 利用一元二次方程的定义求参数例3.(23-24八年级下·安徽六安·阶段练习)若关于x 的方程()211450mm x x +++-=是一元二次方程,则m 的值是( )A .0B .1-C .1D .1±【答案】C【分析】本题考查一元二次方程的定义,掌握一元二次方程的定义是解题的关键.理解一元二次方程的定义,需要抓住两个条件:①二次项系数不为0;②未知数的最高次数为2;结合一元二次方程的定义,可以得到关于m 的方程和不等式,求解即可得到m 的值.【详解】解:Q 关于x 的方程()211450m m x x +++-=是一元二次方程,\21012m m +¹ìí+=î,解得1m =.故选:C .巩固训练1.(2024八年级下·安徽·专题练习)关于x 的方程||(2)23m m x mx -++=是一元二次方程,则m 值为( )A .2或2-B .2C .2-D .0m ³且2m ¹【答案】C【分析】此题主要考查了一元二次方程的定义,根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【详解】解:∵关于x 的方程||(2)23m m x mx -++=是一元二次方程,∴||2m =且20m -¹,解得2m =-.故选:C .2.(23-24八年级下·安徽亳州·期中)若()22210mm x mx ---+=是一元二次方程,则m 的值为( )A .2B .2-C .2或2-D .3.(23-24八年级下·安徽池州·期末)若关于x 的方程22(2)430kk x x --+-=是一元二次方程,则k = .【答案】2-【分析】本题考查了一元二次方程,熟记定义是解题关键.根据一元二次方程的定义(只含有一个未知数,并且未知数的最高次数2的整式方程,叫做一元二次方程)即可得.【详解】解:∵关于x 的方程22(2)430k k x x --+-=是一元二次方程,∴22220k k ì-=í-¹î,解得2k =-,故答案为:2-.题型四 一元二次方程的解求参数的值例4. (2024·江苏镇江·二模)已知2x =是方程230x x c -+=的一个根,则实数c 的值是.【答案】2【分析】本题主要考查了一元二次方程的解,把2x =代入230x x c -+=即可求出c 的值.【详解】解:把2x =代入230x x c -+=,可得出22320c -´+=,解得:2c =,故答案为:2.巩固训练1.(23-24八年级下·浙江杭州·期中)关于x 的一元二次方程2320x x m ++-=有一个根为0,则m 的值是( )A .1B .1±C .2D .2±2.(2024·山东济南·三模)关于x 的一元二次方程2420x x m -+=的一个根14x =,则m =.【答案】0【分析】本题考查了一元二次方程,把14x =代入方程2420x x m -+=,解关于m 的方程即可.【详解】解:把14x =代入方程2420x x m -+=得161620m -+=解得:0m =故答案为:0.3.(2024·山东济南·二模)已知关于x 的一元二次方程2260x mx +-=的一个根是3,则m 的值是 .【答案】4-【分析】根据一元二次方程2260x mx +-=的一个根是3,将3x =代入原方程得到关于m 的一元一次方程进而即可解答.本题考查了一元二次方程的根,一元一次方程的解,理解一元二次方程的根是解题的关键.【详解】解:∵关于x 的一元二次方程2260x mx +-=的一个根是3,∴将3x =代入方程2260x mx +-=得:223360m ´+-=,解得:4m =-,故答案为:4-.题型五 一元二次方程的解求代数式的值例5. (2024·青海玉树·三模)若3x =是关于x 的方程26ax bx -=的解,则202493a b -+的值为.1.(2024·四川南充·中考真题)已知m 是方程2410x x -=+的一个根,则(5)(1)m m +-的值为.【答案】4-【分析】本题主要考查了二元一次方程的解,以及已知式子的值求代数式的值,根据m 是方程2410x x -=+的一个根,可得出241m m +=,再化简代数式,整体代入即可求解.【详解】解:∵m 是方程2410x x -=+的一个根,∴241m m +=(5)(1)m m +-255m m m =-+-245m m =+-15=-4=-,故答案为:4-.2.(2024·江苏常州·二模)已知m 为方程 ²360x x --=的一个根,则代数式²36m m -+-的值是.3.(2024·福建·模拟预测)已知m 为方程2320240x x +-=的根,那么32220272024m m m +-+的值为【答案】0【分析】本题考查了一元二次方程的解的定义;将方程的根代入方程,化简得232024m m +=,将代数式变形,整体代入求值即可.【详解】∵m 为方程2320240x x +-=的根,∴2320240m m +-=,∴232024m m +=,∴原式3223320242024m m m m m =+---+223320242024()()m m m m m m =+-+-+2024202420242024m m =--+0=.故答案为:0.题型六 一元二次方程的解的估算例6. (23-24八年级下·黑龙江大庆·阶段练习)根据表格中的数据:估计一元二次方程20ax bx c ++=(a ,b ,c 为常数,0a ¹)一个解x 的范围为( )x 0.51 1.5232ax bx c++28181042-A .0.51x <<B .1 1.5x <<C .1.52x <<D .23x <<1.(23-24八年级下·浙江杭州·阶段练习)已知2310x x -+=,依据下表,它的一个解的范围是( )x 2.52.6 2.7 2.8231x x -+0.25-0.04-0.190.44A .2.5 2.6x <<B .2.6 2.7x <<C .2.7 2.8x <<D .不确定【答案】B 【分析】本题主要考查了一元二次方程根的估算,由表格可知,231x x -+的值随着x 的增大而增大,那么在2.6与2.7之间必然有一个数使得代数式231x x -+的值为0,据此可得答案.【详解】解:由表格可知,231x x -+的值随着x 的增大而增大,当 2.6x =时,2310.040x x -+=-<,当 2.7x =时,2310.190x x -+=>,那么在2.6与2.7之间必然有一个数使得代数式231x x -+的值为0,∴方程2310x x -+=的一个解的范围为2.6 2.7x <<.故选:B .2.(23-24八年级下·江苏苏州·期中)观察表格,一元二次方程22 1.10x x --=的一个解的取值范围是.x 1.3 1.4 1.51.6 1.7 1.8 1.922 1.1x x --0.71-0.54-0.35-0.14-0.090.340.61【答案】1.6 1.7x <<【分析】本题考查了估算一元二次方程的近似解.根据图表数据找出一元二次方程等于0时,未知数的值的范围,即可得到答案.【详解】解: 1.6x =时,0.14y =-, 1.7x =时,0.09y =,∴一元二次方程22 1.10x x --=的解的范围是1.6 1.7x <<.故答案为:1.6 1.7x <<题型七 用配方法配一元二次方程例7.(23-24八年级下·浙江金华·221x x -=,配方后得到的方程是( )A .2(1)2x -=B .()212x +=C .2(1)0x +=D .2(1)0x -=【答案】A【分析】本题考查了配方法解一元二次方程,将方程两边同时加上一次项系数一半的平方,再写成完全平方式即可得出答案.【详解】解:∵221x x -=,∴22111x x -+=+,即2(1)2x -=,故选:A .巩固训练1.(2024·山西阳泉·三模)用配方法解一元二次方程28100x x -+=配方后得到的方程是( )A .()2854x +=B .()2854x -=C .()246x +=D .()246x -=【答案】D【分析】本题主要考查了一元二次方程的配方法.把常数项移到等式右边后,利用完全平方公式配方得到结果,即可做出判断.【详解】解:28100x x -+=,移项得:2810x x -=-,配方得:28161016x x +=-+-,整理得:()246x -=,故选:D .2.(2024·内蒙古呼和浩特·模拟预测)用配方法解一元二次方程22510x x --=,配方正确的是( )A .2533416x æö-=ç÷èø B .2541416x æö-=ç÷èø C .252724x æö-=ç÷èø D .252924x æö-=ç÷èø3.(23-24八年级下·安徽淮北·阶段练习)用配方法解方程23430x x --=,应把它先变形为( )A .221339x æö-=ç÷èø B .2203x æö-=ç÷èø C .21839x æö-=ç÷èø D .211039x æö-=ç÷èø题型八 解一元二次方程例8.(23-24九年级·江苏·假期作业)解关于x 的方程(因式分解方法):(1)230x =;(2)7(3)39x x x -=-.1.(2024八年级下·浙江·专题练习)解方程:(1) 2490x -=;(2)()221491x +-=.【答案】(1)17x =,27x =-(2)14x =,26x =-【分析】本题考查解一元二次方程:(1)利用直接开平方法求解;(2)先移项,再利用直接开平方法求解.【详解】(1)解:2490x -=,249x =,∴7=±x ,∴17x =,27x =-;(2)解:()221491x +-=,()2125x +=,∴15x +=±,∴14x =,26x =-.2.(23-24九年级上·安徽芜湖·期中)用适当的方法解方程:()()22325x x -=+3.(23-24八年级下·广西崇左·期中)解方程:(1)22350x x --=;(2)()2326x x +=+.【答案】(1)17x =,25x =-(2)13x =-,21x =-【分析】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,解一元二次方程的方法有直接开平方法、因式分解法、配方法、公式法等.(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)解:22350x x --=,因式分解得()()750x x -+=,即70x -=或50x +=,解得17x =,25x =-.(2)解:()2326x x +=+,移项得()()23230x x +-+=,因式分解得()()3320x x ++-=,即30x +=或320x +-=,解得13x =-,21x =-.4.(23-24八年级下·全国·假期作业)用公式法解下列方程:(1)2120x x --=;(2)22530x x +-=;(3)22770x x -+=.5.(23-24九年级上·海南省直辖县级单位·期末)用配方法解方程:(1)242x x+=;(2)27304x x--=;(3)2483x x-=-;(4)2441018x x x++=-题型九 解一元二次方程中错解复原问题例9:(2024·江西吉安·三模)小明解一元二次方程2++=的过程如下,请你仔细阅读,并回答问题:x x2530(1)小明解此方程使用的是______法;小明的解答过程是从第______步开始出错的.(2)请写出此题正确的解答过程.1.(23-24八年级下·全国·2+=解:∵a =b =c =∴(2244320b ac D =-=-=>,∴2x ==,∴12x =,22x =-.请你分析以上解答过程有无错误,如有错误,指出错误的地方,并写出正确的结果.2.(23-24八年级下·广西百色·期中)小涵与小彤两位同学解方程()()2366x x x -=-的过程如下:小涵的解题过程:第1步:两边同时除以()6x -得36x x =-,第2步:移项,得36x x =-,第3步:解得2x =-.小彤的解题过程:第1步:移项,得()()23660x x x ---=,第2步:提取公因式,得()()6360x x x ---=.第3步:则60x -=或360x x --=,第4步:解得16x =,22x =.(1)小涵和小彤的解法都不正确,小涵第一次出错在第_____步,小彤第一次出错在第_____步;(2)请你给出正确的解法,并结合你的经验提出一条解题注意事项.【答案】(1)1,2(2)正确的解法见解析,16x =,23x =-.注意事项:移项时要注意改变符号,或(除数不能为0)【分析】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.(1)根据等式的性质和因式分解法则即可得出答案;(2)利用因式分解法解答即可.【详解】(1)解:小涵的解法中,因为()6x -可能为0,所以不能两边同时除以()6x -,即第一次出错错在第1步;小彤的解法中,第1步移项没错,第2步提取公因式后有一项忘记变号,即第一次出错错在第2步;故答案为:1;2;(2)解:正确的解法是:()()2366x x x -=-,移项,得()()23660x x x ---=,提取公因式,得()()6360x x x --+=,则60x -=或360x x -+=,解得1263x x ==-,,注意事项:在利用因式分解法解一元二次方程时,注意把方程一边的多项式正确因式分解.题型十 根据判别式判断一元二次方程根的情况例10.(23-24九年级下·云南昆明·阶段练习)已知关于x 的一元二次方程2550x x -+=的根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定【答案】A【分析】本题考查了一元二次方程20(0)ax bx c a ++=¹根的判别式24=b ac D -与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当0D >时,一元二次方程有两个不相等的实数根;当Δ0=时,一元二次方程有两个相等的实数根;当Δ0<时,一元二次方程没有实数根.【详解】解:∵2550x x -+=,∴()2541550D =--´´=>,∴方程两个不相等的实数根.故选A .巩固训练1.(2024·河南周口·三模)关于x 的一元二次方程2220x mx +-=的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根2.(2024·上海·中考真题)以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=¹,当240b ac D =->时,方程有两个不相等实数根;当240b ac D =-=时,方程的两个相等的实数根;当24<0b ac D =-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--´´=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-´´-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--´´=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--´´= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .3.(23-24八年级下·安徽六安·阶段练习)下列方程中,没有实数根的是( )A .22x x=B .2210x x -+=C .260x x --=D .224x x =-【答案】D【分析】本题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程()200ax bx c a ++=¹,当240b ac D =->时,方程有两个不相等的实数根;当240b ac D =-=时,方程有两个相等的实数根;当24<0b ac D =-时,方程没有实数根是解题的关键.分别计算四个方程的根的判别式,然后根据判别式的意义判断根的情况.【详解】解:A 、22x x =可化为:220x x -=2(1)42010D =--´´=>Q ,\方程有两个不相等的实数根;B 、2210x x -+=()2Δ24110=--´´=Q ,\方程有两个相等的实数根;C 、260x x --=()2Δ141(6)250=--´´-=>,\方程有两个不相等的实数根;D 、224x x =-可化为:2240x x -+=2(2)414120D =--´´=-<Q ,\方程没有实数根;故选:D .题型十一 利用一元二次方程根与系数的关系求值例11.(2024·江西宜春·模拟预测)一元二次方程2310x x --=的两根分别为a ,b ,则()ab a b += .1.(2024·江西吉安·一模)已知方程2430x x --=的两个根分别为1x ,2x ,则12x x 的值为 .2.(2024·广东深圳·模拟预测)若1x ,2x 是方程2210x x --=的两个根,则121222x x x x +-的值为 .∴121x x =-,122x x +=,∴()()121212122222215x x x x x x x x +-=+-=´--=,故答案为:5.3.(2024·江苏南京·三模)设12x x 、是方程2320210x x --=的两个根,则21122x x x -+= .【答案】2024【分析】本题主要考查一元二次方程根与系数关系,方程解的定义,掌握一元二次方程根与系数关系,方程解的定义是解题的关键.根据根与系数关系得到123x x +=,之后将1x 代入方程中得到211320210x x -=-,变形为21132021x x -=,两式相加即可得到答案.【详解】解:Q 12x x 、是方程2320210x x --=的两个根,\ 123x x +=,211320210x x -=-,\ 21132021x x -=,\ 22112111220213230224x x x x x x x -+=-+=+=+.故答案为:2024.4.(2024·山东济宁·一模)设a ,b 是一元二次方程23170x x +-=的两个根,则252a a b ++=.题型十二 用一元二次方程解决与图形有关的问题例12:(23-24八年级下·黑龙江哈尔滨·期末)一个矩形蔬菜大棚长32m ,宽20m ,其中有两横两竖四条小路,横竖小路的宽度相同,小路的面积占整个大棚面积的532.(1)小路的宽度是多少?(2)蔬菜的种植需要两组工人来完成,甲组每平方米50元,乙组每平方米60元,若完成此大棚的种植不超过30000元,至少安排甲组种植多少平方米?1.(23-24八年级下·黑龙江哈尔滨·期末)李大爷用30米的栅栏围成一个菜园,围成的菜地是如图所示的矩形ABCD.设边AD的长为x(单位:米),矩形ABCD的面积为S(单位:平方米).(1)求S与x之间的函数解析式(不要求写出自变量x的取值范围);<,请求出此时AD的长.(2)若矩形ABCD的面积为54平方米,且AB AD2.(重庆市两江新区2023-2024学年八年级下学期期末考试数学试题)新高考采用“312++”的模式,对生物学科提出了更高的要求.某学校生物组为培养同学们观察、归纳的能力,组建了生物课外活动小组.在一次野外实践时,同学们发现一种水果黄瓜的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21.(1)这种水果黄瓜每个支干长出多少小分支?(2)学校打算建立一块矩形的生物种植田来种植这种水果黄瓜,一面利用学校的墙(墙的最大可用长度为10米),其余部分需要用总长为22米的栅栏围成,且矩形中间需用栅栏隔开,栅栏因实验需要,有两个宽为1米的门(门无需栅栏,如图所示).设种植田的宽AB 为m 米.若该种植田的面积为36平方米(栅栏的占地面积忽略不计),求该种植田的宽m .【答案】(1)4个(2)6米【分析】本题考查一元二次方程的实际应用:(1)设这种水果黄瓜每个支干长出的小分支个数是x ,根据主干、支干和小分支的总数是21,即可得出关于x 的一元二次方程,解之取其正值即可得出答案.(2)设种植田的宽AB 为m 米,则长BC 为()2232m -+米,根据题意列一元二次方程组,解方程组,再根据10BC £对求出的根进行取舍.【详解】(1)解:设这种水果黄瓜每个支干长出x 个小分支,由题意得:2121x x ++=,解得14x =,25x =-(舍),即这种水果黄瓜每个支干长出4个小分支;(2)解:设种植田的宽AB 为m 米,则长BC 为()2232m -+米,由题意得:()223236m m ×-+=,整理得:28120m m -+=,解得12m =,26m =,当2m =时,223221810BC =-´+=>,不合题意,舍去;当6m =时,22362610BC =-´+=<,符合题意;综上可知,该种植田的宽m 为6米.。
一元二次方程知识点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:ax2bx c 0(a 0) ,它的特色是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中ax 2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数; c 叫做常数项。
二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如(x a2b的一元二次方程。
依照平方根的定义可知,x a 是b的平方根,当 b 0 时,)x a b , x a b ,当b<0时,方程没有实数根。
2、配方法 :配方法的理论依照是完满平方公式a22ab b 2( a b) 2,把公式中的a看做未知数x,并用 x 代替,那么有 x22bx b 2(x b) 2。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上 1次项的系数的一半的平方,最后配成完满平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程ax2bx c 0( a0)的求根公式:x b b24ac (b24ac0)2aa,一次项的系数为 b,常公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为数项的系数为 c4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为 0,尔后看看可否能用提取公因式,公式法〔这里指的是分解因式中的公式法〕或十字相乘,若是可以,就可以化为乘积的形式5、韦达定理利用韦达定理去认识,韦达定理就是在一元二次方程中,二根之和x1 x2b,二根之积x1x2 c 。
a a利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用三、一元二次方程根的鉴识式根的鉴识式一元二次方程 ax2bx c0(a 0) 中, b24ac 叫做一元二次方程ax 2bx c 0(a0) 的根的鉴识式,平时用“〞来表示,即 b 24acI.当△ >0 时,一元二次方程有2个不相等的实数根;II.当△ =0 时,一元二次方程有2个相同的实数根;III.当△ <0 时,一元二次方程没有实数根四、一元二次方程根与系数的关系若是方程 ax 2bx c 0(a0) 的两个实数根是x1, x2,那么 x1 x2b,x1 x2c。
一元二次方程知识点一:一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2 (二次)的方程叫做一元二次方程,一般形式是 ax2 bx c 0(a 0, a,b,c为常数)①ax2 0a 0类型:②ax2 ③ax2 bx 0a 0 c 0a 0④ax2 bx c 0a 0判断一元二次方程的步骤1.把方程化成一般形式 ax2 bx c 0(a 0, a,b, c为常数) 2.最高次数=2 3.最高次项的系数≠0例 1:1.下列方程时一元二次方程的是① 3x2 x 20 ;② 2x2 3xy 4 0;③ x2 1 4 ;④ x2 0 ;⑤ x2 x 3 0x3⑥x2﹣1 ⑦(2)(1)2 ⑧ 6x2=5 ⑨⑩ x2 +3x0;⑪ 1=0;⑫2x2 1 x 132;⑬x2 1 5 0 x⑭;⑮3y2﹣2﹣1;⑯2x2﹣53y2=0;⑰⑱;⑲;⑳⑥;⑦;⑧⑩( ).;④;⑤;;⑨;2.关于 x 的方程 2+32+4 是一元二次方程,则 m 应满足条件是 .3.关于 x 的一元二次方程 2﹣32=0 中,a 的取值范围是 .4.当 时,方程(m2﹣1)x2﹣5=0 不是一元二次方程.5.若关于 x 的方程(k﹣1)x2﹣4x﹣5=0 是一元二次方程,则 k 的取值范围是例 2:当 m 6.若时,方程 (m 1)x m 1 2x 7 0为一元二次方程 是关于 x 的一元二次方程,则 .7.若关于 x 的方程(m﹣1) ﹣﹣3=0 是一元二次方程,则 .8.当 时,(k﹣1) ﹣(2k﹣1)x﹣3=0 是关于 x 的一元二次方程.9.方程(2)31=0 是关于 x 的一元二次方程,则10.关于 x 的方程(m﹣2)﹣1=0 是一元二次方程,则 知识点二:一元二次方程的一般形式一元二次方程的一般形式是 ax2 bx c 0(a 0, a,b,c为常数) ,其中 ax2 是二次项,a 是二次项系数; bx 是一次项, b 是一次项系数; c 是常数项① a 0;②指出二次项系数,一次项系数,常数项时,一定要带上前面的符号③一元二次方程化为一般形式时,若没出现一次项 bx ,并不是没有,而是b 0例 3: 把方程(1) x 1x 3 12 (2)(3)(4) 数项化为一般形式,并写出它的二次项系数,一次项系数和常1.一元二次方程的二次项系数、一次项系数、常数项分别是2.一元二次方程 4x2 x 1的二次项系数,一次项系数,常数项分别是3.一元二次方程 x2 -3x = 4 的一般形式是,一次项系数为。
一元二次方程(知识归纳+题型突破)1、理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程.2、会用一元二次方程根的判别式判别方程是否有实根及两个实根是否相等.3、了解--元二次方程的根与系数的关系.4、能根据具体问题的实际意义,检验方程解的合理性.1.一元二次方程的相关概念(1)定义:只含有一个未知数,且未知数的最高次数是2的整式方程.(2)一般形式:ax 2+bx +c =0(a ≠0),其中ax 2、bx 、c 分别叫做二次项、一次项、常数项,a 、b 、c 分别称为二次项系数、一次项系数、常数项.2.一元二次方程的解法(1)直接开平方法:形如(x +m )2=n (n ≥0)的方程,可直接开平方求解.(2)因式分解法:可化为(ax +m )(bx +n )=0的方程,用因式分解法求解.(3)公式法:一元二次方程ax 2+bx +c =0的求根公式为x b 2-4ac ≥0).(4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时,也可以考虑用配方法.3.根的判别式(1)当Δ=24b ac ->0时,原方程有两个不相等的实数根.(2)当Δ=24b ac -=0时,原方程有两个相等的实数根.(3)当Δ=24b ac -<0时,原方程没有实数根.4.列一元二次方程解应用题(1)解题步骤:①审题;②设未知数;③列一元二次方程;④解一元二次方程;⑤检验根是否有意义;⑥作答.(2)应用模型:一元二次方程经常在增长率问题、面积问题等方面应用.①平均增长率(降低率)问题:公式:b =a (1±x )n ,a 表示基数,x 表示平均增长率(降低率),n 表示变化的次数,b 表示变化n 次后的量;②利润问题:利润=售价-成本;利润率=利润/成本×100%;③传播、比赛问题:④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规则图形通过割补或平移形成规则图形,运用面积之间的关系列方程.注意:运用一元二次方程解决实际问题时,方程一般有两个实数根,则必须要根据题意检验根是否有意义.题型一一元二次方程的解【例1】(2023春·浙江温州·八年级校考期中)已知关于x 的一元二次方程210ax bx ++=有一个根是x m =,则方程20x bx a ++=有一个根是()A .x m =B .x m=-C .1x m=D .1x m=-巩固训练:1.(2023·全国·九年级专题练习)若关于x 的一元二次方程()223790m x x m -++-=的一个根为0,则m 的值为()A .3B .0C .3-D .3-或32.(2023春·山东东营·八年级东营市实验中学校考期中)若m 是一元二次方程220x x --=的一个根,则代数式222m m -的值为()A .0B .2C .2-D .43.(2023春·山东济宁·八年级济宁学院附属中学校考期中)已知m 是一元二次方程2520x x --=的一个根,则代数式220235m m -+的值是()A .2020B .2021C .2022D .20234.(2023·全国·九年级专题练习)已知关于x 的一元二次方程20ax bx c ++=,若0a b c ++=,则此方程必有一个根为()A .0B .1C .-1D .±15.(2023春·浙江宁波·八年级校考阶段练习)若关于x 的一元二次方程()2200ax bx a ++=≠有一根为2023x =,则一元二次方程()212a x bx b -+-=-必有一根为()A .2021B .2022C .2023D .20246.(2023春·山东泰安·八年级统考期中)若2250x x --=的一个解为a ,则()()231a a a a -+-的值为()A .5B .4CD .5-7.(2022秋·上海静安·八年级上海市民办扬波中学校考期中)若1x =-是方程230x mx --=的一个根,则m 的值为.8.(2023·全国·九年级专题练习)(2023·山东枣庄·统考中考真题)若3x =是关于x 的方程26ax bx -=的解,则202362a b -+的值为.9.(2023春·江苏南通·八年级南通田家炳中学校考阶段练习)关于x 的一元二次方程22(1)2230k x x k k -+--+=的一个根为0,则k =.10.(2023·四川·九年级专题练习)先化简,再求值2211121x x x x x ⎛⎫+-÷ ⎪+++⎝⎭,其中x 的值是方程2230x x --=的根.题型二一元二次方程的解法【例2】(2023秋·河南许昌·九年级许昌市第一中学校联考期末)下面是小明同学解一元二次方程2223x x -=的过程,请认真阅读并完成相应的任务.2223x x -=.解:二次项系数化为1,得2312x x -=,第一步移项,得2312x x -=,第二步配方,得239124x x -+=,第三步变形,得2312x ⎛⎫-= ⎪⎝⎭,第四步开方,得312x -=±,第五步解得112x =,252x =,第六步(1)上面小明同学的解法中运用“配方法”将一元二次方程“降次”为两个一元一次方程,体现的数学思想是______,其中“配方法”依据的一个数学公式是______;(2)上述解题过程,从第______步开始出现错误,请写出正确的解答过程.【例3】(2023春·北京门头沟·八年级统考期末)阅读材料,并回答问题:小明在学习一元二次方程时,解方程2230x x --=的过程如下:解:∵2a =,1b =-,3c =-①∴()()2241423b ac =-=--⨯⨯-∆②124230=-=-<③∴此方程无解问题:(1)上述过程中,从步开始出现了错误(填序号);(2)发生错误的原因是:;(3)在下面的空白处,写出正确的解答过程.【例4】(2023·全国·九年级专题练习)按要求解方程(1)21(2603y -=(直接开平方法);(2)231220x x --=(配方法);260x --=(公式法)(4)21(2)12x x -=-(因式分解法)(5)2(35)5(35)60x x ---+=(换元法)【例5】(2023春·陕西咸阳·八年级统考期末)先阅读下面的内容,再解答问题.【阅读】例题:求多项式2224m mn n +++的最小值.解:()()2222224244m mn n m mn n m n +++=+++=++,∵()20m n +≥,∴()244m n ++≥∴多项式2224m mn n +++的最小值是4(1)请写出例题解答过程中把一个三项二次式转化为一个二项式的平方运用的公式是______;(2)求多项式2224230x xy y -+-+的最大值.巩固训练1.(北京市石景山区2022-2023学年八年级下学期期末数学试题)解方程243x x -=,下列用配方法进行变形正确的是()A .2(2)19x -=B .2(4)7x -=C .2(2)4x -=D .2(2)7x -=2.(2022秋·上海奉贤·八年级校考期中)用配方法解一元二次方程282x x -=-时,在方程两边应同时加上()A .4B .8C .16D .643.(2023·全国·九年级专题练习)用配方法解方程2410x x +-=,配方后得到的方程()A .2(2)5x +=B .2(2)5x -=C .2(4)3x +=D .2(4)3x -=4.(2023春·浙江杭州·八年级统考期末)用配方法解一元二次方程2290x x --=配方后可变形为()A .()2110x -=B .()2110x +=C .()218x -=-D .()218x +=-5.(2023春·山东威海·八年级统考期末)用配方法解方程2610x x --=,若配方后结果为2()x m n -=,则n 的值为()A .10-B .10C .3-D .96.(2022秋·山西太原·九年级校考阶段练习)在解方程22410x x ++=时,对方程进行配方,图1是小思做的,图2是小博做的,对于两人的做法,说法正确的是()A .两人都正确B .小思正确,小博不正确C .小思不正确,小博正确D .两人都不正确7.(2023秋·山西长治·九年级统考期末)用配方法解一元二次方程289x x -=时,变形正确的是()A .2(4)9x -=B .2(4)9x +=C .2(4)25x -=D .2(4)25x +=8.(2022秋·天津滨海新·九年级校考期中)若()()160x y x y ++--=,则x y +的值是()A .2B .3C .2-或3D .2或3-9.(2023秋·湖南湘西·九年级统考期末)一元二次方程2830x x +-=配方后可化为.10.(2022秋·甘肃平凉·九年级校考阶段练习)已知实数x 满足2220()(23)x x x x ----=,则代数式22020x x -+的值为.11.(2022秋·上海青浦·八年级校考期中)用配方法解一元二次方程:22510x x +-=12.(2023春·安徽合肥·八年级统考期末)用配方法解方程:()()311x x -+=.13.(2022秋·上海徐汇·八年级上海市徐汇中学校考期中)解方程:23270x x --=14.(2022秋·天津津南·九年级校考期中)选取最恰当的方法解方程:(1)()2214x +=(2)23648x x -=15.(2023春·黑龙江哈尔滨·八年级哈尔滨市萧红中学校考阶段练习)用指定的方法解下列方程(1)26160x x +-=(配方法)(2)21090x x ++=(公式法)16.(2023春·辽宁大连·八年级统考期末)解方程:(1)22310x x -+=(用公式法)(2)2470x x --=(用配方法)17.(2022秋·湖北荆州·九年级校考期中)请用指定方法解下列方程:(1)公式法:2120x x +-=;(2)因式分解法:241440x -=.18.(2023春·山东威海·八年级统考期末)按指定方法解方程:(1)()()223143x x -=+;(因式分解法)(2)22330x x --=.(配方法)题型三一元二次方程根的判别式【例6】(2023春·山东济宁·八年级济宁学院附属中学校考期中)已知关于x 的方程()()221200mx m x m +-+=≠.(1)求证:无论m 取何值,这个方程总有实数根;(2)若等腰ABC 的底边长1a =,另两边b 、c 恰好是这个方程的两个根,求ABC 的周长.巩固训练1.(2023·吉林·统考中考真题)一元二次方程2520x x -+=根的判别式的值是()A .33B .23C .17D2.(2023春·北京昌平·八年级统考期末)下列方程中有两个不相等的实数根的方程是()A .2440x x -+=B .2510x x --=C .2230x x -+=D .2220x x -+=3.(2022秋·天津滨海新·九年级校考期中)关于x 的方程()220x m x m +++=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定4.(2022秋·上海徐汇·八年级上海市徐汇中学校考期中)下列二次三项式在实数范围内一定能因式分解的是()A .223x x ++B .222x x m --C .22x x m--D .22345x xy y -+5.(2022秋·山西临汾·九年级统考期末)关于x 的方程2320ax x +-=有实数根,则a 的取值范围是()A .98≥-a B .98≥-a 且0a ≠C .98a >-D .98a >-且0a ≠6.(2022秋·河南南阳·九年级南阳市第三中学校考阶段练习)方程()21210m x x ---=有两个实数根,则m 的取值范围()A .34m -≤≤且12m ≠B .4m ≤且12m ≠C .34m -≤<D .34m -≤<且12m ≠7.(2023春·浙江绍兴·八年级统考期末)已知()1a a >是关于x 的方程20x bx b a -+-=的实数根.下列说法:①此方程有两个不相等的实数根;②当1a t =+时,一定有1b t =-;③b 是此方程的根;④此方程有两个相等的实数根.上述说法中,正确的有()A .①②B .②③C .①③D .③④8.(2023秋·河南许昌·九年级许昌市第一中学校联考期末)对于实数a ,b ,定义新运算:2a b ab b =-※,若关于x 的方程1x k =※有两个相等的实数根,则k 的值是()A .4B .4-C .14D .14-9.(湖北省荆州市2022-2023学年九年级上学期期中数学试题)对于实数u 、v 定义一种运算“*”为:*u v uv v =+.若关于x 的方程1*(*)4x a x =-有两个相等的实数根,求满足条件的实数a 的值为.10.(2023·贵州·统考中考真题)若一元二次方程2310kx x -+=有两个相等的实数根,则k 的值是.11.(北京市石景山区2022-2023学年八年级下学期期末数学试题)已知关于x 的一元二次方程22210x kx k +-=-.(1)请判断这个方程根的情况;(2)若该方程有一个根小于1,求k 的取值范围.12.(2022秋·上海奉贤·八年级校考期中)已知关于x 的方程()()212110k x k x k +--+-=(1)当k 取什么值时,方程只有一个根?(2)若方程有两个不相等的实数根,求k 的取值范围.题型四一元二次方程的实际应用【例7】(北京市石景山区2022-2023学年八年级下学期期末数学试题)某工厂由于采用新技术,生产量逐月增加,原来月产量为2000件,两个月后增至月产量为3000件.若设月平均增长率为x ,则下列所列的方程正确的是()A .2000(1)3000x +=B .22000(1)3000x +=C .22000(1%)3000x +=D .20002000(1)3000x ++=【例8】(2022秋·山西吕梁·九年级校考阶段练习)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支.已知1个主干长出的枝干和小分支的总数是72,则这种植物每个枝干长出小分支的个数是()A .9B .8C .7D .6【例9】(2023春·八年级单元测试)如图,在Rt ABC 中,90B Ð=°,8AB =cm ,6BC =cm ,动点P 由点A 出发沿AB 方向向点B 匀速移动,速度为1cm/s ,动点Q 由点B 出发沿BC 方向向点C 匀速移动,速度为2cm/s .动点P ,Q 同时从A ,B 两点出发,当PBQ 的面积为152cm 时,动点P ,Q 的运动时间为s .【例10】(2022秋·上海青浦·八年级校考期中)为助力攻坚脱贫,某村村委会在网上直播销售该村优质农产品礼包,已知其3月份的销售量达到400包,若农产品礼包每包的进价25元,原售价为每包40元,该村在今年4月进行降价促销,经调查发现,若农产品礼包每包降价1元,销售量可增加5袋,当农产品礼包每包降价多少元时,这种农产品在4月份可获利4620元?巩固训练1.(2023·全国·九年级专题练习)广东春季是流感的高发时期,某校4月初有一人患了流感,经过两轮传染后,共25人患流感,假设每轮传染中平均每人传染x 人,则可列方程()A .2125x x ++=B .225x x +=C .()2125x +=D .()125x x x ++=2.(2022秋·陕西咸阳·九年级统考期中)有一人感染了某种病毒,若不及时控制就会传染其他人,假设每轮传染中平均一个人传染了x 个人,经过两轮传染后共有64人感染,则x 的值是()A .8B .7C .6D .53.(重庆市开州区2022-2023学年九年级上学期期末数学试题)李师傅去年开了一家商店,今年1月份开始盈利,2月份盈利2400元,4月份盈利达到3456元,若设2月到4月每月盈利的平均增长率为x ,则可列方程为()A .22400(1)3456x +=B .22400(1)3456x -=C .()2400123456x +=D .()2400123456x -=4.(2023春·河北沧州·九年级校考阶段练习)国家卫健委临床检验中心数据,因疫情防控需求,全国新冠病毒核酸检测实验室数量从2020年的2081家,增长至2022年的1.31万家,如果这两年核酸检测实验室的年平均增长率为x ,则下列方程正确的是()A .342.08110(1) 1.3110x ⨯+=⨯B .3242.08110(1) 1.3110x ⨯+=⨯C .2081(12)13100x ⨯+=D .22081(12)13100x ⨯+=5.(2023·黑龙江·统考中考真题)如图,在长为100m ,宽为50m 的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是23600m ,则小路的宽是()A .5mB .70mC .5m 或70mD .10m6.(2023·全国·九年级专题练习)如图,在一张长宽分别为50cm 和30cm 的长方形纸板上剪去四个边长为cm x 的小正方形,并用它做成一个无盖的小长方体盒子,若要使长方体盒子的底面积为2300cm ,求x 的值,根据题意,可列得的方程为()A .()()5030300x x --=B .()()502302300x x --=C .()()50230300x x --=D .215004300x -=7.(2023·江苏无锡·统考中考真题)《九章算术》中提出了如下问题:今有户不知高、广,竿不知长短,横之不出四尺,从之不出二尺,邪之适出,问户高、广、邪各几何?这段话的意思是:今有门不知其高宽:有竿,不知其长短,横放,竿比门宽长出4尺:竖放,竿比门高长出2尺:斜放,竿与门对角线恰好相等.问门高、宽和对角线的长各是多少?则该问题中的门高是尺.8.(2023秋·江西萍乡·九年级统考期末)某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客尽可能多得实惠的前提下,商家还想获得6080元的利润,则该商品的销售定价为元.9.(2023春·八年级单元测试)在ABC 中,90ABC ∠=︒,4cm AB =,3cm BC =,动点P ,Q 分别从点A ,B 同时开始移动(移动方向如图所示),点P 的速度为1cm/s 2,点Q 的速度为1cm/s ,点Q 移动到点C 后停止,点P 也随之停止移动,若使PBQ 的面积为2154cm ,则点P 运动的时间是s .10.(2023春·山东德州·八年级校考阶段练习)如图,90AOB ∠=︒,36cm =OA ,12cm OB =,一个小球从点A 出发沿着AO 方向滚向点O ,另一小球立即从点B 出发,沿BC 匀速前进拦截小球,恰好在点C 处截住了小球.若两个小球滚动的速度相等,则另一个小球滚动的路程BC 是cm .11.(2023春·重庆渝北·八年级礼嘉中学校考期末)今年春季是甲流病毒的高发期.为了遏制甲流病毒的传播,建议市民朋友们在公共场合要佩戴口罩,现在,有一个人患了甲流,经过两轮传染后共有81个人患了甲流.(1)每轮传染中平均一个人传染了几个人?(2)某药房最近售出了100盒口罩.已知售出的95N 医用口罩的数量不超过普通医用口罩的4倍,每盒95N 医用口罩的单价为15元,每盒普通医用口罩的价格为10元,则售出95N 医用口罩和普通医用各多少盒时,总销售额最多?请说明理由.12.(2023·广东阳江·统考一模)自2023年1月以来,甲流便肆虐横行,成为当前主流流行疾病.某一小区有1位住户不小心感染了甲流,由于甲流传播感染非常快,小区经过两轮传染后共有121人患了甲流.(1)每轮感染中平均一个人传染几人?(2)如果按照这样的传播速度,经过三轮传染后累计是否超过1500人患了甲流?13.(2023春·安徽安庆·八年级安庆市石化第一中学校考期末)我市某超市于今年年初以每件30元的进价购进一批商品.当商品售价为40元时,一月份销售250件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到360件.设二、三这两个月的月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加6件,当商品降价多少元时,商场获利1950元?14.(北京市石景山区2022-2023学年八年级下学期期末数学试题)如图,矩形草地ABCD 中,16AB =m ,10AD =m ,点O 为边AB 中点,草地内铺了一条长和宽分别相等直角折线甬路(PO PQ =,OM QN =),若草地总面积(两部分阴影之和)为2132m ,求甬路的宽.15.(2022秋·上海奉贤·八年级校考期中)如图,正方形ABCD 分割成两个小正方形和两个长方形.(1)若正方形ABCD 边长为10,正方形BFPE 的面积是正方形PGDH 的一半,求正方形BFPE 的边BF 的长.(2)若正方形ABCD 面积为10,设BF x =,四边形APGD 的面积为y ,求y 关于x 的函数解析式,并写出定义域.(3)四边形APGD 的面积是否能够等于正方形ABCD 面积的一半,如果能,请求出BF 长,如果不能请说明理由.16.(2023春·江苏南通·八年级统考期末)某学校在“美化校园,幸福学习”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用20m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,AD 两边).75m,求AB的长;(2)若在直角墙角内点P处有一棵桂花树,且到墙CD的距离为12m,若要将这棵树围在矩形花园内(含边100m若能,求出AB的长;若不能,请说明理由.界,不考虑树的粗细),问该花园的面积能否为217.(2023·山东东营·统考中考真题)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为6402m的羊圈?(2)羊圈的面积能达到6502m吗?如果能,请你给出设计方案;如果不能,请说明理由.18.(2022秋·山西晋城·九年级统考期末)某公园中有一块长为32米,宽为20米的矩形花坛,现在要在花坛中间修建一条如图所示的文化长廊,已知长廊的宽度均相等,且横纵相交成直角,若要使花坛的种植面积为540平方米,问长廊的宽度应为多少米?19.(辽宁省辽阳市2022-2023学年九年级上学期期末数学试题)今年元旦期间,某网络经销商进购了一批节日彩灯,彩灯的进价为每条40元,当销售单价定为52元时,每天可售出180条,为了扩大销售,决定采取适当的降价措施,经调查:销售单价每降低1元,则每天可多售出10条.若设这批节日彩灯的销售单价为x(元),每天的销售量为y(条).(1)求每天的销售量y(条)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这批节日彩灯每天所获得的利润为2000元?20.(2023春·浙江金华·八年级义乌市绣湖中学教育集团校联考期中)某水果店以相同的进价购进两批樱桃,第一批80千克,每千克16元出售;第二批60千克,每千克18元出售,两批车厘子全部售完,店主共获利960元.(1)求樱桃的进价是每千克多少元?(2)该水果店一相同的进价购进第三批樱桃若干,第一天将樱桃涨价到每千克20元出售,结果仅售出40千克;为了尽快售完第三批樱桃,第二天店主决定在第一天售价的基础上降价促销,若在第一天售价基础上每降价1元,第二天的销售量就在第一天的基础上增加10千克.到第二天晚上关店时樱桃售完,店主销售第三批樱桃获得的利润为850元,求第二天樱桃的售价是每千克多少元?21.(2023春·安徽阜阳·八年级统考期末)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价-进货价)类别价格A款钥匙扣B款钥匙扣进货价(元/件)3025销售价(元/件)4537(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数?(2)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?22.(2023春·浙江宁波·八年级统考期末)第19届亚运会即将在杭州举行,某商店购进一批亚运会纪念品进行销售,已知每件纪念品的成本是30元,如果销售单价定为每件40元,那么日销售量将达到100件.据市场调查,销售单价每提高1元,日销售量将减少2件.(1)若销售单价定为每件45元,求每天的销售利润;(2)要使每天销售这种纪念品盈利1600元,同时又要让利给顾客,那么该纪念品的售价单价应定为每件多少元?23.(2023春·江苏无锡·八年级统考期末)服装店购进一批甲、乙两种款型的时尚T恤衫,甲种款型共用了10400元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的2倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)该服装店第一个月甲种款型的T恤衫以200元/件的价格售出20件、乙种款型的T恤衫以250元/件的价格售出10件;为了促销,第二个月决定对甲、乙两种款式的T恤衫都进行降价a元销售,其中甲种款型的T恤衫的销售量增加4a件、乙种款型的T恤衫的销售增加a件,结果第二个月的销售总额比第一个月的销售总额增加了1000a元,求第二个月的销售利润.24.(2022秋·陕西咸阳·九年级统考期中)今年某村农产品喜获丰收,该村村委会在网上直播销售A、B两种优质农产品礼包.(1)已知今年7月份销售A 种农产品礼包256包,8、9月该礼包十分畅销,销售量持续走高,在售价不变的基础上,9月份的销售量达到400包.若设8、9两个月销售量的月平均增长率为x ,求x 的值;(2)若B 种农产品礼包每包成本价为16元,当售价为每包30元时,每月销量为200包.为了尽快减少库存,该村准备在10月进行降价促销,经调查发现,若B 种农产品礼包每包每降价1元,月销售量可增加20包,当B 种农产品礼包每包降价多少元时,该村销售B 种农产品礼包在10月份可获利2860元?25.(2023春·山东济南·八年级统考期末)如图,在ABC 中,90B Ð=°,6cm AB =,8cm BC =点P 从A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.点P ,Q 同时出发,当点Q 运动到点C 时,两点停止运动,设运动时间为t 秒.(1)填空:BQ =______cm ,PB =______cm ;(用含t 的代数式表示);(2)当t为几秒时,PQ 的长度等于(3)是否存在某一时刻t ,使四边形APQC 的面积等于ABC 面积的23?如果存在,求出t 的值,如果不存在,请说明理由.26.(2022秋·广东广州·九年级校考阶段练习)如图,在Rt ABC △中,90C ∠=︒,6cm AC =,8cm BC =.点P 、Q 同时由A 、C 两点出发,分别以1cm 和2cm s 的速度沿线段AC 、CB 匀速移动,当一点到达终点时,另一点也停止移动.(1)设经过t 秒,用含t 的代数式表示PC 、CQ .PC =______、CQ =______.(2)几秒后,PCQ △的面积是ABC 面积的1327.(2020秋·广东惠州·九年级惠州一中校考阶段练习)如图,在长方形ABCD 中,10cm AB =,12cm BC =,点P 从点A 开始沿边AB 向终点B 以2cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以3cm/s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:BQ =______cm ,PB =______cm (用含t 的代数式表示)(2)当t 为何值时,PQ 的长度等于10cm ?(3)是否存在t ,使得五边形APQCD 的面积等于278cm ?若存在,请求出t 的值;若不存在,请说明理由.28.(2022春·广西梧州·八年级校考期中)如图,在ABC ∆中,90B Ð=°,6cm AB =,8cm BC =点P 从A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.点P ,Q 同时出发,当点Q 运动到点C 时,两点停止运动,设运动时间为t 秒.(1)填空:BQ =___________cm ,PB =___________cm ;(用含t 的代数式表示)(2)当t 为几秒时,PQ 的长度等于8cm ?(3)是否存在某一时刻t ,使四边形APQC 的面积等于ABC 面积的23?如果存在,求出t 的值,如果不存在,请说明理由,29.(2023春·江苏泰州·八年级统考期末)问题:“某工程队准备修建一条长3000米的下水管道,由于采用新的施工方式,________________,提前2天完成任务,求原计划每天修建下水管道的长度?”条件:(1)实际每天修建的长度比原计划多25%;(2)原计划每天修建的长度比实际少75米.在上述的2个条件中选择1个________________(仅填序号)补充在问题的横线上,并完成解答.30.(2023春·重庆北碚·八年级西南大学附中校考期中)甲、乙两工程队合作完成某修路工程,该工程总长为4800米,原计划32小时完成.甲工程队每小时修路里程比乙工程队的2倍多30米,刚好按时完成任务.(1)求甲工程队每小时修的路面长度;(2)通过勘察,地下发现大型溶洞,此工程的实际施工里程比最初的4800米多了1000米,在实际施工中,m )小时;甲工程队的修路速度比原计划每乙工程队修路效率保持不变的情况下,时间比原计划增加了(25小时下降了3m米,而修路时间比原计划增加m小时,求m的值.31.(重庆市开州区2022-2023学年九年级上学期期末数学试题)随着人们对健康生活的追求,全民健身意识日益增强,徒步走成为人们锻炼的日常,中老年人尤为喜爱.(1)张大伯徒步走的速度是李大伯徒步走的1.2倍,张大伯走5分钟,李大伯走10分钟,共走800米,求张大伯和李大伯每分钟各走多少米?(2)天气好,天色早,张大伯和李大伯锻炼兴致很浓,又继续走,与(1)中相比,张大伯的速度不变,李大伯的速度每分钟提高了2a米,时间都各自多走了10a分钟,结果两人又共走了6900米,求a的值.。
《解一元二次方程》课堂笔记一、一元二次方程的概念1.一元二次方程的一般形式:ax²+bx+c=0(a、b、c是常数,且a≠0)2.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解。
二、一元二次方程的解法1.直接开平方法:(1)方程x²-2x-3=0;(2)方程(x-1)²-5=0;(3)方程x²-8x+16=0;(4)方程(x+3)²-9=0。
解:由方程x²-2x-3=0,得x²-2x=3,方程两边同时加上一次项系数一半的平方,得x²-2x+1=3+1,(x-1)²=4,所以x-1=±2,所以x₁=3,x₂=-1。
1.配方法:(1)用配方法解方程x²-6x+9=0;(2)用配方法解方程2x²-8x=-5;(3)用配方法解方程x²-6x=-15;(4)用配方法解方程2x²+8x-9=0。
解:把常数项移到方程的右边,两边同时加上一次项系数一半的平方,得x²-6x=-9,方程左边写成完全平方式,得(x-3)²=-9,所以x-3=±3i所以原方程的解为:x₁=3+3√3i,x₂=3-3√3i。
1.公式法:用求根公式解一元二次方程的方法叫公式法。
公式法适用于任何一元二次方程。
在运用公式法解一元二次方程时,要善于观察所给的方程的形式和结构,正确选择恰当的方法解方程。
2.因式分解法:把一个一元二次方程的一边化为零,另一边分解为两个一次因式的积的形式,这种解一元二次方程的方法叫因式分解法。
用因式分解法解一元二次方程时,一般选用公式法比较简便。
因式分解法适用于任何一元二次方程。
在运用因式分解法解一元二次方程时,要善于观察所给的方程的形式和结构,正确选择恰当的方法解方程。
一元二次方程知识点1:定义 1.等号两边都是 ,只含有 个未知数,并且未知数的最高次数是 (二次)的方程,叫做一元二次方程。
例如:12x 2+5x+1=0 2.满足三个条件:① 例:判断 1x ² + x =2 ( ) ② x 2 + y - 3=0 ( )③ (x-2) (x+5) = x 2-1( )2(x-1)² = 2x 2 ( )知识点2:一般形式1.a x 2+bx+c=0(a≠0) 注:易错二次项: 二次项系数: ① a≠0是前提一次项: 一次项系数: ②必须化成一般形式才能确定各个项 常数项: ③必须包含前面符号2.特殊形式(1)b=0时,得 例:(x-2)²-x=7x+6(2)c=0时,得 一般形式:(3)b=0,c=0时,得 二次项系数: 一次项:常数项:知识点3:一元二次方程的解(根)1.使方程左右两边相等的未知数的值就是这个一元二次方程的解(根) ①x=02.三种情况: ②x<0③x>0例: 若a+b+c=0,则一元二次方程ax²+bx+c=0,必有解① 若a-b+c=0,则一元二次方程ax²+bx+c=0,必有解若4a+2b+c=0,则一元二次方程ax²+bx+c=0,必有解②若m是方程x2-x-1=0的一个根,则m²-m+2020=③当方程(m-1)x m2+1+2x-3=0,则m=知识点4:解一元二次方程的四个解法1.直接开方基本形式:x2=P(P≥0) (mx+n)2=P(P≥0,m≠0)P>0,x1=√p,x2=−√p P>0,x1=√p−nm ,x2=−√p−nmP=0,x1=x2=0 P=0,x1=x2=0P<0,无实数根 P<0,无实数根注:如遇到x2-q=p的形式,则需先移项x2=p+q,再开方x=±√p+q,(mx+a)2= (nx+b)2mx+a=±( nx+b)例如:①9x2=25 ②12x2−198=0③2x2+3=-2x2+4 ④4(2x−1)2-25(x+1)2=02.配方法依据:(a b)2=a2+2ab+b2; (a−b)2=a2-2ab+b2(x b)2=x2±2bx+b2步骤:a x2x2+bx=-c 二次项系数化1 x2+ba x = -ca配方 x2+ba x+b24a2=−ca+b24a2降次 (x−b2a)2=b2−4ac4a2开方 x+b2a =±√b2−4ac4a2解方程 x1=−b+√b2−4ac2a,x2=−−b−√b2−4ac2a例:x2+10x+ =(x+5)2x2−12x+ =(x− )2x2−23x + = (x− )24x2+4x+ =(2x+ )2x2- + 16 = (x− )2x2+7x + 494= (x+ )23.公式法(1)根的判别式 , 用希腊字母 表示。
一元二次方程知识点一:一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程叫做一元二次方程,一般形式是),,,0(02为常数c b a a c bx ax ≠=++类型:()()()()⎪⎪⎩⎪⎪⎨⎧≠=++≠=+≠=+≠=000000002222a c bx ax a c ax a bx axa ax ④③②①判断一元二次方程的步骤例1:1.下列方程时一元二次方程的是①2032=+x x ;②04322=+-xy x ;③412=-x x ;④02=x ;⑤0332=+-xx⑥x 2﹣1=y ⑦(x+2)(x+1)=x 2 ⑧ 6x 2=5 ⑨⑩2x +3x +y=0 ;⑪ x+y+1=0 ;⑫ 213122+=+x x ; ⑬ 0512=++x x⑭;⑮3y 2﹣2y=﹣1;⑯2x 2﹣5xy+3y 2=0;⑰⑱ ;⑲ ;⑳ ;④ ;⑤ ;⑥ ;⑦ ;⑧ ;⑨ ;⑩ ().2.关于x 的方程mx 2+3x=x 2+4是一元二次方程,则m 应满足条件是 _________ .3.关于x 的一元二次方程ax 2﹣3x+2=0中,a 的取值围是 _________ .4.当m= _________ 时,方程(m 2﹣1)x 2﹣mx+5=0不是一元二次方程.1.把方程化成一般形式),,,0(02为常数c b a a c bx ax ≠=++2.最高次数=23.最高次项的系数≠05.若关于x 的方程(k ﹣1)x 2﹣4x ﹣5=0是一元二次方程,则k 的取值围是__________ 例2:当=m 时,方程072)1(1=-+-+x x m m 为一元二次方程 6.若是关于x 的一元二次方程,则a= _________ .7.若关于x 的方程(m ﹣1)﹣mx ﹣3=0是一元二次方程,则m= _________ .8.当k= _________ 时,(k ﹣1)﹣(2k ﹣1)x ﹣3=0是关于x 的一元二次方程.9.方程(m+2)x |m|+3mx+1=0是关于x 的一元二次方程,则m=__________10.关于x 的方程(m ﹣2)x |m|﹣mx+1=0是一元二次方程,则m=___________ 知识点二:一元二次方程的一般形式一元二次方程的一般形式是),,,0(02为常数c b a a c bx ax ≠=++,其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项①0≠a ;②指出二次项系数,一次项系数,常数项时,一定要带上前面的符号 ③一元二次方程化为一般形式时,若没出现一次项bx ,并不是没有,而是0=b 例3: 把方程(1)()()1231=+-x x (2)(3)(4)化为一般形式,并写出它的二次项系数,一次项系数和常数项1.一元二次方程的二次项系数、一次项系数、常数项分别是_______________2.一元二次方程142=+x x 的二次项系数,一次项系数,常数项分别是3.一元二次方程2x -3x = 4的一般形式是 ,一次项系数为 。
4.一元二次方程32x +2x -5=0的二次项系数、一次项系数和常数项依次为_______________5.把一元二次方程2x (x -1)=(x -3)+4化成一般式之后,其二次项系数与一次项分别是___________________6.方程22x =3(x -2)化为一般形式后,二次项系数、一次项系数、常数项分别是____________________7.一元二次方程22x -b x =1的常数项为________________ 8下面的一元二次方程中,常数项为5的方程是( )A .52x -3x +1=0B .32x +5x +1=0C .32x -x +5=0D .32x -x =5 9一元二次方程-32x +5x=7的二次项系数是___________10.若关于x 的一元二次方程2x +5x +m 2-1=0的常数项为0,则m 等于___________11. 关于x 的一元二次方程x 2+(2a-1)x+5-a=ax+1的一次项系数为4,则常数项__________A.1B.-1C.0D. 5知识点三:一元二次方程的解使一元二次方程左右两边相等的未知数的值,叫做一元二次方程的解,也叫做一元二次方程的根①代入法检验一个数是否是方程的根②代入方程的根,可以求方程中的未知字母系数或字母常数的值 1:下列哪些数是方程0122=-+x x 的根 4-,3-,2-,1-,0,1,2,3,42:关于x 的一元二次方程()01122=-++-a x x a 的一个根是0,则a =3. 关于 的一元二次方程 有一个根是 ,则 的值是 ( )A.B.C.D.4:已知方程02=++a bx x 有一个根是a -()0≠a ,则b a -的值为 5:如果2是方程02=-c x 的一个根,那么常数c 是多少?求出这个方程的其他根6. 若一元二次方程()有一根为,则,,满足的关系式是.7. 如果是方程的解,则的值是.8. 已知关于的一元二次方程的一个根是,则.9. 已知是一元二次方程的一个根,则的值为.10. 若关于的一元二次方程的解是,则的值是 ( )A. B. C. D.11. 如果是一元二次方程的一个根,那么常数是 ( )12.一元二次方程a2x+bx +c=0(a≠0)有一个根为1,则a+b +c= 。
知识点四:根据实际问题列一元二次方程根据下列问题,列方程,并化成一般式例1:有一块矩形铁皮,长cm50,在它的四角切去一个同样的正方形,然后将四周100,宽cm突出部分折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为23600cm,那么铁皮各角应切去多大的正方形例2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?(1)4个完全相同的正方形的面积之和是25,求正方形的边长(2)一个矩形的长比宽多2,面积是100,求矩形的长(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长(4)一个圆的面积是 2,求半径(5)一个直角三角形的两条直角边相差cm 3,面积是29cm ,求较长的直角边的长(6)有一根m 1长的铁丝,怎样用它围成一个面积为206.0m 的矩形?(7)参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?1. 一元二次方程的解法 (1)直接开平方法:形如2()(0)x a b b +=≥的方程可以用直接开平方法解,两边直接开平方得x a +=或者x a +=∴x a =-±注意:若b<0,方程无解4、方程2x = 225的根是 。
5、解方程025x 2=- 081)2x (42=--.(5)(x +1)2=0 (6)2(x -1)2=0(7)(2x +1)2=0 (8)(2x -1)2=1 (9)21(2x +1)2=3 (10) (x +1)2-144=03x 2-1=0 27252-x =050)6(2=+x 0232=-x(1)2x 2-24=0 (2)4)1(2=-x(3)2(x -2)2=50 (4)24)23(2=+x(1) 配方法:用配方法解一元二次方程20(0)ax bx c a ++=≠的一般步骤①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为2()(0)x m n n +=≥的形式;④用直接开平方法解变形后的方程。
注意:当0n <时,方程无解5、(2x -24x + ) =(x - )2。
①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2; ③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )26、用配方法解方程x 73x 22=+. 04732=+-x x(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41 x 2-x-4=01、.0662=--y y2、x x 4232=-3、9642=-x x4、0542=--x x5、01322=-+x x6、07232=-+x x(2)因式分解法: 一般步骤如下:①将方程右边得各项移到方程左边,使方程右边为0;②将方程左边分解为两个一次因式相乘的形式; ③令每个因式分别为零,得到两个一元一次方程; ④解这两个一元一次方程,他们的解就是原方程的解。
7、方程32x -5 x=0的根是 。
8、因式分解法解方程02x 3x 2=+-. y 2+7y +6=0;(1)42)2(2+=+x x ; (2)0)3()3(42=---x x x ;(3)0611102=--x x ; (4)22)1(4)2(9+=-x x 。
(5)02=+x x ; (6)03522=--x x ;(7)01072=+-x x ; (8)01892=++x x ;(10)071162=-+x x .(2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1.(2)0)32(3)32(22=---x x ; (3)0223)222(2=+---x x ;(4)066)2332(2=++-x y . )21()1(2252---=+x x x x(2) 公式法:一元二次方程20(0)ax bx c a ++=≠ 根的判别式:24b ac ∆=-0∆>⇔方程有两个不相等的实根:2b x a -=(240b ac -≥)⇔()f x 的图像与x 轴有两个交点0∆=⇔方程有两个相等的实根⇔()f x 的图像与x 轴有一个交点 0∆<⇔方程无实根⇔()f x 的图像与x 轴没有交点9、关于x 的一元二次方程m 2x -2x +1= 0有两个相等实数根,则m= 。
11、不解方程,判别下列方程的根的情况:(1)04x 3x 22=-+; (2)y 249y 162=+; (3)0x 7)1x (52=-+.12、用公式法解方程1、0822=--x x2、22314y y -=3、y y 32132=+4、01522=+-x x5、1842-=--x x6、02322=--x x13、用适当方法解方程(1)x 2+ 2x + 3=0 (2)x 2+ 6x -5=0(3) x 2-4x+ 3=0 (4) x 2-2x -1 =0(5) 2x 2+3x+1=0 (6) 3x 2+2x -1 =0(7) 5x 2-3x+2 =0 (8) 7x 2-4x -3 =0(9) -x 2-x+12 =0 (10) x 2-6x+9 =0①定根的个数; ②求待定系数的值; ③应用于其它。