TSP问题《运筹学》综合性实验报告
- 格式:doc
- 大小:1.06 MB
- 文档页数:5
TSP问题求解(一)实验目的熟悉和掌握遗传算法的原理,流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。
(二)实验原理巡回旅行商问题给定一组n个城市和俩俩之间的直达距离,寻找一条闭合的旅程,使得每个城市刚好经过一次且总的旅行距离最短。
TSP问题也称为货郎担问题,是一个古老的问题。
最早可以追溯到1759年Euler提出的骑士旅行的问题。
1948年,由美国兰德公司推动,TSP成为近代组合优化领域的典型难题。
TSP是一个具有广泛的应用背景和重要理论价值的组合优化问题。
近年来,有很多解决该问题的较为有效的算法不断被推出,例如Hopfield神经网络方法,模拟退火方法以及遗传算法方法等。
TSP搜索空间随着城市数n的增加而增大,所有的旅程路线组合数为(n-1)!/2。
在如此庞大的搜索空间中寻求最优解,对于常规方法和现有的计算工具而言,存在着诸多计算困难。
借助遗传算法的搜索能力解决TSP问题,是很自然的想法。
基本遗传算法可定义为一个8元组:(SGA)=(C,E,P0,M,Φ,Г,Ψ,Τ)C ——个体的编码方法,SGA使用固定长度二进制符号串编码方法;E ——个体的适应度评价函数;P0——初始群体;M ——群体大小,一般取20—100;Ф——选择算子,SGA使用比例算子;Г——交叉算子,SGA使用单点交叉算子;Ψ——变异算子,SGA使用基本位变异算子;Т——算法终止条件,一般终止进化代数为100—500;问题的表示对于一个实际的待优化问题,首先需要将其表示为适合于遗传算法操作的形式。
用遗传算法解决TSP,一个旅程很自然的表示为n个城市的排列,但基于二进制编码的交叉和变异操作不能适用。
路径表示是表示旅程对应的基因编码的最自然,最简单的表示方法。
它在编码,解码,存储过程中相对容易理解和实现。
例如:旅程(5-1-7-8-9-4-6-2-3)可以直接表示为(5 1 7 8 9 4 6 2 3)(三)实验内容N>=8。
TSP实验报告(实验报告、研究报告)考核科⽬:算法分析与复杂性理论学⽣所在学院:计算机科学与技术学院学⽣所在学科:计算机应⽤技术姓名:学号:学⽣类别:研究⽣⼀、实验⽬的1.通过TSP算法的具体实现,加深对算法复杂分析的理解。
2.通过TSP算法的具体实现,提⾼对NP完全问题的认识。
3.通过TSP算法的具体实现,理解不确定性算法。
4.通过TSP算法的具体实现,理解不确定性算法。
⼆、实验环境实验平台:Visual C++编程语⾔:C++编程电脑配置:三、实验内容描述TSP(Travelling Salesman Problem)⼜称货郎担或巡回售货员问题,在运筹学、管理科学及⼯程实际中具有⼴泛的⽤途。
及⼯程实际中具有⼴泛的⽤途。
TSP问题是组合优化中的著名难题,⼀直受到⼈们的极⼤关注。
由于其NP难题性质,⾄今尚未完全解决。
此问题可以抽象描述为:给出⼀个n个顶点⽹络(有向或⽆向),要求找出⼀个包含所有n个顶点的具有最⼩耗费的环路。
其中,任何⼀个包含所有n个顶点的环路被称作⼀个旅⾏。
对于旅⾏商问题,顶点表⽰旅⾏商所要旅⾏的城市(包括起点)。
边上权值给出了在两个城市旅⾏所需的路程。
旅⾏表⽰当旅⾏商游览了所有城市后再回到出发点时所⾛的路线。
四、实验原理许多研究表明,应⽤蚁群优化算法求解TSP问题优于模拟退⽕法、遗传算法、神经⽹络算法、禁忌算法等多种优化⽅法。
为说明该算法,引⼈如下的标记: m表⽰蚁群中蚂蚁的数量;表⽰城市i和城市j之间的距离;表⽰t时刻位于城市i的蚂蚁数,显然应满⾜,表⽰t时刻在ij连线上的信息数量。
在算法的初始时刻,将m只蚂蚁随机地放到n座城市上,此时各路径上的信息量相等,设。
每只蚂蚁根据路径上保留的信息量独⽴地选择下⼀个城市。
在时刻t,蚂蚁k从城市i转移到城市j 的概率为其中,表⽰蚂蚁⾛下⼀步允许选择的所有城市,列表纪录了当前蚂蚁k所⾛过的城市,当所有n个城市都加⼊到中时,蚂蚁k便完成了⼀次循环,此时蚂蚁⾛所⾛过的路径便是问题的⼀个解。
实验六:遗传算法求解TSP问题实验3篇以下是关于遗传算法求解TSP问题的实验报告,分为三个部分,总计超过3000字。
一、实验背景与原理1.1 实验背景旅行商问题(Traveling Salesman Problem,TSP)是组合优化中的经典问题。
给定一组城市和每两个城市之间的距离,求解访问每个城市一次并返回出发城市的最短路径。
TSP 问题具有很高的研究价值,广泛应用于物流、交通运输、路径规划等领域。
1.2 遗传算法原理遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传机制的搜索算法。
它通过选择、交叉和变异操作生成新一代解,逐步优化问题的解。
遗传算法具有全局搜索能力强、适用于多种优化问题等优点。
二、实验设计与实现2.1 实验设计本实验使用遗传算法求解TSP问题,主要包括以下步骤:(1)初始化种群:随机生成一定数量的个体(路径),每个个体代表一条访问城市的路径。
(2)计算适应度:根据路径长度计算每个个体的适应度,适应度越高,路径越短。
(3)选择操作:根据适应度选择优秀的个体进入下一代。
(4)交叉操作:随机选择两个个体进行交叉,生成新的个体。
(5)变异操作:对交叉后的个体进行变异,增加解的多样性。
(6)更新种群:将新生成的个体替换掉上一代适应度较低的个体。
(7)迭代:重复步骤(2)至(6),直至满足终止条件。
2.2 实验实现本实验使用Python语言实现遗传算法求解TSP问题。
以下为实现过程中的关键代码:(1)初始化种群```pythondef initialize_population(city_num, population_size): population = []for _ in range(population_size):individual = list(range(city_num))random.shuffle(individual)population.append(individual)return population```(2)计算适应度```pythondef calculate_fitness(population, distance_matrix): fitness = []for individual in population:path_length =sum([distance_matrix[individual[i]][individual[i+1]] for i in range(len(individual) 1)])fitness.append(1 / path_length)return fitness```(3)选择操作```pythondef selection(population, fitness, population_size): selected_population = []fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]for _ in range(population_size):individual = random.choices(population, fitness_probability)[0]selected_population.append(individual)return selected_population```(4)交叉操作```pythondef crossover(parent1, parent2):index1 = random.randint(0, len(parent1) 2)index2 = random.randint(index1 + 1, len(parent1) 1)child1 = parent1[:index1] +parent2[index1:index2] + parent1[index2:]child2 = parent2[:index1] +parent1[index1:index2] + parent2[index2:]return child1, child2```(5)变异操作```pythondef mutation(individual, mutation_rate):for i in range(len(individual)):if random.random() < mutation_rate:j = random.randint(0, len(individual) 1) individual[i], individual[j] = individual[j], individual[i]return individual```(6)更新种群```pythondef update_population(parent_population, child_population, fitness):fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]new_population =random.choices(parent_population + child_population, fitness_probability, k=len(parent_population)) return new_population```(7)迭代```pythondef genetic_algorithm(city_num, population_size, crossover_rate, mutation_rate, max_iterations): distance_matrix =create_distance_matrix(city_num)population = initialize_population(city_num, population_size)for _ in range(max_iterations):fitness = calculate_fitness(population, distance_matrix)selected_population = selection(population, fitness, population_size)parent_population = []child_population = []for i in range(0, population_size, 2):parent1, parent2 = selected_population[i], selected_population[i+1]child1, child2 = crossover(parent1, parent2)child1 = mutation(child1, mutation_rate)child2 = mutation(child2, mutation_rate)parent_population.extend([parent1, parent2]) child_population.extend([child1, child2])population =update_population(parent_population, child_population, fitness)best_individual =population[fitness.index(max(fitness))]best_path_length =sum([distance_matrix[best_individual[i]][best_individual[i +1]] for i in range(len(best_individual) 1)])return best_individual, best_path_length```三、实验结果与分析3.1 实验结果本实验选取了10个城市进行测试,遗传算法参数设置如下:种群大小:50交叉率:0.8变异率:0.1最大迭代次数:100实验得到的最佳路径长度为:1953.53.2 实验分析(1)参数设置对算法性能的影响种群大小:种群大小会影响算法的搜索能力和收敛速度。
《运筹学》实验报告专业:工商管理专业班级:11-2班姓名:***学号:************指导老师:***前言第十一周、十二周,我们在雷莹老师的指导下,用计算机进行了有关运筹学的一系列实验。
本实验报告即是对这次试验的反馈。
本这次试验是为了帮助我们顺利完成有关《运筹学》课程内容的学习。
在先期,雷老师带领我们进行了《运筹学》理论课程的学习,不仅使我们了解和掌握了运筹学的相关知识,而且让我们认识到运筹学的现实意义,认识到现代社会数学与人们生产、生活之间的紧密联系和对人们生产、生活的巨大促进作用。
然而,与此同时,现代社会同时是一个计算机时代,我们只拥有理论知识还不够,必须把理论知识和计算技术结合起来,这样才能进一步提高生产力。
我相信这也是老师要求我们做这次试验的目的和初衷。
在实验中,我们主要是利用WinQSB软件进行相关试验,根据实验指导书中详细给出的各个实验的基本步骤和内容,独立完成各项实验。
本次实验中共包含4个实验,分别是线性规划实验、运输问题实验、整数规划实验,以及网络优化实验。
每个实验均与理论课中讲解的内容相对应。
部分实验内容用于使我们了解WinQSB软件的基本操作,而其它实验内容要求我们能够根据给出的问题,进行分析、建模和求解。
通过完成各项实验任务,使我们得以巩固已有的理论课程学习内容,为将来进一步的学习和实际应用打下基础。
线性规划实验通过对以下问题的分析,建立线性规划模型,并求解:某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D。
已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价分别见下表1和2。
该厂应如何安排生产,使利润收入为最大?表1表2实验报告要求(1)写出自己独立完成的实验内容,对需要建模的问题,给出问题的具体模型;(2)给出利用WinQSB软件得出的实验结果;(3)提交对实验结果的初步分析,给出自己的见解;实验过程:一、建立模型设Ac是A产品中用c材料,同理得出Ap、Ah、Bc、Bp、Bh、Dc、Dp、Dh34⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧≤++≤++≤++≤++≥++≤++≥++++++++++++++++=60Dh Bh Ah 100Dp Bp Ap 100Dc Bc Ac 5.0Bh Bp Bc Bp 25.0Bh Bp Bc Bc 25.0Ah Ap Ac Ap 5.0Ah Ap Ac Ac Dh Bh Ah 35-Dp Bp Ap 25-Dc Bc Ac 65-Dh Dp Dc 25Bh Bp Bc 35)(50 max )()()()()(H P C A A A z二、求解过程三、实验分析实验结果表明,在题目的要求下,该工厂只能生产A产品才能盈利,并且在使用c材料100个单位、p材料50个单位、h材料50个单位时,即生产200个单位的A产品时,才能获得最大利润,最大利润为500。
运筹学实习报告尊敬的导师:我在实习期间参与了运筹学相关项目的实操工作,现将我的实习报告提交给您。
本报告将从项目背景、实习目标、实习内容和心得感悟等方面进行说明,以展现我在实习期间的学习与成长。
1. 项目背景本次实习项目是与一家大型物流公司合作,目标是优化其货物配送路线。
该公司的物流管理系统存在一些瓶颈,导致运输效率低下,成本高昂。
通过运筹学的理论与方法,我们希望能够提高其运输效率,降低成本,并且优化整个供应链的管理。
2. 实习目标在该项目中,我的主要实习目标如下:a) 学习并掌握运筹学的相关理论知识;b) 熟悉物流管理系统的运行机制;c) 利用运筹学模型优化货物配送路线,并提出相应的解决方案;d) 能够运用运筹学工具进行数据分析与决策支持;e) 掌握优化模型的建立与求解方法。
3. 实习内容在实习期间,我参与了以下工作内容:a) 研究运输网络的拓扑结构,了解物流运输的基本流程;b) 分析公司现有物流管理系统的运行情况,发现问题与瓶颈;c) 学习并应用运筹学模型,建立货物配送路线优化的数学模型;d) 利用运筹学软件(如Gurobi、CPLEX等)进行模型求解;e) 将模型优化结果与公司现有系统进行对比,评估优化效果。
4. 心得感悟通过参与这个实习项目,我不仅深入学习了运筹学的理论知识,还锻炼了自己的实际操作能力。
在项目中,我遇到了许多挑战和困难,但通过不断学习和探索,最终取得了令人满意的成果。
首先,我了解到实际问题往往较为复杂,需要将运筹学的理论与实际情况相结合。
在建立货物配送路线优化模型时,我需要考虑实际的物流网络结构、交通状况以及客户需求等因素,这些因素对优化结果具有重要影响。
其次,我学会了运用运筹学工具进行数据分析和决策支持。
通过运筹学软件的运算和模型求解,我能够快速获得优化结果,并根据结果提出相关建议和决策。
这种数据驱动的决策方法能够提高工作效率和运作质量。
最后,我深刻体会到团队合作的重要性。
TSP问题算法实验报告指导教师:季晓慧姓名:辛瑞乾学号: 1004131114 提交日期: 2015年11月目录总述 (2)动态规划法 (3)算法问题分析 (3)算法设计 (3)实现代码 (3)输入输出截图 (6)OJ提交截图 (6)算法优化分析 (6)回溯法 (6)算法问题分析 (6)算法设计 (7)实现代码 (7)输入输出截图 (9)OJ提交截图 (10)算法优化分析 (10)分支限界法 (10)算法问题分析 (10)算法设计 (10)实现代码 (11)输入输出截图 (15)OJ提交截图 (16)算法优化分析 (16)总结 (16)总述TSP问题又称为旅行商问题,是指一个旅行商要历经所有城市一次最后又回到原来的城市,求最短路程或最小花费,解决TSP可以用好多算法,比如蛮力法,动态规划法…具体的时间复杂的也各有差异,本次实验报告包含动态规划法,回溯法以及分支限界法。
动态规划法算法问题分析假设n个顶点分别用0~n-1的数字编号,顶点之间的代价存放在数组mp[n][n]中,下面考虑从顶点0出发求解TSP问题的填表形式。
首先,按个数为1、2、…、n-1的顺序生成1~n-1个元素的子集存放在数组x[2^n-1]中,例如当n=4时,x[1]={1},x[2]={2},x[3]={3},x[4]={1,2},x[5]={1,3},x[6]={2,3},x[7]={1,2,3}。
设数组dp[n][2^n-1]存放迭代结果,其中dp[i][j]表示从顶点i经过子集x[j]中的顶点一次且一次,最后回到出发点0的最短路径长度,动态规划法求解TSP问题的算法如下。
算法设计输入:图的代价矩阵mp[n][n]输出:从顶点0出发经过所有顶点一次且仅一次再回到顶点0的最短路径长度1.初始化第0列(动态规划的边界问题)for(i=1;i<n;i++)dp[i][0]=mp[i][0]2.依次处理每个子集数组x[2^n-1]for(i=1;i<n;i++)if(子集x[j]中不包含i)对x[j]中的每个元素k,计算d[i][j]=min{mp[i][k]+dp[k][j-1]};3.输出最短路径长度。
TSP问题一,实验目的熟悉图的数据结构,学会解决实际问题二,实验内容旅行商问题,即TSP问题(Travelling Salesman Problem)又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。
假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。
路径的选择目标是要求得的路径路程为所有路径之中的最小值。
三,设计与编码#include<iostream>using namespace std;const int MaxSize = 10;const int Max = 100;int Min(int arr[],int n);class MGraph{public:MGraph(char city[], int n, int e);~MGraph(){}void TSP(int v);private:char vertex[MaxSize];int arc[MaxSize][MaxSize];int vertexNum, arcNum;};int visited[MaxSize] = {0};int main(){char city[] = {'A','B','C','D','E'};MGraph MG(city, 5, 10);MG.TSP(0);return 0;}void MGraph::TSP(int v){cout << vertex[v]; visited[v] = 1;int i = 0,j = 0, s = 0;int log = 0;for(;log < vertexNum;log++){j = Min(arc[i],vertexNum);visited[j] = 1;cout << "->" << vertex[j];i = j;}}int Min(int *p,int n){int start = 0, min = p[0], k = 0;while(visited[start] == 1){start++;min = p[start];}for(;start < n;start++){if((visited[start] == 0) && (min >= p[start])){k = start;min = p[k];}}return k;}//构造函数MGraph::MGraph(char city[], int n, int e){vertexNum = n;arcNum = e;//存储顶点信息for(int i = 0; i < vertexNum; i++)vertex[i] = city[i];//初始化图的邻接矩阵for(int i = 0; i < vertexNum; i++)for(int j = 0; j < vertexNum; j++)arc[i][j] = 100;//存储图的边信息int i,j,weight;for(int k = 0; k < arcNum; k++){cout << "请输入边的两个顶点的序号及其权值:";cin >> i >> j >> weight;arc[i][j] = weight;arc[j][i] = weight;}}四,运行与测试五,总结与心得通过对实际问题的解决,巩固了课本知识,提高了编写代码的能力。
TSP问题求解(一)实验目的熟悉和掌握遗传算法的原理,流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。
(二)实验原理巡回旅行商问题给定一组n个城市和俩俩之间的直达距离,寻找一条闭合的旅程,使得每个城市刚好经过一次且总的旅行距离最短。
TSP问题也称为货郎担问题,是一个古老的问题。
最早可以追溯到1759年Euler提出的骑士旅行的问题。
1948年,由美国兰德公司推动,TSP成为近代组合优化领域的典型难题。
TSP是一个具有广泛的应用背景和重要理论价值的组合优化问题。
近年来,有很多解决该问题的较为有效的算法不断被推出,例如Hopfield神经网络方法,模拟退火方法以及遗传算法方法等。
TSP搜索空间随着城市数n的增加而增大,所有的旅程路线组合数为(n-1)!/2。
在如此庞大的搜索空间中寻求最优解,对于常规方法和现有的计算工具而言,存在着诸多计算困难。
借助遗传算法的搜索能力解决TSP问题,是很自然的想法。
基本遗传算法可定义为一个8元组:(SGA)=(C,E,P0,M,Φ,Г,Ψ,Τ)C ——个体的编码方法,SGA使用固定长度二进制符号串编码方法;E ——个体的适应度评价函数;P0——初始群体;M ——群体大小,一般取20—100;Ф——选择算子,SGA使用比例算子;Г——交叉算子,SGA使用单点交叉算子;Ψ——变异算子,SGA使用基本位变异算子;Т——算法终止条件,一般终止进化代数为100—500;问题的表示对于一个实际的待优化问题,首先需要将其表示为适合于遗传算法操作的形式。
用遗传算法解决TSP,一个旅程很自然的表示为n个城市的排列,但基于二进制编码的交叉和变异操作不能适用。
路径表示是表示旅程对应的基因编码的最自然,最简单的表示方法。
它在编码,解码,存储过程中相对容易理解和实现。
例如:旅程(5-1-7-8-9-4-6-2-3)可以直接表示为(5 1 7 8 9 4 6 2 3)(三)实验内容N>=8。
运筹学实验报告总结心得1. 背景运筹学是以数学模型为基础,结合管理科学、经济学和计算机科学等方法,研究在有限资源的条件下优化决策问题的学科。
本次实验旨在通过运筹学方法解决一个实际的问题,并从中探索运筹学的实际应用价值。
2. 分析2.1 问题描述本次实验中,我们需要解决一个物流配送的问题。
具体问题是:给定一定数量的货物和一些配送车辆,如何确定最优的配送路线和配送顺序,以使得总体的运输成本最小。
2.2 求解思路为了解决这个问题,我们采用了TSP(Traveling Salesman Problem,旅行商问题)的算法。
TSP是一种经典的组合优化问题,通过寻找最短的闭合路径,将n个城市依次访问一遍。
我们将货物所在的位置作为城市,将物流中心作为起始点和终点,通过TSP算法确定最优的配送路线。
2.3 模型设计我们将问题抽象成图论问题,货物的位置和物流中心可以看作图的顶点,两个顶点之间的距离可以看作图的边。
我们首先计算出所有顶点之间的距离,并构建一个距离矩阵。
然后,通过TSP算法,求解最优的路径。
3. 结果通过我们的实验,我们成功地解决了物流配送问题,并得到了最优的配送路线和顺序。
我们以图的形式展示了最优路径,并计算出了最小的运输成本。
4. 建议在实验过程中,我们发现了一些可以改进的地方。
首先,我们可以考虑引入实时交通信息来调整路径,以避免拥堵和路况不佳的区域。
其次,我们可以进一步优化TSP算法,以提高求解效率和准确度。
最后,我们还可以考虑引入其他因素,如货物的紧急程度或优先级,来调整配送顺序,以更好地满足客户需求。
5. 总结通过本次实验,我们深入了解了运筹学的应用,特别是在物流配送方面的应用。
我们成功地解决了一个实际问题,并得到了有用的结果和结论。
我们还发现了一些可以改进的地方,为进一步研究和应用运筹学提供了方向。
运筹学作为一门跨学科的领域,具有广泛的应用前景。
通过运筹学方法,我们可以帮助企业和组织优化决策,提高效率,降低成本。
TSP问题目录1实验目的 (1)2问题描述与分析 (1)3算法分析 (1)3.1回溯法 (1)3.2 动态规划 (1)3.3 模拟退火算法 (2)4程序设计 (2)4.1回溯法 (2)4.2动态规划算法 (3)4.3模拟退火算法 (4)5实验结果及分析 (5)6实验总结 (6)7源代码 (6)1实验目的1.使用搜索方法进行TSP问题的求解2.了解相关智能算法3.了解NP难问题的求解策略2问题描述与分析某售货员要到若干城市去推销商品,已知各城市之间的路程(或旅费)。
他要选定一条从驻地出发,经过每个城市一遍,最后回到驻地的路线,使总的路程(或旅费)最小。
分析:问题的本质是搜索问题,而且这个问题是NP完全问题,问题的复杂度指数增长,所以普通的搜索无法在有限的时间里完成搜索,尽管有各种优化的算法:启发式算法、深度优先搜索、动态规划、回溯等。
都无法改变复杂度。
实际上大多时候人们并不关心NP完全问题的最优解,只要得出一个近似的解就可以了,因此,人们发明了很多算法,例如粒子群算法、遗传算法、模拟退火算法,这一类算法被称为“智能算法”,但是,他们都无法求出最优解,仅能得到近似解,但这已经足够了。
在本次试验中,一共设计了三个算法:回溯法,动态规划,模拟退火算法。
3算法分析3.1回溯法回溯法采用深度优先方式系统地搜索问题的所有解,基本思路是:确定解空间的组织结构之后,从根结点出发,即第一个活结点和第一个扩展结点向纵深方向转移至一个新结点,这个结点成为新的活结点,并成为当前扩展结点。
如果在当前扩展结点处不能再向纵深方向转移,则当前扩展结点成为死结点。
此时,回溯到最近的活结点处,并使其成为当前扩展结点,回溯到以这种工作方式递归地在解空间中搜索,直到找到所求解空间中已经无活结点为止。
旅行商问题的解空间是一棵排列树.对于排列树的回溯搜索与生成1,2,……, n的所有排列的递归算法Perm类似,设开始时x=[ 1,2,… n ],则相应的排列树由x[ 1:n ]的所有排列构成.旅行商问题的回溯算法。
人工智能实验报告实验六遗传算法实验II一、实验目的:熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。
二、实验原理:旅行商问题,即TSP问题(Traveling Salesman Problem)是数学领域中著名问题之一。
假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路经的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。
路径的选择目标是要求得的路径路程为所有路径之中的最小值。
TSP问题是一个组合优化问题。
该问题可以被证明具有NPC计算复杂性。
因此,任何能使该问题的求解得以简化的方法,都将受到高度的评价和关注。
遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程。
它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体。
这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代。
后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程。
群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解。
要求利用遗传算法求解TSP问题的最短路径。
三、实验内容:1、参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。
2、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。
3、增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。
4、上交源代码。
四、实验报告要求:1、画出遗传算法求解TSP问题的流程图。
2、分析遗传算法求解不同规模的TSP问题的算法性能。
规模越大,算法的性能越差,所用时间越长。
3、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。
《运筹学》实验报告实验名称:综合实践运用班级:组员:学院:完成时间:2011年12月指导教师:1 实验目的1、掌握运筹学概念、原理、模型以及实际应用意义。
2、理解掌握运筹学综合实践应用。
2 实验内容案例B4童心玩具厂下一年度的现金流(万元)如表中所示,表中负号表示2该月现金流出大于流入,为此该厂需要借款。
借款有两种方式:一是于上一年末借一年期贷款,一次得全部贷款额,从一月底起每月还息1%,于12月归还本金和最后一次利息;二是得到短期贷款,每月出获得,于月底归还,月息 1.5%。
当该厂有多余现金时,可短期存款,月初存入,月末取出,月息0.4%。
问该厂应如何进行存款操作,既能弥补可能出现的负现金流,又可以使年末现金总量最大?3 实验具体方法及步骤3.1 案例分析从案例中可以知道,该厂全年可以进行的借贷次数不限,借贷类型有两种,分别是长贷和短贷,为保证厂方的现金充足,可以在借贷了长贷的情况下依据实际情况借贷短贷。
其中长贷(用y表示)只借贷一次,在年初发生,以后每个月都将要还长贷的0.01%y的利息,总共要还12个月,还息日期为每个月的月底,也即是下一个月份的月初还息;而每个月还可以进行短期贷款(用wi表示),可贷款12个月,并于月底也就是下个月出还段贷款息1.5%wi,也就是说每个月的月初将进行一次短贷贷款,并还上一个月的短贷息 1.5%wi;而每个月若是有现金余留,可将现金(用zi表示)存款,利息为0.4%zi,总共为12个月综上可知,第一个月现金余额须为长贷额+短贷额-月底存款额要大于第一个月的现金需求额,从第二个月开始:上一个月的存款本息+本月贷款额-长贷利息-上个月短贷本息-月底存款额要大于本月的现金需求3.2 建立模型设长期贷款为y,wi表示第i个月的短期贷款额,zi为第i个月的短期存款额,i=1,2,3,4,5,6,7,8,9,10,11,12,目标函数为年底的最多现金额Max Z(目标函数为第12个月份所遗留的现金额,即求第12个月份的现金余额最大),其中约束条件共有12个,分别代表每个月份的现金约束,则线性模型可建立为:Max Z=(1+0.004)x12-(1+0.01)y-(1+0.015)w12S.t{y+w1-z1>=12 第1个月(1+0.004)z1-0.01y-(1+0.015)w1-z2+w2>=10 第2个月(1+0.004)z2-0.01y-(1+0.015)w2-z3+w3>=8 第3个月(1+0.004)z3-0.01y-(1+0.015)w3-z4+w4>=10 第4个月(1+0.004)z4-0.01y-(1+0.015)w4-z5+w5>=4 第5个月(1+0.004)z5-0.01y-(1+0.015)w5-z6+w6>=-5 第6个月(1+0.004)z6-0.01y-(1+0.015)w6-z7+w7>=7 第7个月(1+0.004)z7-0.01y-(1+0.015)w7-z8+w8>=2 第8个月(1+0.004)z8-0.01y-(1+0.015)w8-z9+w9>=-15 第9个月(1+0.004)z9-0.01y-(1+0.015)w9-z10+w10>=-12 第10个月(1+0.004)z10-0.01y-(1+0.015)w10-z11+w11>=7 第11个月(1+0.004)z11-0.01y-(1+0.015)w11-z12+w12>=-45 第12个月}该案例线性模型使用LINGO软件进行求解,编辑如下程序:求解得到结果如图所示,为:结果解析:本实验结果为小组3成员各自独立完成并且结果一致所得。
一、旅行商问题所谓旅行商问题(Travelling Salesman Problem , TSP),即最短路径问题,就是在给定的起始点S到终止点T的通路集合中,寻求距离最小的通路,这样的通路成为S点到T点的最短路径。
在寻找最短路径问题上,有时不仅要知道两个指定顶点间的最短路径,还需要知道某个顶点到其他任意顶点间的最短路径。
遗传算法方法的本质是处理复杂问题的一种鲁棒性强的启发性随机搜索算法,用遗传算法解决这类问题,没有太多的约束条件和有关解的限制,因而可以很快地求出任意两点间的最短路径以及一批次短路径。
假设平面上有n个点代表n个城市的位置, 寻找一条最短的闭合路径, 使得可以遍历每一个城市恰好一次。
这就是旅行商问题。
旅行商的路线可以看作是对n个城市所设计的一个环形, 或者是对一列n个城市的排列。
由于对n个城市所有可能的遍历数目可达(n- 1)!个, 因此解决这个问题需要0(n!)的计算时间。
假设每个城市和其他任一城市之间都以欧氏距离直接相连。
也就是说, 城市间距可以满足三角不等式, 也就意味着任何两座城市之间的直接距离都小于两城市之间的间接距离。
二、遗传算法1 遗传算法介绍遗传算法是由美国J.Holland教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。
通过模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。
遗传算法在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。
其假设常描述为二进制位串,位串的含义依赖于具体应用。
搜索合适的假设从若干初始假设的群体集合开始。
当前种群成员通过模仿生物进化的方式来产生下一代群体,如随机变异和交叉。
内蒙古农业大学运筹学课程综合性实验报告运筹学模型在人力资源决策中的应用----D公司人力资源决策问题案例A4D公司人力资源决策问题D公司需要以下三类人员:不熟练工人、半熟练工人和熟练工人。
据估计,当前以及以后三年需要的各类人员的人数(单位:人)如表5年所示。
为满足以上人力需要,该公司考虑以下四种途径:1)招聘工人;2)培训工人;3)辞退多余人员;4)用短工。
每年都有自然离职的人员。
在招聘的工人中,第一年离职的人数特别多,工作一年以上再离当前没有招工,现有的工人都已工作一年以上。
①招工。
假定每年可以招聘的工作数量有一定的限制。
不熟练,半熟练,熟练的每年招工人数限制(单位:人)为500,800,500。
②培训。
每年最多可以将200个不熟练工人培训成半熟练工,每人每年的培训费是400元。
每年将半熟练工培训成熟练工的人数不能超过该年初熟练工人的四分之一,培训半熟练工人成为熟练工人的费用是每人500元。
公司可以把工人降等使用(即让熟练工去做半熟练工或不熟练工的工作等),虽然这样公司不需要支付额外的费用,但被降等使用的工人中有50%会放弃工作而去离去(以上所说的自然离职不包括这种情况)。
③辞退多余人员。
辞退一个多余的不熟练工人要付出200元,而辞退一个半熟练工人或熟练工人要付给他500元。
④额外招工。
该公司总共可以额外招聘150人,对于每个额外招聘的人员,公司要付给他额外的费用(单位:元/人年)为1500,2000,3000。
⑤用短工。
对每类人员,最多可招收50名短工,每个不熟练,半熟练与熟练工的费用(单位:元/人年)为500,400,400。
而每个短工的工作量相当于正常的一半。
(1)若公司目标是尽量减少辞退人员,试提出相应的招工和培训计划。
(2)若公司政策是尽量减少费用,这样额外的费用与上面的政策相比,可以减少多少?而辞退的人员将会增加多少?一、设定决策变量(1)设x表示不熟练的人数;y表示半熟练工人的人数;z表示熟练工人的人数;(2)设i表示第几年,i=1,2,3;(3)设j表示通过哪种方式进行人员的调配。
tsp实验报告《TSP实验报告》摘要:本实验旨在通过对旅行商问题(TSP)的实验研究,探讨不同算法在解决TSP问题上的表现。
我们使用了蚁群算法、遗传算法和模拟退火算法进行实验,并对比它们的效果和性能。
实验结果表明,不同算法在解决TSP问题上有着各自的优势和局限性,为解决实际问题提供了一定的参考价值。
引言:旅行商问题(TSP)是一个经典的组合优化问题,其目标是寻找一条最短的路径,使得旅行商可以经过每个城市一次并回到起点城市。
TSP问题在实际中有着广泛的应用,如物流配送、电路板布线等领域。
为了解决TSP问题,人们提出了多种算法,如蚁群算法、遗传算法和模拟退火算法等。
本实验旨在比较这些算法在解决TSP问题上的表现,为实际问题的解决提供参考。
实验方法:本实验采用了三种经典的优化算法:蚁群算法、遗传算法和模拟退火算法。
我们使用Python语言编写了相应的程序,并在TSP问题的不同数据集上进行了实验。
实验中,我们记录了每种算法的运行时间、最优解和收敛性等指标,并进行了对比分析。
实验结果:通过实验,我们得到了以下结论:1. 蚁群算法在大规模TSP问题上表现较好,具有较快的收敛速度和较高的解的质量。
2. 遗传算法适用于中等规模的TSP问题,其具有较好的全局搜索能力和较高的稳定性。
3. 模拟退火算法在解决TSP问题上表现一般,其收敛速度较慢,但能够找到较优的解。
结论:不同算法在解决TSP问题上有着各自的优势和局限性。
在实际应用中,需要根据具体问题的规模和特点选择合适的算法。
本实验为解决实际问题提供了一定的参考价值。
展望:未来可以进一步研究和改进现有的TSP算法,提高其求解效率和解的质量。
同时,也可以探索新的算法和方法,为TSP问题的解决提供更多的选择。
华北科技学院基础部综合性实验
实验报告
课程名称运筹学B
实验学期 2011 至 2012 学年第 2 学期学生所在系部基础部
年级 09 专业班级计算B091班
学生姓名张成林学号 200909014101 任课教师孙士国
实验成绩
《 运筹学B 》课程综合性实验报告
开课实验室: 数学应用实验室 2012 年 6 月 13 日
实验题目
TSP 问题
一、实验目的
1)领会TSP 问题的理论和方法。
2)会编制上述方法的基于lingo 语言的计算程序,并用来求解有关问题。
3)熟悉求解TSP 问题的有关方法和理论。
4)针对所给问题编制程序,并上机计算其所需要的结果。
二、设备与环境
Lingo11.0 软件等
三、实验内容及要求
TSP 问题1
设有一个售货员从10个城市中的某一个城市出发,去其它9个城市推销产品。
10个城市相互距离如下表。
要求每个城市到达一次仅一次后,回到原出发城市。
问他应如何选择旅行路线,使总路程最短。
城市
1 2 3 4 5 6 7 8 9 10 1 0 7 4 5 8 6 12 13 11 18 2 7 0 3 10 9 14 5 14 17 17 3 4 3 0 5 9 10 21 8 27 12 4 5 10 5 0 14 9 10 9 23 16 5 8 9 9 14 7 8 7 20 19 6 6 14 10 9 7 0 13 5 25 13 7 12 5 21 10 8 13 0 23 21 18
8 13 14 8 9 7 5 23 0 18 12 9 11 17 27 23 20 25 21 18 0 16 10 18 17 12 16 19 13 18 12 16 0
1.问题分析与建模:
设城市之间距离用矩阵d 来表示,其中d 为下三角矩阵,ij d 表示城市i 与城市j 之间的距离。
设0--1矩阵s 用来表示经过的各城市之间的路线。
设
⎩⎨
⎧=j
i j i s ij 到城市若从城市到城市若不从城市1
则该TSP 问题转化为如下线性模型:
∑∑=-==
n i i j ij
ij d s
Z 21
1
min
112..2
2,3,,01j j ik ji k i
j i ij
s s t s s i n s ><>⎧=⎪⎪+==⎨⎪⎪=⎩∑∑∑ 或
2.算法设计与实现
程序如下:
!TSP quesion;
MODEL:
SETS:
city/1..10/;
link(city,city)|&1#GT#&2:d,s;
ENDSETS
DATA:
d= 7
4 3
5 10 5
8 9 9 14
6 14 10 9 7
12 5 21 10 8 13
13 14 8 9 7 5 23
11 17 27 23 20 25 21 18
18 17 12 16 19 13 18 12 16;
ENDDATA
MIN=@SUM(link:d*s);
@SUM(city(j)|j#GT#1:S(j,1))=2; !与第1个城市相连的有两个城市;
@FOR(city(i)|i#GT#1:@SUM(city(j)|j#GT#i:s(j,i))+@SUM(city(k) |k#LT#i:s(i,k))=2); !与第i个城市相连有两个城市;
@FOR(link:@BIN(s));
四、实验结果及分析
模型结果如图1所示
图1
由图1可知:
S(3,2)=1,S(4,1)=1,S(4,3)=1,S(6,5)=1,S(7,2)=1,S(7,5)=1,S(8,6)=1,S(9, 1)=1,S(10,8)=1,S(10,9)=1。
其它全为0。
其最短路线为1—4—3—2—7—5—6—8—10—9—1,最短距离为77公里。
五、总结
通过本次综合实验,我熟悉了TSP最短路问题的理论和方法,代码实现了其算法和功能,收获很大。
开始设计之时完全没头绪,对与理论学习不够扎实的我深感“书到用时方恨少”只好再把书上介绍的相关知识重新阅读一遍,对知识进行了全面而系统的梳理,遇到难处首先是苦思冥想寻求方法,再向同学请教,终于熟练掌握了基本理论知识,而且领悟了诸多平时学习难以理解掌握的的较难的知识。
在这次的综合实验中不仅检验了我所学习的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。
在实验过程中,和同学们相互探讨,相互学习,相互监督,获益匪浅。
教师评
评定项目 A B C D 评定项目 A B C D 问题分析清楚模型正确
算法正确运行结果正确
结果解释合理操作熟练
文字流畅报告规范
其他:
评价教师签名:
年月日。