实验三 多元线性回归模型的估计和检验
- 格式:doc
- 大小:262.50 KB
- 文档页数:12
实验二:多元线性回归模型的估计、回归系数和回归方程的检验、标准化回归方程、预测实验题目:研究货运总量y(万吨)与工业总产量x1(亿元),农业总产值x2(亿元),居民非商品支出x3(亿元)的关系。
数据如表:1.计算y,x1,x2,x3的相关系数矩阵;2.求y关于x1,x2,x3的三元线性回归方程;3.对所求得的方程作拟合度检验4.对回归方程作显著性检验;5.对每一个回归系数作显著性检验;6.如果有的回归系数没有通过显著性检验,将其剔除,重新建立回归方程,再作回归方程的显著性检验和回归系数的显著性检验;7.求出新回归方程的每一个回归系数的置信水平为95%的置信区间;8.求标准化回归方程;9.求当x01=75,x1=42, x2=3.1时的y的预测值,给定置信水平为95%,用SPSS 软件计算精确置信区间,手工计算近似预测区间?10 结合回归方程对问题作一些基本分析。
数据如下:y x1 x2 x31607035 1.02607540 2.42106540 2.02657442 3.02407238 1.22206845 1.52757842 4.01606636 2.02757044 3.22506542 3.0实验目的:掌握多元线性回归模型的估计、回归系数和回归方程的检验、标准化回归方程、预测SPSS主要操作:操作步骤类似于一元线性回归模型的方法SPSS输出结果及答案:1:y,x1,x2,x3的相关系数矩阵如下表:由上述输出结果知:y=-348.280+3.754x1+7.101x2+12.447x3 3模型汇总b模型R R 方调整 R 方标准估计的误差1 .898a.806 .708 23.44188a. 预测变量: (常量), 居民非商品支出X3(亿元), 工业总产值X1(亿元), 农业总产值X2(亿元)。
b. 因变量: 货运总量Y(万吨)由上述输出结果知:调整R square=0.708,拟合的较好4Anova b模型平方和df 均方 F Sig.1 回归13655.370 3 4551.790 8.283 .015a残差3297.130 6 549.522总计16952.500 9a. 预测变量: (常量), 居民非商品支出X3(亿元), 工业总产值X1(亿元), 农业总产值X2(亿元)。
实验三 多元线性回归一 实验目的:(1) 掌握多元线性回归模型的估计方法 (2) 模型方程的F 检验,参数的t 检验 (3) 模型的外推预测与置信区间预测二 实验要求:应用教材P105习题11做多元线性回归模型估计,对回归方程和回归参数进行检验并做出单点预测与置信区间预测 三 实验原理:最小二乘法四 预备知识:最小二乘法估计原理、t 检验、F 检验、点预测和置信区间预测 五 实验内容:在一项对某社区家庭对某种消费品的消费需要调查中,得到书中的表所示的序号对某商品的消费支出Y 商品单价X1 家庭月收入X2 序号对某商品的消费支出Y 商品单价X1 家庭月收入X2 1 591.9 23.56 7620 6 644.4 34.14 12920 2 654.5 24.44 9120 7 680.0 35.3 14340 3 623.6 32.07 10670 8 724.0 38.7 15960 4 647.0 32.46 11160 9 757.1 39.63 18000 5 674.0 31.15 11900 10706.8 46.68 19300 归分析。
(1)估计回归方程的参数及及随机干扰项的方差2,计算2R 及2R 。
(2)对方程进行F 检验,对参数进行t 检验,并构造参数95%的置信区间. (3)如果商品单价变为35元,则某一月收入为20000元的家庭的消费支出估计是多少?构造该估计值的95%的置信区间。
六 实验步骤:6.1 建立工作文件并录入全部数据,如图1所示:图 16.2 建立二元线性回归模型01122Y X X βββ=++点击主界面菜单Quick\Estimate Equation 选项,在弹出的对话框中输入:Y C X1 X2点击确定即可得到回归结果,如图2所示图 2根据图2的信息,得到回归模型的估计结果为:626.51939.790610.02862(15.61)( 3.06)(4.90)Y X X =-+-20.902218R = 20.874281R = .. 1.650804D W =22116.847i e =∑ 32.29408F = (2,7)df =随机干扰项的方差估计值为22116.847302.40677σ∧==6.3 结果的分析与检验 6.3.1 方程的F 检验 回归模型的F 值为:32.29408F =因为在5%的显著性水平下,F 统计量的临界值为0.05(2,7) 4.74F =所以有 0.05(2,7)F F > 所以回归方程通过F 检验,方程显著成立。
第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。
二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。
在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。
本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。
三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。
四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。
2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。
3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。
4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。
5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。
五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。
3多元线性回归模型参数估计多元线性回归是一种用于预测多个自变量与因变量之间关系的统计模型。
其模型形式为:Y=β0+β1X1+β2X2+...+βnXn+ε,其中Y是因变量,X1、X2、..、Xn是自变量,β0、β1、β2、..、βn是模型的参数,ε是误差项。
多元线性回归模型参数的估计可以使用最小二乘法(Ordinary Least Squares,OLS)来进行。
最小二乘法的基本思想是找到一组参数估计值,使得模型预测值与实际观测值之间的平方差最小。
参数估计过程如下:1.根据已有数据收集或实验,获取因变量Y和自变量X1、X2、..、Xn的观测值。
2.假设模型为线性关系,即Y=β0+β1X1+β2X2+...+βnXn+ε。
3.使用最小二乘法,计算参数估计值β0、β1、β2、..、βn:对于任意一组参数估计值β0、β1、β2、..、βn,计算出模型对于所有观测值的预测值Y'=β0+β1X1+β2X2+...+βnXn。
计算观测值Y与预测值Y'之间的平方差的和,即残差平方和(RSS,Residual Sum of Squares)。
寻找使得RSS最小的参数估计值β0、β1、β2、..、βn。
4.使用统计方法计算参数估计值的显著性:计算回归平方和(Total Sum of Squares, TSS)和残差平方和(Residual Sum of Squares, RSS)。
计算决定系数(Coefficient of Determination, R^2):R^2 = (TSS - RSS) / TSS。
计算F统计量:F=(R^2/k)/((1-R^2)/(n-k-1)),其中k为自变量的个数,n为观测值的个数。
根据F统计量的显著性,判断多元线性回归模型是否合理。
多元线性回归模型参数估计的准确性和显著性可以使用统计假设检验来判断。
常见的参数估计的显著性检验方法包括t检验和F检验。
t检验用于判断单个参数是否显著,F检验用于判断整个回归模型是否显著。
实验三_多元线性回归模型及⾮线性回归(1)实验三多元线性回归模型及⾮线性回归⼀、多元线性回归模型例题3.2.2 建⽴2006年中国城镇居民⼈均消费⽀出的多元线性回归模型。
数据:地区 2006年消费⽀出Y 2006年可⽀配收⼊X12005年消费⽀出X2北京 14825.41 19977.52 13244.2 天津 10548.05 14283.09 9653.3 河北 7343.49 10304.56 6699.7 ⼭西 7170.94 10027.70 6342.6 内蒙古 7666.61 10357.99 6928.6 辽宁 7987.49 10369.61 7369.3 吉林 7352.64 9775.07 6794.7 ⿊龙江 6655.43 9182.31 6178.0 上海 14761.75 20667.91 13773.4 江苏 9628.59 14084.26 8621.8 浙江 13348.51 18265.10 12253.7 安徽7294.73 9771.05 6367.7 福建 9807.71 13753.28 8794.4 江西 6645.54 9551.12 6109.4 ⼭东 8468.40 12192.24 7457.3 河南6685.18 9810.26 6038.0 湖北 7397.32 9802.65 6736.6 湖南 8169.30 10504.67 7505.0 ⼴东 12432.22 16105.58 11809.9 ⼴西 6791.95 9898.75 7032.8 海南 7126.78 9395.13 5928.8 重庆 9398.69 11569.74 8623.3 四川 7524.81 9350.11 6891.3 贵州6848.39 9116.61 6159.3 云南 7379.81 10069.89 6996.9 西藏 6192.57 8941.08 8617.1 陕西 7553.28 9267.70 6656.5 ⽢肃6974.21 8920.59 6529.2 青海 6530.11 9000.35 6245.3 宁夏 7205.57 9177.26 6404.3 新疆 6730.018871.276207.51、建⽴模型01122Y X X βββµ=+++2、估计模型(1)录⼊数据打开EViews6,点“File ”→“New ”→“Workfile ”选择“Unstructured/Undated”,在Observations 后输⼊31,如下所⽰:点“ok”。
多元线性回归——模型、估计、检验与预测⼀、模型假设传统多元线性回归模型最重要的假设的原理为:1. ⾃变量和因变量之间存在多元线性关系,因变量y能够被x1,x2….x{k}完全地线性解释;2.不能被解释的部分则为纯粹的⽆法观测到的误差其它假设主要为:1.模型线性,设定正确;2.⽆多重共线性;3.⽆内⽣性;4.随机误差项具有条件零均值、同⽅差、以及⽆⾃相关;5.随机误差项正态分布具体见另⼀篇⽂章:回归模型的基本假设⼆、估计⽅法⽬标:估计出多元回归模型的参数注:下⽂皆为矩阵表述,X为⾃变量矩阵(n*k维),y为因变量向量(n*1维)OLS(普通最⼩⼆乘估计)思想:多元回归模型的参数应当能够使得,因变量y的样本向量在由⾃变量X的样本所构成的线性空间G(x)的投影(即y’= xb)为向量y 在线性空间G(x)上的正交投影。
直⽩⼀点说,就是要使得(y-y’)’(y-y’)最⼩化,从⽽能够使y的预测值与y的真实值之间的差距最⼩。
使⽤凸优化⽅法,可以求得参数的估计值为:b = (x’x)^(-1)x’y最⼤似然估计既然已经在假设中假设了随机误差项的分布为正态分布,那么⾃变量y的分布也可以由线性模型推算出来(其分布的具体函数包括参数b在内)。
进⼀步的既然已经抽取到了y的样本,那么使得y的样本出现概率(联合概率密度)最⼤的参数即为所求最终结果与OLS估计的结果是⼀致的矩估计思想:通过寻找总体矩条件(模型设定时已经有的假设,即⽆内⽣性),在总体矩条件中有参数的存在,然后⽤样本矩形条件来进⾏推导未知参数的解。
在多元回归中有外⽣性假设:对应的样本矩为:最终估计结果与OLS⽅法也是⼀样的。
三、模型检验1.拟合优度检验(1)因变量y是随机变量,⽽估计出来的y’却不是随机变量;(2)拟合优度表⽰的是模型的估计值y’能够在多⼤程度上解释因变量样本y的变动。
(3)y’的变动解释y的变动能⼒越强,则说明模型拟合的越好y-y’就越接近与假设的随机误差(4)⽽因变量的变动是由其⽅差来描述的。
多元线性回归模型检验引言多元线性回归是一种常用的统计分析方法,用于研究两个或多个自变量对目标变量的影响。
在应用多元线性回归前,我们需要确保所建立的模型符合一定的假设,并进行模型检验,以保证结果的可靠性和准确性。
本文将介绍多元线性回归模型的几个常见检验方法,并通过实例进行说明。
一、多元线性回归模型多元线性回归模型的一般形式可以表示为:$$Y = \\beta_0 + \\beta_1X_1 + \\beta_2X_2 + \\ldots + \\beta_pX_p +\\varepsilon$$其中,Y为目标变量,$X_1,X_2,\\ldots,X_p$为自变量,$\\beta_0,\\beta_1,\\beta_2,\\ldots,\\beta_p$为模型的回归系数,$\\varepsilon$为误差项。
多元线性回归模型的目标是通过调整回归系数,使得模型预测值和实际观测值之间的误差最小化。
二、多元线性回归模型检验在进行多元线性回归分析时,我们需要对所建立的模型进行检验,以验证假设是否成立。
常用的多元线性回归模型检验方法包括:1. 假设检验多元线性回归模型的假设包括:线性关系假设、误差项独立同分布假设、误差项方差齐性假设和误差项正态分布假设。
我们可以通过假设检验来验证这些假设的成立情况。
•线性关系假设检验:通过F检验或t检验对回归系数的显著性进行检验,以确定自变量与目标变量之间是否存在线性关系。
•误差项独立同分布假设检验:通过Durbin-Watson检验、Ljung-Box 检验等统计检验,判断误差项是否具有自相关性。
•误差项方差齐性假设检验:通过Cochrane-Orcutt检验、White检验等统计检验,判断误差项的方差是否齐性。
•误差项正态分布假设检验:通过残差的正态概率图和Shapiro-Wilk 检验等方法,检验误差项是否满足正态分布假设。
2. 多重共线性检验多重共线性是指在多元线性回归模型中,自变量之间存在高度相关性的情况。
3多元线性回归模型参数估计多元线性回归是一种回归分析方法,用于建立多个自变量和一个因变量之间的关系模型。
多元线性回归模型可以表示为:Y=β0+β1X1+β2X2+…+βnXn+ε其中,Y表示因变量,X1,X2,…,Xn表示自变量,β0,β1,β2,…,βn表示模型参数,ε表示误差项。
多元线性回归模型的目标是估计出模型参数β0,β1,β2,…,βn,使得实际观测值与模型预测值之间的误差最小化。
参数估计的方法有很多,下面介绍两种常用的方法:最小二乘法和梯度下降法。
1. 最小二乘法(Ordinary Least Squares, OLS):最小二乘法是最常用的多元线性回归参数估计方法。
它的基本思想是找到一组参数估计值,使得模型预测值与实际观测值之间的残差平方和最小化。
首先,我们定义残差为每个观测值的实际值与模型预测值之间的差异:εi = Yi - (β0 + β1X1i + β2X2i + … + βnXni)其中,εi表示第i个观测值的残差,Yi表示第i个观测值的实际值,X1i, X2i, …, Xni表示第i个观测值的自变量,β0, β1, β2, …,βn表示参数估计值。
然后,我们定义残差平方和为所有观测值的残差平方的总和:RSS = ∑(Yi - (β0 + β1X1i + β2X2i + … + βnXni))^2我们的目标是找到一组参数估计值β0,β1,β2,…,βn,使得残差平方和最小化。
最小二乘法通过数学推导和求导等方法,可以得到参数估计值的解析解。
2. 梯度下降法(Gradient Descent):梯度下降法是一种迭代优化算法,可以用于估计多元线性回归模型的参数。
它的基本思想是通过迭代调整参数的值,使得目标函数逐渐收敛到最小值。
首先,我们定义目标函数为残差平方和:J(β) = 1/2m∑(Yi - (β0 + β1X1i + β2X2i + … + βnXni))^2其中,m表示样本数量。
多元线性回归:估计方法及回归系数显著性检验线性回归模型的基本假设:i ki k i i i u x x x y +++++=ββββΛ22110 i = 1 , 2 , … , n在普通最小二乘法中,为保证参数估计量具有良好的性质,通常对模型提出若干基本假设:1.解释变量间不完全相关;2.随机误差项具有0均值和同方差。
即:0)(=i u E , 2)(σ=i u Var i = 1 , 2 , … , n 3.不同时点的随机误差项互不相关(序列不相关),即0),(=-s i i u u Cov s ≠ 0, i = 1 , 2 , … , n4.随机误差项与解释变量之间互不相关。
即0),(=i ji u x Cov j = 1 , 2 , … , k , i = 1 , 2 , … , n5.随机误差项服从0均值、同方差的正态分布。
即i u ~ ),0(2σN i = 1 , 2 , … , n当模型满足假设1 ~ 4时,将回归模型称为“标准回归模型”,当模型满足假设1 ~ 5时,将回归模型称为“标准正态回归模型”。
如果实际模型满足不了这些假设,普通最小二乘法就不再适用,而要发展其他方法来估计模型。
广义(加权)最小二乘估计(generalized least squares )当假设2和3不满足时,即随机扰动项存在异方差22)(ii i u E σ=,i = 1 , 2 , … , n ,且随机扰动项序列相关j i u u Cov ij j i ≠=,),(σ, i = 1 , 2 , … , n ,j=1 , 2 , … , n ,此时OLS 估计仍然是无偏且一致的,但不是有效估计。
线性回归的矩阵表示:y = X β + u (1)则上述两个条件等价为:Var(u )== ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn T T n n σσσσσσσσσ..............212222111211 ≠ σ 2 I 对于正定矩阵存在矩阵M ,使得 1''-=⇒=M ΩM I M M Ω。
目录一、选择方程 (1)1.作散点图 (1)2.进行因果关系检验 (2)二、多元线性回归 (3)三、居民消费方程 (5)四、固定投资方程 (8)五、货物和服务净流出方程 (10)六、存货增加方程的估计 (12)实验三多元线性回归模型的估计和检验实验目的:掌握多元线性回归模型的估计和检验方法。
实验要求:选择方程进行多元线性回归。
实验原理:普通最小二乘法。
实验步骤:一、选择方程根据广东数据选择不变价GDP(GDPB)、不变价资本存量(ZC)和从业人员(RY)的数据,把GDPB作为应变量,ZC和RY作为两个解释变量进行二元线性回归分析。
1.作散点图从散点图(图3-1,图3-2)看,变量间不一定呈现线性关系,可以先试着作线性回归。
图3-1图3-22.进行因果关系检验从因果关系检验看,ZC明显影响GDPB、RY不太明显,这是可以理解的,计划经济时期存在着隐性失业,使得劳动力的变化对产出的影响不太明显。
二、多元线性回归得到估计方程GDPB=0.377169694502*ZC+0.353688537498*RY-800.599732335 估计方程的判定系数R2接近1;参数显著性i检验值均大于2;方程显著性F检验显著。
调整的判定系数为0.999085,比下面的一元回归有明显改善。
根据广东数据得到的五个估计方程的前四个,即劳动报酬LB、固定资产折旧ZJ、生产税净额SE和营业盈余YY分别对国内生产总值GDPS 回归的方程,其回归系数其实就是它们四者占GDPS比例的平均数,这个比例数是随着时间的变化而变化的,所以应该进行下面的二元回归:得到估计方程LB=0.36143886124*GDPS+36.781366735*TZJ=0.163625595483*GDPS-2.83149724876*TSE=0.141354057469*GDPS+1.6517682756*T 估计方程的判定系数R2、参数显著性t检验、方程显著性F检验和调整的判定系数有些比一元回归有改进,表明这些确实应该进行二元回归。