初中数学各章节精品导学案练习19第十九章__四边形
- 格式:doc
- 大小:853.50 KB
- 文档页数:45
高效课堂导学案_________________________________ SHUXUE_________________________________ 八年级下册(第十九章四边形)(配沪科版)朱寨中心学校数学组.15第19章四边形19——平行四边形及性质(1)【学习目标】1、掌握平行四边形的概念和对边相等对角相等的性质,根据概念和性质学数进行有关的计算和证明.2、让学生学会用分析法和综合法解决问题 一、复习导入平行四边形的定义: 的四边形叫做平行四边形。
记作: ,连AC 和BD ,则AC ,BD 叫平行四边形的 二、合作探究1.平行四边形的性质1:边的性质:AB ∥ ; BC ∥AB= ; BC=即:平行四边形对边平行且 。
2.平行四边形的性质2: 角的性质:∠A= ,∠B=即:平行四边形对角 。
3.小结:平行四边形的性质:用几何语言描述平行四边形的性质, ①∵四边形ABCD 是平行四边形 ∴ AB ∥ ,AD ∥ ∴ AB = , AD = ②∵四边形ABCD 是平行四边形 ∴ ∠A=∠ , ∠B=∠ ③∵四边形ABCD 是平行四边形∴AB ∥CD,∴∠A 与∠D 互为邻补角, ∠A+∠D= , ∠B+∠C=4.在ABCD 中,已知∠B =40 ,求其他各个内角的度数。
5.如图,在平行四边形ABCD 中,CE ⊥AB,AF ⊥CD ,垂足分别为E, F.求证:AF=CE.小结:如果两条直线平行,那么一条直线上所有的点另一条直线的距离都 。
O D C B ADCBA ADBC6.如图,在 ABCD 中,∠B=60°AB=8,BC=10求 ABCD 中其余各个角的度数和它的周长。
【随堂检测】1、在 ABCD 中,AB=3㎝,AD=5㎝,∠A=43°,∠B=137°,则DC= ,AD=∠C= ,∠D= .其周长为 。
2、在▱ABCD 中∠A :∠B=4:5 ,那么∠C= ,∠D=_______.3、▱ABCD 的周长为36㎝,相邻两条边长的比是1:2 ,那么这个平行四边形的这两条边长分别为_______㎝,_______㎝。
第十九章平行四边形19.1.1 平行四边形及其性质(一)一、阅读教科书第2—4页上方二、学习目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.三、探索新知:1、平行四边形的定义。
2、平行四边形的表示方法:3、平行四边形的性质:模仿做例题1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.四、巩固训练1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=︒(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.选择题(1)在下列图形的性质中,平行四边形不一定具有的是().360(A)对角相等(B)对角互补(C)邻角互补(D)内角和是︒(2).在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个五、目标检测3.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.4.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.19.1.1 平行四边形的性质(二)一、阅读教科书第2—4页上方二、学习目标:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.三、探索新知:(1)平行四边形的性质:模仿做例题1、已知:如图,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.※【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.2、已知四边形ABCD 是平行四边形,AB =5cm ,AD =4cm ,AC ⊥BC ,求BC 、CD 、AC 、OA 的长以及ABCD 的面积.四、巩固训练 1.判断对错(1)在ABCD 中,AC 交BD 于O ,则AO=OB=OC=OD . ( ) (2)平行四边形两条对角线的交点到一组对边的距离相等. ( ) (3)平行四边形的两组对边分别平行且相等. ( ) (4)平行四边形是轴对称图形. ( )2.如图,ABCD 中,AE ⊥BD ,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm . 3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__cm .5.在 ABCD 中,AC =6、BD =4,则AB 的范围是__ ______.6.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 . 五、目标检测7.在平行四边形中,周长等于48, ① 已知一边长12,求各边的长② 已知AB=2BC ,求各边的长③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长8.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15cm,AD=12cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.19.1.2(一)平行四边形的判定一、阅读教科书第2—4页上方二、学习目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.三、探索新知:平行四边形判定方法1 :平行四边形判定方法2 :模仿做例题1、已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2) △ABC的顶点分别是△B′C′A′各边的中点.证明:2、小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.解:四、巩固训练1.如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形.2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.3.灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:①第4个图形中平行四边形的个数为___ __.(6个)②第8个图形中平行四边形的个数为___ __.(20个)五、目标检测4.下列条件中能判断四边形是平行四边形的是().(A)对角线互相垂直(B)对角线相等(C)对角线互相垂直且相等(D)对角线互相平分5.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF19.1.2(二)平行四边形的判定一、阅读教科书第2—4页上方二、学习目标:1.掌握用一组对边平行且相等来判定平行四边形的方法.2.会综合运用平行四边形的四种判定方法和性质来证明问题.3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.三、探索新知:平行四边形的性质;平行四边形的判定方法;模仿做例题1、已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.2、已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.四、巩固训练1.判断题:(1)相邻的两个角都互补的四边形是平行四边形;()(2)两组对角分别相等的四边形是平行四边形;()(3)一组对边平行,另一组对边相等的四边形是平行四边形;()(4)一组对边平行且相等的四边形是平行四边形;()(5)对角线相等的四边形是平行四边形;()(6)对角线互相平分的四边形是平行四边形.()2、在下列给出的条件中,能判定四边形ABCD为平行四边形的是().(A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D(C)AB=CD,AD=BC (D)AB=AD,CB=CD3.在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.(共有9对)4.已知:如图,AC∥ED,点B在AC上,且AB=ED=BC,找出图中的平行四边形,并说明理由.五、目标检测5.已知:如图,在ABCD中,AE、CF分别是∠DAB、∠BCD的平分线.求证:四边形AFCE是平行四边形.6.延长△ABC的中线AD至E,使DE=AD.求证:四边形ABEC是平行四边形.19.1.2(三)平行四边形的判定——三角形的中位线一、阅读教科书第2—4页上方 二、学习目标:1. 理解三角形中位线的概念,掌握它的性质.2. 能较熟练地应用三角形中位线性质进行有关的证明和计算. 3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.三、探索新知: 三角形中位线定义: 三角形中位线的性质:一个三角形的中位线共有几条? 三角形的中位线与中线有什么区别?模仿做例题1、 如图,点D 、E 、分别为△ABC 边AB 、AC 的中点,求证:DE ∥BC 且DE=21BC .(至少用两种方法证明)2、已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.四、巩固训练1.(填空)如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20 m,那么A、B两点的距离是m,理由是.2.已知:三角形的各边分别为8cm 、10cm和12cm ,则连结各边中点所成三角形的周长是.3、一个三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是cm.4、已知:△ABC中,点D、E、F分别是△ABC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是cm.五、目标检测5.如图,△ABC中,D、E、F分别是AB、AC、BC的中点,(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm;(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.6.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.19.2.1 矩形(一)一、阅读教科书第2—4页上方二、学习目标:1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.3.渗透运动联系、从量变到质变的观点.三、探索新知:矩形定义:矩形性质1矩形性质2推论模仿做例题1、已知:如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.2、已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.四、巩固训练1.填空题(1)矩形的定义中有两个条件:一是,二是.(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为cm,cm,cm,cm.2.选择题(1)下列说法错误的是().(A)矩形的对角线互相平分(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有().(A)2对(B)4对(C)6对(D)8对3.矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为().(A)12cm (B)10cm (C)7.5cm (D)5cm4.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.五、目标检测5.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.6.已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.7.如图,矩形ABCD中,AB=2BC,且AB=AE,求证:∠CBE的度数.19.2.1 矩形(二)一、阅读教科书第2—4页上方二、学习目标:1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力三、探索新知:矩形判定方法1:矩形判定方法2:模仿做例题:1、下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;()(2)有四个角是直角的四边形是矩形;()(3)四个角都相等的四边形是矩形;()(4)对角线相等的四边形是矩形;()(5)对角线相等且互相垂直的四边形是矩形;()(6)对角线互相平分且相等的四边形是矩形;()(7)对角线相等,且有一个角是直角的四边形是矩形;()(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()(9)两组对边分别平行,且对角线相等的四边形是矩形.( )2 、已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.3、已知,ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.四、巩固训练1.(选择)下列说法正确的是().(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形(D)对角互补的平行四边形是矩形2.已知:如图,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得DE=CD.连结AE,BE,则四边形ACBE为矩形.五、目标检测3.工人师傅做铝合金窗框分下面三个步骤进行:⑴先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;⑵摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理是:;⑶将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:;4.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.19.2.2 菱形(一)一、阅读教科书第2—4页上方二、学习目标:1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.三、探索新知:菱形定义:菱形的性质1:菱形的性质2:模仿做例题1、已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.四、巩固训练1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形的两条对角线分别是6cm和8cm ,则菱形的周长和面积分别为.3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,则菱形的对角线的长和面积分别为.4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.五、目标检测5.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.6.四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.19.2.2 菱形(二)一、阅读教科书第2—4页上方二、学习目标:1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.三、探索新知:菱形判定方法1菱形判定方法2模仿做例题1、已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.2、已知:△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.求证:四边形CEHF为菱形.四、巩固训练1.填空:(1)对角线互相平分的四边形是;(2)对角线互相垂直平分的四边形是________;(3)对角线相等且互相平分的四边形是________;(4)两组对边分别平行,且对角线的四边形是菱形.2.下列条件中,能判定四边形是菱形的是().(A)两条对角线相等(B)两条对角线互相垂直(C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分3.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.五、目标检测4.画一个菱形,使它的两条对角线长分别为6cm、8cm.5.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED 是菱形。
第十九章四边形复习导学案学习目标:1.回顾本单元知识,领会四边形以及特殊四边形的概念、性质、判定,以及三角形中位线定理,发展合情推理能力.2.经历四边形基本性质,常见判定方法的复习交流过程,使学生学会“合乎逻辑地思考”,建立知识体系,获得一定的技能基础.学习重点:理解和掌握几种常见特殊四边形的性质、判定.学习难点:发展合情推理和初步的演绎推理能力.一、预习导航:你能试着完成下面四边形及其特殊四边形的关系图吗?四边形2、菱形的周长为40cm,一对角线长是16cm,则另一对角线长____,面积_____,高是______;3、四边形ABCD,E,F,G,H分别是四边的中点,则①四边形EFGH是________;②当四边形ABCD满足条件______时,四边形EFGH是矩形;当四边形ABCD满足条件______时,四边形EFGH是菱形;当四边形ABCD满足条件______时,四边形EFGH是正方形;4、直角梯形中,斜腰与底的夹角为60°,若这腰与上底的长都是8cm,则这梯形的周长是().A.24+43 B.26+43 C.28+43 D.32+435、如图,□ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为 ( )A.3 cm B.6 cm C.9 cm D.12 cm6、用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③菱形;④正方形;⑤等腰三角形.一定可以拼成的图形是__________________________(填序号)二、合作交流:1、平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为( )A. 6<AC<10B. 6<AC<16C. 10<AC<16D. 4<AC<162、菱形ABCD,AB=2,∠DAB=60°,E是AB中点,P是AC上任一点,则PE+PB的最小值是____;3已知:如图,四边形ABCD是平行四边形,DE//AC,交BC的延长线于点E,EF⊥AB于点F,求证:AD=CF。
八年级数学下册 19.1.1平行四边形性质导学案(1)人教新课标版19、1 平行四边形及其性质(1)导学案学习目标:1、使学生掌握平行四边形的概念及性质定理,并能运用这些知识进行有关的证明或计算、2、知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想;通过推导平行四边形的性质定理的过程,培养学生的推理、论证能力和逻辑思维能力、3、通过要求学生书写规范,培养学生科学严谨的学风;渗透几何方法美和几何语言美及图形内在美和结构美学习重点:平行四边形性质定理的应用学习难点:在计算或证明中应用平行四边形概念、性质的知识、【预习内容】(阅读教材第83至84页,并完成预习内容。
)1、写出你在生活中常见的四边形,看谁写的又快又多。
2、平行四边形:___________________________________叫做平行四边形、3、自主画一个平行四边形、它可以记作______________________读作______________________(注意:表示时一定要按顺时针或逆时针方向依次注明各个顶点,若写成ACBD等都是错误的)ABCD4、你能求出下面这个平行四边形的面积吗?EBC=12 AE=85、平行四边形属于四边形,所以具有四边形的性质:______________平行四边形还有哪些性质呢?我们先来认识一下与其相关的概念。
①邻边:有公共顶点的边。
②对边:不相邻的,没有公共顶点的边。
③邻角:有公共边的两个角。
④对角:没有公共边的两个角,也就是相对的两个角。
6、探究:根据定义画一个平行四边形,观察除了“两组对边分别平行”外,它的边、角之间还有什么关系?度量一下,是不是和你的猜想一致?1,2,。
你能证明你发现的上述结论吗?(提示:连接对角线把未知问题转化为已知的三角形问题)ABCD已知:求证:(图3)证明:归纳:平行四边形具有以下性质:__________________________ ___________________________符号表达:∵ ABCD∴AD_____BC, AB____DC; ∠A ___ ∠C, ∠B____ ∠DABCD(图4)例1:如图4,小明用一根36m长的绳子围成了一个平行四边形的场地,其中AB边长为10m,其他三边的长各是多少?【课堂活动】活动1 预习反馈、概念明确、定理证明活动2 平行四边形性质应用1、ABCD中,AB=5, BC=3, 则它的周长为_________。
八年级数学下册 19.1.2.1平行四边形的判定导学案新人教版一、课题19、1、2、1平行四边形的判定(1)编写备课组二、本课学习目标与任务:1、理解掌握平行四边形的判定方法1、2、;2、在应用中,进一步巩固性质和判定的综合运用。
三、知识链接:平行四边形的性质,从三个方面说:边:。
角:。
对角线:。
四、自学任务(分层)与方法指导:1、探究判定一个四边形是平行四边形的方法ABCD通过前面的学习我们知道,判断一个四边形是不是平行四边形可以从定义出发,你能利用三角形的全等和平行四边形的定义来证明下面的结论吗?(1)已知,在四边形ABCD中,若AB=DC,AD=BC,求证:四边形ABCD是平行四边形、(提示:连接AC,证明△ABC≌△CDA)由此,我们得到平行四边形的判定定理1:、符号语言:如图1,在四边形ABCD中,∵ ,∴四边形ABCD是平行四边形、ABCDO(1)已知,在□ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD、求证:四边形ABCD是平行四边形、由此,我们得到平行四边形的判定定理2:、符号语言:如图2所示,在□ABCD中,∵ ,∴ ADCBFE O2、如图所示,□ABCD的对角线AC、BD相交于点O,点E、F是AC上两点,并且AE=CF,求证:四边形BFDE是平行四边形、五、小组合作探究问题与拓展:ADBCFE1、如图所示,在□ABCD中,E、F是对角线BD上两点,且BF =DE,连接AE、CE、AF、CF,求证:四边形AECF是平行四边形、ADBCFEO2、已知:如图,在四边形ABCD中,AB=CD,AD=BC,点E、F分别在BC和AD边上,AF=CE,EF和对角线BD相交于点O,求证:点O是BD的中点、六、自学与合作学习中产生的问题及记录当堂检测题1、下列给出的条件中,能判定四边形ABCD是平行四边形的为()A 、 AB=BC,AD=CDB、AB=CD,AD∥BCC、∠A=∠B, ∠C=∠DD、AB∥CD, ∠A=∠C2、将两个全等三角形用各种不同的方法拼成四边形,平行四边形个个数是()A、1个B、2个C、3个D、4个3、A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD;这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法共有()(A)3种(B)4种(C)5种(D)6种4、已知如图,E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AE=CG,BF=DH。
水洛中学导学案时间2013.5 学科数学年级八年级主备人谢晓斌课题19.1.1平行四边形的性质课时第一课时教学目标1..理解平行四边形的定义及有关概念。
2.能根据定义探索并掌握平行四边形的对边相等、对角相等的性质。
3.了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明。
教学重难点教学重点:平行四边形的概念和性质。
教学难点:如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法(即为什么要添加对角线)教学过程一:导入现实世界中,四边形也在装点着我们的生活,宏伟的建筑物,铺满地砖的地板、别具一格的窗棂、天空飞舞的风筝……处处都有四边形的身影。
在小学,我们已经学过一些特殊的四边形,如长方形、正方形、平行四边形和梯形等,这些特殊的四边形与我们的生活关系更为密切。
在章前图中,你能找出它们吗?在本章,我们将进一步认识这些特殊的四边形,分析它们的联系与区别,探索并证明它们的性质及判定方法,进一步提高分析问题、解决问题的能力。
二:讲授新课阅读教材P83-P84内容,思考、讨论、合作交流后完成下列问题:1.什么叫做平行四边形?如何表示一个平行四边形?2.四边形与平行四边形有怎样的从属关系?你能举出生活中的平行四边形的例子吗?3.平行四边形有什么性质?你能证明吗?当堂检测题设计(具体训练题)1.教材P84练习第1,2,3题。
2.如图在平行四边形ABCD中,如果EF∥AD,GH∥CD,EF与GH相交于点O,那么图中的平行四边形一共有()A.4个 B。
5个 C。
8个 D。
9个3.在平行四边形ABCD中,AB的度数之比为5:4,则∠C等于()A.60° B.80° C.100° D.120°【拓展训练】已知任意三点A、B、C,是否存在点D,使A、B、C、D围成一个平行四边形?如果存在,请你作出平行四边形;如果不存在请说明理由。
课堂小结及作业布置小结:通过学习,本节课你学到了哪些知识?与同伴交流一下。
四边形第十九章四边形复习学案一.本章知识要求和结构1. 掌握平行四边形、矩形、菱形、正方形、梯形的概念,了解它们之间的内在关系.(1(2)从属关系(依据演变关系图,将四边形,平行四边形,梯形,矩形,菱形,正方形,等腰梯形,直角梯形填入下面的从属关系图中,其中每一个圆代表一种图形)二、复习知识点:1、性质2、特殊四边形的常用判定方法图2FE D CBA 图1FED CBA30︒60︒60︒E3、平行四边形的面积等于它的底和该底上的高的积.如图1, ABCD S =BC·AE=CD·BF(2)同底(等底)同高(等高)的平行四边形面积相等.如图2, ABCD S =B C F E S4.三角形中位线定理定义: 叫做三角形中位线(与中线的区分); 定理: 作用:可以证明两条直线平行;线段的相等或倍分.直角三角形的性质 定理: 直角三角形斜边上的中线 5.正方形:(1)对角线:若正方形的边长为a ;正方形的一条对角线上的一点到另一条对角线的两个端点的距离相等 (3)面积:正方形的面积等于边长的平方; 等于两条对角线的乘积的一半.周长相等的四边形中, 正方形的面积最大. 6. ※梯形的中位线(1)定义:连结梯形两腰中点的线段叫做梯形的中位线(2)梯形的中位线定理:梯形的中位线平行于两底,且等于两底和的一半. (3)梯形的面积S=12×(上底+下底)×高=中位线×高7.几种特殊四边形的对角线① 矩形对角线交角为60︒(120︒)时,可得:等边三角形和含30︒角直角三角形 (①图)② 菱形有一个角为60︒时, 可得: ③ 正方形中可得:含30︒角的四个全等直角三角形 四大四小等腰直角三角形 (②图) (③图)④ 对角线互相垂直的梯形, 平移腰可得:双垂图 ⑤ 对角线互相垂直的等腰梯形 可得:等腰直角(④图)(⑤图)8. 中点四边形: (顶点为各边的中点,需讨论对角线&中位线)(1) 顺次连结任意四边形各边中点构成的四边形是_______________(2) 顺次连结对角线相等的四边形的各边中点, 构成的四边形是__________(3) 顺次连结对角线互相垂直的四边形的各边中点构成的四边形是_______(4) 顺次连结平行四边形各边中点构成的四边形是_________顺次连结矩形各边中点构成的四边形是_________ 顺次连结菱形各边中点构成的四边形是________ 顺次连结直角梯形各边中点构成的四边形是___ __顺次连结等腰梯形各边中点构成的四边形是____二、基本题型(一).概念理解1.下列命题中,错误的是()A.矩形的对角线互相平分且相等 B.对角线互相垂直的四边形是菱形C.等腰梯形的两条对角线相等 D.梯形的底角相等2.在下列命题中,正确的是()A.一组对边平行的四边形是平行四边形 B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形 D.对角线互相垂直平分的四边形是正方形3.下列错误的是( )A.一组邻边相等的平行四边形是菱形 B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形 D.一组对边相等且有一个角是直角的四边形是矩形4.下列命题中,正确的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形5.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形6、正方形具有而菱形不一定具有的性质是( )7、正方形具有而矩形不一定具有的性质是( )8、矩形和菱形都具有的性质时 ( ) 9.矩形和菱形都不具有的性质是 ( )A.对角线相等B.对角线垂直C.对角线相互平分D.对角线互相垂直平分且相等10、下列结论中,正确的有( )①正方形具有平行四边形的一切性质;②正方形具有矩形的一切性质;③正方形具有菱形的一切性质;④正方形有两条对称轴;⑤正方形有四条对称轴.A.1个 B.2个 C.3个 D.4个11.下列说法正确的是()A.有一组对边平行的四边形是梯形 B.一组对边平行且不相等的四边形是梯形C .直角梯形是有两个角是直角的四边形D .有两个角相等的梯形是等腰梯形 (二)计算1.(1)在平行四边形ABCD 中,若∠C=∠B+∠D ,则∠A= .(2)已知在A B C D ,∠A 比∠B 小20º,则∠C 的度数是 .(3)在A B C D 中,周长为100cm ,AB-BC=20cm ,则AB= ,BC= . (4)在A B C D 中,周长为30cm ,且AB :BC=3:2,则AB= cm.2、如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于( ) A .2cmB .4cmC .6cmD .8cm3.如图所示,平行四边形ABCD 的对角线相交于O 点,且AB ≠BC ,过O 点作OE ⊥AC ,交BC 于E ,如果△ABE 的周长为b ,则平行四边形ABCD 的周长是( ) A. bB. 1.5bC. 2bD. 3b 4、若菱形ABCD 中,AE 垂直平分BC 于E ,AE =1cm ,则BD 的长是( ) A 、1cm B 、2cm C 、3cm D 、4cm5.在菱形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,且E 、F 分别是BC 、CD•的中点,•那么∠EAF 等于( ).A .75°B .55°C .45°D .60°6.如图,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 等于( )A .20B .15C .10D .57.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( )A.23cmB.24cmC.2D.28.菱形周长是40,它的一条对角线是10,则菱形相邻两角度数是________. 9、在菱形ABCD 中,AC =6,DB =8,则菱形的面积为 .10、矩形中,对角线把矩形的一个直角分成1︰2两部分,则矩形对角线所夹的锐角为A.30°B.45°C.60°D.不确定11.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( )A.23cmB.24cmC.2 D.212.等腰梯形两底之差为4,高为2,则等腰梯形的钝角为 ( ) A .150° B .105° C .120° D .135°13.如图,等腰梯形ABCD,周长为40,∠BAD=60°,BD 平分∠ABC,则CD 的长为( ). A.4 B.5 C.8 D.1014.如图,在梯形ABCD 中,AD ∥BC ,M 是CD 的中点,AF ⊥BC 于F ,∠B=45°,AF=3,EF=5,则梯形ABCD 的面积()A .12B .24C .6D .16ABCDE A DOB E CFEDBABACDABCD EF M ABCDEF 图 2F15梯形的两底分别是10cm 、26cm ,在同一底上的两底角分别是60°和30°,则较短的腰长是 ( ) A .8cm B .38cm C .12cm D .4cm16.一等腰梯形的上底为9cm ,下底为17cm ,一底角为60°,则它的腰长为( )A.8cmB.9cmC.8.5cmD.7cm(三)关于折叠问题1.如图,梯形纸片ABCD , ∠B=60°,AD ∥BC ,AB=AD=2,BC=6,将纸片折叠,使点B 与点D 重合,折痕为AE ,则CE=___________.第1题图 第2题图2.如图,折叠矩形的一边CD ,使点C 落在AB 上的点F 处,已知AB=10cm , BC=8cm ,则EC 的长为________.3.如图,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 边中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长是( ).A .3cmB 。
八年级数学下册 19.1.1 平行四边形导学案(2)新人教版19、1、1 课题:平行四边形(2)<目标导学>1理解平行四边形中心对称的特征,知道平行四边形对角线互相平分的性质、2、能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题、重点:平行四边形对角线互相平分的性质,以及性质的应用、难点:综合运用平行四边形的性质进行有关的论证和计算、【学习过程】[学前准备]⒈什么是平行四边形?我们已经学过平行四边形的那些性质?这些性质用符号语言如何表示?⒉如图一在ABCD 中,AD=40,CD=30,∠B=60,则BC=_______; AB=_______;∠A=_____ , ∠C=______, ∠D= ______ ADBC( 图一 ) ( 图二)一、自主学习自学课本P85—86内容, 在有疑惑的地方作好标记、二、合作探究⒈如图二的平行四边形ABCD中有几对全等三角形? ⒉你能发现OA与OC、OD与OB有怎样的关系吗?ABCD是中心对称图形吗?为什么?⒊总结:平行四边形的性质:两组对边_____两组对角______对角线________证明对角线互相平分这一性质:4、模仿例1:做课本86页练习第1题。
三、巩固提升ABCDOlEF1、如图,ABCD的对角线AC、BD相交于点O,经过点O的一条直线l与一组对边相交于点E、F,试猜想OE与OF的大小关系,并加以证明。
EABCDOFl变形:如图,ABCD的对角线AC、BD相交于点O,经过点O的一条直线与一组对边的延长线相交于点E、F,试猜想OE与OF的大小关系,你能证明吗?观察发现:直线l在绕点O旋转的过程中,①以E、F为端点的线段中,哪些线段的长度发生了变化?②在旋转的过程中,OE与OF还相等吗?还有以E、F为端点并且具有相等关系的线段吗?四、达标测评1、判断对错(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD、()(2)平行四边形两条对角线的交点到一组对边的距离相等、()(3)平行四边形的两组对边分别平行且相等、()(4)平行四边形是轴对称图形、()2、在 ABCD中,AC=6、BD=4,则AB的范围是__ ______、3、在平行四边形ABCD 中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是、评价与反思教师“复备”栏或学生笔记栏。
第十九章四边形平行四边形及其性质(1)主备人:初审人:终审人:【导学目标】1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.【导学重点】平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.【导学难点】运用平行四边形的性质进行有关的论证和计算.【学法指导】类比延伸、自主探究.【课前准备】查资料理解平行四边形.【导学流程】一、呈现目标、明确任务1.平行四边形的定义.2.平行四边形性质1 平行四边形的对边相等.3.平行四边形性质2 平行四边形的对角相等.二、检查预习、自主学习1.平行四边形的定义:的四边形叫做平行四边形.通过观察或者度量填写下列空格2.平行四边形的性质1:边的性质:AB‖;BC‖,AB= ;BC=.即:平行四边形对边.3.平行四边形的性质2: 角的性质:∠A= ,∠B= .即:平行四边形对角.三、教师引导例1 如图,小明用一根36厘米长的绳子围成一个平行四边形场地,其中AB边长为8厘米,其它三边长各是多少?这是平行四边形性质的实际应用,题目比较简单,目的就是让学生能运用平行四边形的性质进行有关的计算,可以让学生来解答.四、问题导学、展示交流如图,在平行四边形ABCD中,AE=CF.求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.五、点拨升华、当堂达标1.填空:(1)在□ABCD中,∠A= ,则∠B= ,∠C= ,∠D= .(2)如果□ABCD中,∠A—∠B=240,则∠A= ,∠B= ,∠C= ,∠D= .(3)如果□ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图,在□ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.六、布置预习预习下一节,完成练习2题.【教后反思】平行四边形及其性质(2)主备人:初审人:终审人:【导学目标】1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.【导学重点】平行四边形对角线互相平分的性质,以及性质的应用.【导学难点】综合运用平行四边形的性质进行有关的论证和计算.【学法指导】类比延伸、自主探究.【课前准备】查资料理解平行四边形的性质.【导学流程】一、呈现目标、明确任务1.平行四边形的性质.2.平行四边形的性质的应用.二、检查预习、自主学习1. 的四边形叫做平行四边形.平行四边形对边平行且;平行四边形对角.2.展示预习成果,小组内进行交流.三、动手操作学生在纸上画两个全等的□ABCD 和□EFGH ,并连接对角线AC 、BD 和EG 、HF ,设它们分别交于点O .把这两个平行四边形落在一起,在点O 处钉一个图钉,将 □ABCD 绕点O 旋转 ,观察它还和□EFGH 重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.四、问题导学、展示交流 例2 在□ABCD 中,AB =10,AD =8,AC ⊥BC ,求BC ,CD ,AC ,OA 的长以及□ABCD 的面积. 讨论上面的问题.五、点拨升华、当堂达标1.已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF ,AE =CF ,BE =DF .证明:在 □ABCD 中,∵AB ∥CD ,∴∠1=∠2.∠3=∠4.又∵OA =OC (平行四边形的对角线互相平分), ∴△AOE ≌△COF (ASA ).∴OE =OF ,AE =CF (全等三角形对应边相等). ∵四边形ABCD 是平行四边形, ∴AB =CD (平行四边形对边相等). ∴AB —AE =CD —CF . 即 BE =FD . 2.完成练习1题. 六、布置预习预习《配套练习》“平行四边形(1)(2)”中的选择填空题. 【教后反思】平行四边形的判定(1)主备人: 初审人: 终审人:【导学目标】1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题. 【导学重点】平行四边形的判定方法及应用.【导学难点】平行四边形的判定定理与性质定理的灵活应用. 【学法指导】问题导学、自主学习.【课前准备】如何判定一个四边形是平行四边形. 【导学流程】一、呈现目标、明确任务平行四边形判定方法1 两组对边分别相等的四边形是平行四边形. 平行四边形判定方法2 对角线互相平分的四边形是平行四边形. 二、检查预习、自主学习1.根据定义,什么样的四边形是平行四边形?2.根据判定,什么样的四边形是平行四边形?3.口头交流预习成果. 三、教师引导小明的父亲手中有一些木条,他想通过适当的操作,钉制一个平行四边形框架,你能帮他想出一些办法来吗?1.你能适当选择手中的硬纸板条搭建一个平行四边形吗? (1)用两长两短的四根;(2)用一长一短的两根先问做一个框架,图(1). 2.你怎样验证你搭建的四边形一定是平行四边形?图(2).四、问题导学、展示交流判定定理一:两组对边分别相等的四边形是平行四边形. 判定定理二:对角线互相平分的四边形是平行四边形. 五、点拨升华、当堂达标1.例3 已知:如图□ABCD 的对角线AC 、BD 交于点O ,E 、F 是AC 上的两点,并且AE =CF .求证:四边形BFDE 是平行四边形. 提示:可证明三角形全等. 2.完成练习2题.3.在□ABCD 中,对角线AC 与BD 交于O 点,已知点E 、F分别是DBAO、OC的中点,求证:四边形BFDE是平行四边形.4.如图,在□ABCD中,点E、F是对角线AC上的两点,且AE=CF,求证:四边形BFDE是平行四边形.六、布置预习预习下一节,弄懂两个定理,完成练习2题.【教后反思】平行四边形的判定(2)主备人:初审人:终审人:【导学目标】1.掌握用一组对边平行且相等来判定平行四边形的方法.2.会综合运用平行四边形的五种判定方法和性质来证明问题.【导学重点】平行四边形各种判定方法及其应用.【导学难点】平行四边形的判定定理与性质定理的综合应用.【学法指导】问题导学、自主学习.【课前准备】明确平行四边形的判定方法.【导学流程】一、呈现目标、明确任务1.(定义法)两组对边分别平行的四边形叫做平行四边形;√2.两组对边分别相等的四边形是平行四边形;√3.两组对角分别相等的四边形是平行四边形;√4.对角线互相平分的四边形是平行四边形.√5.一组对边平行且相等的四边形是平行四边形.二、检查预习、自主学习判定定理:一组对边平行且相等的四边形是平行四边形用几何语言表示:∵_________//____________________=____________∴四边形ABCD是____________.三、自主探究1.取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?2.已知:如图,□ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.四、点拨升华、当堂达标1.在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.2.完成习题19.1中1—4题. 五、布置预习预习习题19.1中1—5题,书面完成5题. 【教后反思】平行四边形的判定(3)主备人: 初审人: 终审人:【导学目标】1.学习三角形的中位线定理.2.学习平行线间的距离. 【导学重点】三角形的中位线定理.【导学难点】三角形的中位线定理定理的综合应用. 【学法指导】问题导学、自主学习. 【课前准备】明确平行四边形的判定方法. 【导学流程】一、呈现目标、明确任务1.三角形的中位线平行于三角形的一边,且等于这边的一半.2.平行线间的距离.二、检查预习、自主学习①三角形中位线:连结三角形两边中点的线段叫做三角形中位线.②三角形中位线定理:三角形中位线______于三角形第三边,且等于它的_____. 三、自主探究1.例4 如课本P88页图,点D 、E 分别为△ABC 边AB 、AC 的中点,求证:DE ∥BC 且DE =21BC .提示:通过三角形全等,把要证明的内容转化到一个平行平行四边FF形中,利用平行四边形的性质使问题得到解决.用两种方法证明,图形如右图.2.阅读P89页课文,理解平行线间的距离与证明过程,并讨论、证明:夹在两条平行线间的平行线段相等.四、点拨升华、当堂达标1.将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?2.在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.(可以用多种方法证明.)3.完成习题19.1中7,8题.7题,重点根据平行关系找所有的平行四边形,再找线段之间的关系.8题,重点展示运用了什么定理.五、布置预习预习习题19.1中的剩余题目,书面完成6题.【教后反思】练习课主备人:初审人:终审人:【导学目标】1.能灵活运用平行四边形的五种判定方法.2.体会平行四边形在生活中的应用.【导学重点】做练习.【导学难点】平行四边形的五种判定方法的灵活运用.【学法指导】小组讨论.【课前准备】平行四边形的判定方法.【导学流程】一、呈现目标、明确任务能灵活运用平行四边形的五种判定方法.二、检查预习、自主学习展示预习成果.重点说说每题的思路. 三、教师引导例:如图,在□ABCD 中,已知∠BAE =∠FCD . 求证:(1)∠FAE =∠FCE ,∠AFC =∠AEC .(2)四边形AECF 为平行四边形. 四、问题导学、展示交流讨论完成习题19.1中6,9,10,13题. 6题,重点证明四边形EBFD 是平行四边形. 9题,要先判定四边形ABCD 是平行四边形. 五、点拨升华、当堂达标 口头证明第11题,或让学生讲解. 六、布置预习1.讨论14题.2.预习矩形,完成练习1,2题. 【教后反思】矩形(1)主备人: 初审人: 终审人:【导学目标】1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系. 2.会初步运用矩形的概念和性质来解决有关问题. 【导学重点】矩形的性质. 【导学难点】矩形的性质的灵活应用. 【学法指导】类比延伸、自主学习. 【课前准备】找些矩形的物体,认识矩形. 【导学流程】一、呈现目标、明确任务1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系. 2.会初步运用矩形的概念和性质来解决有关问题. 二、检查预习、自主学习 1. 平行四边形的特征 如图,在□ABCD 中,①∵四边形ABCD 是平行四边形 ∴ AB ∥ ,AD ∥ AB = , AD =②∵四边形ABCD 是平行四边形∴∠A=∠,∠B=∠③∵四边形ABCD是平行四边形∴AO= = ,BO= = .三、教师引导什么是矩形?举一些例子.四、互动探究1.探究在平行四边形的活动框架上,用橡皮筋做出两条对角线,通过∠α的变化,改变这个平行四边形的的形状,两条对角线的长度怎样变化?当∠α变为直角时,平行四边形成为一个矩形,这时它的其他内角是什么样的角?对角线的长度有什么关系?2.阅读P95页课文,理解定理:直角三角形斜边上的中线等于斜边的一半.五、点拨升华、当堂达标1.已知:矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.2.已知:如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.3.完成练习3题.4.完成习题19.2中1,2题.六、布置预习预习下一节,弄懂两个判定,完成练习2题.【教后反思】矩形(2)主备人:初审人:终审人:【导学目标】1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.【导学重点】矩形的判定.【导学难点】矩形的判定及性质的综合应用.【学法指导】类比延伸、自主探究.【课前准备】尝试判定矩形.【导学流程】一、呈现目标、明确任务 1.掌握矩形的判定方法.2.能运用矩形的判定方法解决有关问题. 二、检查预习、自主学习1.矩形的判定,课本中讲到了哪几种?2.证明:对角线相等的平行四边形是矩形. 三、教师引导1.下列各句判定矩形的说法是否正确?为什么? (1)有一个角是直角的四边形是矩形; (2)有四个角是直角的四边形是矩形; (3)四个角都相等的四边形是矩形; (4)对角线相等的四边形是矩形;(5)对角线相等且互相垂直的四边形是矩形; (6)对角线互相平分且相等的四边形是矩形;(7)对角线相等,且有一个角是直角的四边形是矩形; (8)一组邻边垂直,一组对边平行且相等的四边形是矩形; (9)两组对边分别平行,且对角线相等的四边形是矩形. 2.完成练习2题.四、问题导学、展示交流如图,O 是矩形ABCD 的对角线AC 与BD 的交点,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 上的一点,且AE =BF =CG =DH .求证:四边形EFGH 是矩形. 五、点拨升华、当堂达标1.完成习题19.2中3,4题.2.如图,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,且∠1=∠2,它是一个矩形吗?为什么? 六、布置预习预习《配套练习》“特殊的平行四边形(1)(2)”中选择填空题.【教后反思】菱形(1)主备人: 初审人: 终审人:【导学目标】1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算. 3.通过运用菱形知识解决具体问题,提高分析能力和观察能力. 【导学重点】DCBA菱形的性质1、2.【导学难点】菱形的性质及菱形知识的综合应用.【学法指导】类比、延伸.【课前准备】搜集实物理解菱形.【导学流程】一、呈现目标、明确任务1.了解菱形与平行四边形的关系.2.初步认识菱形的特征.二、检查预习、自主学习1.什么是菱形?2.根据探究结果,说说菱形有哪些性质.三、教师引导讨论:知道菱形的两条对角线的长,能求出它的面积吗?试试看.四、问题导学、展示交流讨论课本P98页例2(题略).这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.五、点拨升华、当堂达标1.完成练习2题.2.完成习题19.2中5,6题.3.如图,在菱形ABCD中,∠BAD=2∠B,试说明△ABC是等边三角形.六、布置预习1.预习下一节,弄懂菱形的判定,完成练习1题.2. 完成《配套练习》“特殊的平行四边形(3)”中选择填空题.【教后反思】菱形(2)主备人:初审人:终审人:【导学目标】1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.AB 【导学重点】菱形的两个判定方法. 【导学难点】判定方法的证明方法及运用. 【学法指导】类比延伸 自主探索. 【课前准备】查阅资料理解菱形的判定方法. 【导学流程】一、呈现目标、明确任务 1.菱形的判定. 2.解决问题.二、检查预习、自主学习 全班展示练习1的预习成果.三、互动探究1.用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?2.怎样画一个菱形呢?四、问题导学、展示交流菱形判定方法1 对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形,(2)两条对角线互相垂直.通过教材P99下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形.五、点拨升华、当堂达标1.已知:如图□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F . 求证:四边形AFCE 是菱形.2.如图,在□ABCD 中,对角线AC 平分∠DAB ,这个四边形是菱形吗?简述理由.3.如下图,O 是矩形ABCD 对角线的交点,DE //AC ,CE //BD ,试说明四边形OCED 是菱形.3.如上页图,△ABC 的平分线AD被EF 垂直平分,且E 、F 分别在AB 、AC 上,四边形AEDF 是菱形吗?为什么?EDA A4.如图,AE//BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD,求证:四边形ABCD是菱形.六、布置预习预习下一节,弄懂正方形的所有判定定理,完成《配套练习》“特殊的平行四边形(4)”中选择填空题.正方形主备人:初审人:终审人:【导学目标】1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.【导学重点】正方形的定义及正方形与平行四边形、矩形、菱形的联系.【导学难点】正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.【学法指导】类比延伸.【课前准备】查资料理解正方形,找实物帮助理解.【导学流程】一、呈现目标、明确任务了解正方形与平行四边形的关系;认识正方形的特征.二、检查预习、自主学习1、正方形的定义:矩形是的平行四边形,菱形是平行四边形,而有一个角是直角,且有一组邻边相等的是正方形.2、正方形的性质:(在旁边空白处画一个正方形,并能过观察或度量归纳正方形的特征)(1)边:.(2)角:.(3)对角线:.三、教师引导做一做并讨论:用一张长方形的纸片(如图所示)折出一个正方形.如果一一块木板呢?四、问题导学、展示交流①对角线相等的菱形是正方形吗?为什么?②对角线互相垂直的矩形是正方形吗?为什么?③对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?④能说“四条边都相等的四边形是正方形”吗?为什么?⑤说“四个角相等的四边形是正方形”对吗?五、点拨升华、当堂达标1.例4 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.2.已知:正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG 交OA于F.求证:OE=OF.3.如图,以等边△ABC的边AC为一边,向外作正方形ACDE,试说明∠DBE=30°.4. △ABC中,∠ACB=90°,CD平分∠ACB,DE⊥B C,DF⊥AC,垂足分别为E、F.求证:四边形CFDE是正方形.六、布置预习预习习题19.2中剩余题目,书面完成13题.【教后反思】练习课主备人:初审人:终审人:【导学目标】1.熟练掌握平行四边形、矩形、菱形、正方形的性质.2.熟练掌握平行四边形、矩形、菱形、正方形的判定. 【导学重点】做练习.【导学难点】灵活运用特殊平行四边形的性质和判定解决问题.【学法指导】类比、联想.【课前准备】特殊平行四边形的性质和判定.【导学流程】一、呈现目标、明确任务运用特殊平行四边形的性质和判定解决问题.二、检查预习、自主学习展示预习成果,可由学生讲解.三、教师引导判断下列命题是真命题还是假命题?假命题请举出反例.(1)四条边相等且四个角也相等的四边形是正方形;E(2)四个角相等且对角线互相垂直的四边形是正方形;(3)对角线互相垂直平分的四边形是正方形;(4)对角线互相垂直且相等的四边形是正方形;四、问题导学、展示交流在△ABC中,∠C=90°,∠A、∠B的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CFDE是正方形.五、点拨升华、当堂达标讨论习题19.2中8—12题.8题,可以考虑四角,为此可以考虑剪掉的形状和剩余的外围形状.9题,先按比例求角的大小.10题,可以考虑所有边长,也可以同时考虑边和角.六、布置预习1.小组讨论剩余题目.2.预习梯形,弄懂性质,完成练习1题.【教后反思】梯形(1)主备人:初审人:终审人:【导学目标】1.探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质.2.能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力.3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.【导学重点】等腰梯形的性质及其应用.【导学难点】解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线). 【学法指导】类比延伸.【课前准备】查资料理解梯形.【导学流程】一、呈现目标、明确任务能够运用梯形的有关概念和性质进行有关问题的论证和计算.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题.二、检查预习、自主学习1.梯形: 的四边形叫做梯形. 3.等腰梯形:两腰______的梯形是等腰梯形. 3.直角梯形:有一个角是_______的梯形是直角梯形. 三、教师引导右图中,有你熟悉的图形吗?它们有什么共同的特点? 一组对边平行而另一组对边不平行的四边形叫做梯形. 这里,梯形与平行四边形的区别和联系;上、下底的概念是由底的长短来定义的,而并不是指位置来说的.四、问题导学、展示交流1.等腰梯形是轴对称图形吗?对称轴在哪里?有那些相等的线段?2. 梯形ABCD 中,AB =DC ,则梯形ABCD 的四个内角之间存在什么关系?借助右图说明理则由.3.例1课本P107页,题略.4.如图,梯形ABCD 中,AD ∥BC ,∠B=70°,∠C=40°,AD =6cm ,BC =15cm .求CD 的长.可按照右图添加辅助线. 五、点拨升华、当堂达标1.完成练习2题.2.完成《配套练习》“梯形(1)”中选择填空题. 六、布置预习预习本节剩余内容,弄懂梯形的判定,完成练习3题.梯形(2)主备人: 初审人: 终审人:【导学目标】1.掌握“同一底上两底角相等的梯形是等腰梯形”这个判定方法及其证明. 2.能够运用等腰梯形的性质和判定方法进行有关的论证和计算.3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题. 【导学重点】找实物,查资料理掌握等腰梯形的判定方法并能运用. 【导学难点】添加辅助线,把梯形的问题转化成平行四边形或三角形问题. 【学法指导】等腰梯形判定方法的运用. 【课前准备】类比延伸解梯形.CEF【导学流程】一、呈现目标、明确任务梯形的判定.二、检查预习、自主学习1.等腰梯形是的对称轴有___条.2.已知:梯形ABCD中,AB=DC,则梯形ABCD的四个内角之间存在什么关系?请说明理由.3.在图中画出等腰梯形的对角线AC与BD,请问AC与BD之间存在什么关系?你能说明理由吗?4.展示预习成果.三、教师引导前面所学的特殊四边形的判定基本上是性质的逆命题.等腰梯形同一底上两个角相等的逆命题是什么?命题:同一底上的两个角相等的梯形是等腰梯形.这个命题是否成立?怎样证明?四、问题导学、展示交流自学课本P108页的例2.五、点拨升华、当堂达标1.证明:对角线相等的梯形是等腰梯形.已知:如图,梯形ABCD中,对角线AC=BD.求证:梯形ABCD是等腰梯形.2.完成习题19.3中1—4题.六、布置预习1.预习习题19.3中剩余题目,书面完成2题.2.完成《配套练习》“梯形(2)”中选择填空题.【教后反思】练习课主备人:初审人:终审人:【导学目标】复习梯形的性质和判定.【导学重点】做练习.【导学难点】灵活运用所学知识解决问题.【学法指导】类比、推理.【课前准备】梯形的性质和判定. 【导学流程】一、呈现目标、明确任务 复习梯形的性质和判定.二、检查预习、自主学习展示预习成果,重点说说解题思路. 三、问题导学、展示交流 1.如图,在梯形ABCD 中,若△AOB ,△COD 是等腰三角形,则梯形ABCD (填“是”或“不是”)等腰梯形,理由是: . 2.如图,△ABC 中,AB =AC ,DE ∥BC .则四边形DBCE ,(填“是”或“不是”)等腰梯形,理由是: .3.如图,在梯形ABCD 中,AD ∥BC ,AD =AB ,BC =BD ,∠A =120°,则 ∠ABC =∠C =∠ADC = .4.如图,在梯形ABCD 中,BC ∥AD ,DE ∥AB ,DE =DC ,∠A =100°,试求梯形其他三个内角的度数,请问此时ABCD 为等腰梯形吗?说说你的理由.四、点拨升华、当堂达标讨论习题19.3中5—8题. 五、布置预习1.讨论剩余题目,重点完成9题.2.预习P117页“中点四边形”,任选一图形进行证明. 【教后反思】中点四边形及梯形的中位线主备人: 初审人: 终审人:【导学目标】1.在画图了解中点四边形的特征,掌握决定中点四边形形状的主要因素.2.理解梯形中位线概念,掌握梯形中位线性质并能解决有关问题. 【导学重点】理解梯形中位线概念,掌握梯形中位线性质并能解决有关问题. 【导学难点】在画图了解中点四边形的特征,掌握决定中点四边形形状的主要因素. 【学法指导】BC。
第十九章四边形测试1 平行四边形的性质(一)学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.课堂学习检测一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。
2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长³______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成....立.的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④(B)①③④(C)①②③(D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).(A)8cm和16cm (B)10cm和16cm (C)8cm和14cm (D)8cm和12cm 11.以不共线的三点A、B、C为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为( )3(A)2 (B)5(C)35 (D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n (B)3n (n +1) (C)6n(D)6n (n +1)综合、运用、诊断一、解答题14.已知:如图,在□ABCD 中,从顶点D 向AB 作垂线,垂足为E ,且E 是AB 的中点,已知□ABCD 的周长为8.6cm ,△ABD 的周长为6cm ,求AB 、BC 的长.15.已知:如图,在□ABCD 中,CE ⊥AB 于E ,CF ⊥AD 于F ,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O 为□ABCD 的对角线AC 的串点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线MN 上,且OE =OF .(1)图中共有几对全等三角形?请把它们都写出来; (2)求证:∠MAE =∠NCF .17.已知:如图,在□ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”)2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,F A与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE 的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD 与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC 中,AB =AC =10,D 是BC 边上的任意一点,分别作DF ∥AB 交AC 于F ,DE ∥AC 交AB 于E ,求DE +DF 的值.15.已知:如图,在等边△ABC 中,D 、F 分别为CB 、BA 上的点,且CD =BF ,以AD 为边作等边三角形ADE .求证:(1)△ACD ≌△CBF ;(2)四边形CDEF 为平行四边形.拓展、探究、思考 16.若一次函数y =2x -1和反比例函数xky 2的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标; (3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xky =的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD 中,BC =2AB ,若E 为BC 的中点,则∠AED =______.4.在□ABCD 中,如果一边长为8cm ,一条对角线为6cm ,则另一条对角线x 的取值范围是______.5.□ABCD 中,对角线AC 、BD 交于O ,且AB =AC =2cm ,若∠ABC =60°,则△OAB 的周长为______cm .6.如图,在□ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,则□ABCD 的面积是______.7.□ABCD 中,对角线AC 、BD 交于点O ,若∠BOC =120°AD =7,BD =10,则□ABCD 的面积为______.8.如图,在□ABCD 中,AB =6,AD =9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,AF =5,24=BG ,则△CEF 的周长为______.9.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______ S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠F AB.AB =a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB =5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD 的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______°。