船舶结构力学复习
- 格式:ppt
- 大小:1.12 MB
- 文档页数:64
船舶结构⼒学复习题2014.4船舶结构⼒学复习题1、⽤初参数法求图中所⽰受均布载荷作⽤的单跨梁挠曲线⽅程,其中柔性系数为3A l48EI=。
x2、如图所⽰单跨梁的抗弯刚度为EI,跨长为l,跨中受集中⼒P的作⽤,右端弹性固定端EI l3/=α,请⽤初参数法求解图⽰单跨梁的挠曲线⽅程。
3、⽤⼒法求解图中所⽰结构在⽀座0处的转⾓和⽀座1处的⽀反⼒,已知,lll==1201,各杆的抗弯刚度均为EI,集中弯矩M2ql=,弹性⽀座的柔性系数为/3A l24EI=。
(15分)q1A2M4、采⽤位移法求图⽰结构节点2和4的转⾓。
各杆的长度及断⾯惯性矩均为l及I,已知2/2ql=M。
5、如图中所⽰结构,列出求解梁0-1-2的位移法⽅程式组。
已知,lll==1201,断⾯惯性矩均为I。
26、如图所⽰双跨梁,在3处受到⼀弯矩m ,⽤⼒法求2处弯矩2M 。
37、如图所⽰的结构,杆1-2长为l ,刚度为EI ,在右端受有集中⼒P 的作⽤。
试⽤应⼒能原理求右端在集中⼒P 作⽤下的挠度。
P8、设图⽰梁的挠曲线⽅程)(x l ax v -=,⽤李兹法求解此梁的挠曲线。
qx9、⽤矩阵法求解图中的结构,单元和节点编号如图所⽰,采⽤平⾯弯曲杆单元,试解答下列问题:(1)计算各单元的刚度矩阵;(2)写出结构总刚度矩阵;(3)写出以矩阵形式表⽰的节点平衡⽅程式;(4)对节点平衡⽅程式进⾏约束处理,写出约束处理后的⽅程式。
已知:平⾯弯曲杆单元刚度矩阵公式为[]=4 6/- 12/ 2 6/- 4 6/ 12/- 6/ 12222 对称 l l l l l l l EI K eq123,EI l,EI l10、⽤矩阵法求解图中的结构,单元和节点编号如图所⽰,采⽤平⾯弯曲杆单元,试解答下列问题:(1)计算各单元的刚度矩阵;(2)写出结构总刚度矩阵;(3)写出以矩阵形式表⽰的节点平衡⽅程式;(4)对节点平衡⽅程式进⾏约束处理,写出约束处理后的⽅程式。
船体结构力学试题答案一、选择题1. 船体结构中,最常见的骨架类型是()。
A. 纵向骨架B. 横向骨架C. 混合骨架D. 桁架结构答案:B2. 船体钢板的厚度选择主要取决于()。
A. 船体尺寸B. 船只用途C. 载荷大小D. 所有上述因素答案:D3. 船体结构设计中,以下哪项不是考虑的因素?()。
A. 船体的稳定性B. 船体的强度C. 船体的美观性D. 船体的耐腐蚀性答案:C4. 在船体结构力学中,剪力和弯矩的计算是为了确保()。
A. 船体的刚性B. 船体的强度C. 船体的稳定性D. 船体的安全性答案:B5. 船体结构中,横梁的主要作用是()。
A. 连接船首和船尾B. 支撑船体的横向结构C. 增加船体的纵向强度D. 减少船体的重量答案:B二、填空题1. 船体结构设计的基本目标是确保船体具有足够的________和________,以适应各种海洋环境和操作条件。
答案:强度、稳定性2. 在船体结构中,船底板的主要功能是提供________和________。
答案:刚性、防水性3. 船体结构的强度计算需要考虑船体在________、________和________状态下的应力分布。
答案:静水、波浪、风载4. 船体结构设计中,通常采用________方法来优化船体的重量和性能。
答案:有限元分析5. 船体结构的耐腐蚀性设计中,常用的方法是应用________和________技术。
答案:防腐涂层、阳极保护三、简答题1. 简述船体结构中的纵向骨架和横向骨架的作用。
答:纵向骨架是船体结构的主体,它沿船长方向布置,主要作用是承受船体的纵向弯曲和扭曲载荷,保持船体的形状和刚性。
横向骨架则沿船宽方向布置,包括横梁、隔板等,其主要作用是支撑船体的横向载荷,增强船体的横向强度和整体稳定性。
2. 阐述船体结构设计中载荷的分类及其影响。
答:船体结构设计中考虑的载荷通常分为静态载荷和动态载荷。
静态载荷包括船体自重、固定设备的重量、货物重量等,它们对船体结构产生持续的、稳定的应力。
4. 试写出图1所示单跨梁和矩形板结构的边界条件。
(10分)解答:图1(a)的边界条件为:0,0,(),(),0x v v EIv m x l v A EIv F v θα'''====-⎧⎨'''''==+=⎩图1(b) 的边界条件为:22233222320,0,00,0,00,0,0,0,(2)0w w y w x w y x w w w w w x w y b x y x y x y μμ∂⎧∂⎧======⎪⎪∂⎪⎪∂⎨⎨∂∂∂∂∂⎪⎪====+=+-=⎪⎪∂∂∂∂∂∂⎩⎩5. 试用初参数法求图2中的双跨粱的挠曲线方程式,己弹性文座的柔性系数为:33l A EI =。
(20分)解:选取图200233001()()266x lM x N x R x l v x EI EIEI=-=+-(1)式中M 0、N 0、R 1可由x =l 的边界条件v (l )=0,和x =2l 的边界条件(2)0EIv l ''=及(2)[(2)]v l A EIv l F '''=+。
由式(1),可给出三个边界条件为:0000110010262042()363M N lM N l R l R l l M Nl N R F ⎫+=⎪⎪+-=⎬⎪⎪+-=-+⎭(2) 解方程组式(2),得0012610,,111111M Fl N F R F =-==将以上初参数及支反力代入式(1),得挠曲线方程式为:2335()()111133x lFl F Fv x x x x l EI EIEI==-+-- 一. (15分)用初参数法求图示梁的挠曲线方程,已知3l EI α=,36lA EI=,q 均布。
αAqEI ,L解:梁的挠曲线方程为:处的边界条件为: ;处的边界条件:故有:及有二式可解得:;于是梁的挠曲线方程为:三、(20分)用能量法求解如图所示梁的静不定性。
hhit-船舶结构力学-期末考试复习资料处的边界条件:故有:及有二式可解得:;于是梁的挠曲线方程为:三、(20分)用能量法求解如图所示梁的静不定性。
已知图中E 为常数,柔性系数,端部受集中弯矩m 作用,悬臂端的惯性矩是其余部分的2倍。
解:取挠曲线函数为 ,满足梁两端的位移边界条件,即x=0时,3/(12)A l EI LLmx=3L/2时,说明此挠曲线函数满足李兹法的要求,下面进行计算。
(1) 计算应变能。
此梁的应变能包括两部分,一是梁本身的弯曲应变能,二是弹性支座的应变能。
注意到梁是变断面的,故有总的应变能为(2)计算力函数。
此梁的力函数为(3) 计算总位能故梁的挠曲线方程为弹性支座处的挠度为四、(20)用位移法求解下图连续梁的静不定问题。
已知:, , , ,画出弯矩图。
解:设节点1、2、3的转角为,由题意可知。
根据平衡条件有节点1:节点2:其中:将其代入整理,联立求解得:P ql =1223l l l ==1223I I I ==/(6)l EI α=;故:;;;弯矩图:四、(20分)用力法求解下图连续梁的静不定问题。
已知:其中杆件EI为常数,分布力q2P/L,集中弯矩m=PL,画出弯矩图。
解: 本例的刚架为一次静不定结构,现将支座1处切开,加上未知弯矩M1,原来作用于节点1上的外力矩m可考虑在杆0-1上亦可考虑在杆1-2上,今考虑在杆1-2上。
于是得到两根单跨梁如上图所示。
变形连续条件为节点1转角连续,利用单跨梁的弯曲要素表,这个条件给出:解得:弯矩图:6、用位移法计算下面刚架结构的杆端弯矩为了书写方便,将钢架的各节点分别命名为0、1、2和3,如上面右图所示。
解:1、确定未知转角的数目本题0、1、2三个节点都可能发生转动,故有三个未知转角 。
解题时将以上三个节点作刚性固定。
2、计算各杆的固端弯矩M 01 = -qL212M 10 =qL212M 12 =M 13 =M 21 =M 31 =003、计算因转角引起的杆端弯矩M 01 =′4EI 01L θ0+2EI 01Lθ1M 10 =′4EI 01L θ1+2EI 01L θ0M 12 =′4EI 12L θ1+2EI 12L θ2M 21 =′4EI 12L θ2+2EI 12Lθ1θ0θ1θ2、、M 13 =′4EI 13Lθ1M 31 =′2EI 13θ14、对节点0、1、2列出弯矩平衡方程式对“0”节点:M 01M 01′+= -qL24EI 01θ0+2EI 01θ1+= 0= -qL28E L θ0+4E Lθ1+= 0对“1”节点:M 10M 10′+12M 12′+13M 13′+++=qL24EI 01θ1+2EI 01θ0+4EI 12L θ1+2EI 12L θ2+4EI 13L θ1+= 0=0=qL2124Eθ0++32E θ1+6E θ2= 021M21′+对“2”节点:4EI21θ2+2EI21θ1=12Eθ2+6Eθ1== 0 = 0即: -qL28Eθ0+4Eθ1+= 0qL2 124Eθ0++32ELθ1+6ELθ2= 012E L θ2+6ELθ1= 0θ1θ2θ0===11qL3864EqL3216EqL3432E-解得未知转角:5、计算各杆的杆端弯矩M01 = M10 =M01 +M01′M10M10 =′+= -qL24EI01θ0+2EI01θ1 += -qL28ELθ0+4ELθ1 += -qL28EL+4EL+11qL3864EqL3216E-( )=-0.083+0.102-0.0185=0qL2 124EI01θ1+2EI01θ0+=qL2 8Eθ1+4Eθ0 +=qL2 8E+4E+11qL3864EqL3216E-( )=0.083+0.051-0.037 =0.097qL2LM 13 =M 21M 3113M 13 =′ +M 21M 21′+4EI 21L θ2+2EI 21L θ1=12E L +6E ==M 31 =′2EI 13θ1 =M 12 =12M 12 =′ +12E + 6E qL3216E -( )qL3432E= -0.056+0.0139= - 0.042qL2qL3432E qL3216E -( )= 0qL3216E -( )= - 0.056qL2 = 6E qL3216E -( )= - 0.028qL2二、(16分)图1所示结构,已知作用在杆中点的弯矩M , 和EI ,l 用初参数法求单跨梁的挠曲线方程。
xy 船舶海洋结构力学复习1、请用初参数法确定图示单跨梁0-1的挠曲线方程,其中单跨梁的刚度为EI ,跨长为l ,均布载荷q 如图所示。
左端刚性固定,右端弹性支座的柔性系数EIl A 4831=。
2、请用初参数法确定图示单跨梁0-1的挠曲线方程,其中单跨梁的刚度为EI ,跨长为l ,均布载荷q 如图所示。
左右端均为刚性固定。
3、用力法计算图示结构1点的弯矩1M ,已知杆1-2及杆2-3的刚度均为EI ,l l l ==2312。
4、用力法计算图示结构2点的弯矩2M ,已知杆1-2及杆2-3的刚度均为EI ,l l l ==2312,ql P =,且P 作用于杆1-2的跨中。
qx5、请用位移法解如图所示结构,只写出正则方程即可,不必求解。
各杆的长度及刚度均为l 及EI 。
6、请用位移法解如图所示结构,只写出正则方程即可,不必求解。
各杆的长度及刚度均为l 及EI ,P 分别作用于杆1-2及2-3的跨中。
7、如图所示的结构,杆1-2长为l ,刚度为EI ,在右端受有集中力P 的作用。
试用应力能原理求右端在集中力P 作用下的挠度。
8、请用应力能原理计算图示简单钢架的端点1在外力 P 作用下的垂向位移。
已知112l l =,223l l =,各杆的刚度均为EI 。
9、设有一纵骨架式船,船底肋板间距为1.2m,纵骨间距为0.7m ,如要保证船底板的临界应力达到2/240mm N cr =σ,求所需板厚为多少?10、设有一纵骨架式船,船底纵桁为T 型材,断面尺寸为:翼板100⨯102m m ,腹板180⨯82m m 。
请分别计算纵桁翼板和腹板的临界应力cr σ。
11、四周自由支持的矩形板长边cm a 400=, 短边cm b 100=,板受垂直于板面的均布载荷2/05.0mm N q =作用,板厚cm t 8.0=,材料弹性模量为25101.2mm N E ⨯=。
(1)请写出板筒形弯曲的条件。
(2)按筒形弯曲画出本题矩形板的计算模型,并计算板中心的挠度及弯矩。
船舶结构力学课后题答案船舶结构力学课后题答案1.什么是船舶结构力学?船舶结构力学是研究船舶结构受到的力学作用及其力学性能的学科。
它主要涉及到船舶结构的强度、刚度、稳定性、疲劳、振动、冲击等方面的问题。
船舶结构力学的研究对于船舶的设计、建造、维修和运营具有重要意义。
2.船舶结构的强度是指什么?船舶结构的强度是指船舶结构在外界力作用下所能承受的最大应力或变形程度。
船舶结构的强度对于船舶的安全性和使用寿命具有重要影响,因此在设计和建造船舶时需要进行强度计算和强度验证。
3.船舶结构的刚度是指什么?船舶结构的刚度是指船舶结构对外界力作用的抵抗能力。
刚度主要包括纵向刚度、横向刚度和扭转刚度。
船舶结构的刚度对于船舶的航行性能和稳定性具有重要影响,因此在设计和建造船舶时需要进行刚度计算和刚度验证。
4.船舶结构的稳定性是指什么?船舶结构的稳定性是指船舶在受到外界力作用时保持平衡的能力。
船舶结构的稳定性对于船舶的航行安全和运载能力具有重要影响,因此在设计和建造船舶时需要进行稳定性计算和稳定性验证。
5.船舶结构的疲劳是指什么?船舶结构的疲劳是指船舶结构在循环荷载作用下产生的疲劳损伤和疲劳破坏。
船舶结构的疲劳对于船舶的使用寿命和安全性具有重要影响,因此在设计和建造船舶时需要进行疲劳计算和疲劳验证。
6.船舶结构的振动是指什么?船舶结构的振动是指船舶结构在受到外界激励作用下产生的振动现象。
船舶结构的振动对于船舶的航行舒适性和结构安全具有重要影响,因此在设计和建造船舶时需要进行振动计算和振动验证。
7.船舶结构的冲击是指什么?船舶结构的冲击是指船舶结构在受到外界冲击力作用下产生的应力和变形。
船舶结构的冲击对于船舶的抗冲击能力和结构安全具有重要影响,因此在设计和建造船舶时需要进行冲击计算和冲击验证。
8.船舶结构力学的研究对船舶设计和建造有什么意义?船舶结构力学的研究对船舶设计和建造具有以下几方面的意义:•提高船舶的强度和刚度,保证船舶的安全性和使用寿命;•提高船舶的稳定性,保证船舶的航行安全和运载能力;•预测和控制船舶结构的疲劳、振动和冲击,保证船舶的航行舒适性和结构安全;•优化船舶结构设计,提高船舶的性能和经济效益。